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ABSTRACT

A premium calculation principle TT is called positively homogeneous if TT(CX) =
CTT(X) for all c>0 and all random variables X. For all known principles it is
shown that this condition is fulfilled if it is satisfied for two specific values of c
only, say c = 2 and c = 3, and for only all two point random variables X. In the
case of the Esscher principle one value of c suffices. In short this means that
local homogeneity implies global homogeneity. From this it follows that in the
case of the zero utility principle or Swiss premium calculation principle, the
underlying utility function is of a very specific type.

A very general theorem on premium calculation principles which satisfy a weak
continuity condition, is added. Among others the proof uses Kroneckers Theorem
on Diophantine Approximations.
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1. INTRODUCTION

In actuarial practice one generally uses only three premium calculation principles,
namely the expected value principle, the variance principle and the standard
deviation principle. Apart from these there are many other principles for determin-
ing a premium for a risk: all these are examined in the new textbook by
GOOVAERTS, DEVYLDER and HAEZENDONCK (1984). A central theme is the
analysis of the principles which fulfil some desirable properties such as translation
invariance, (sub-)additivity, iterativity, homogeneity etc. For example the expec-
ted value principle is always additive and homogeneous, but it is iterative or
translation invariant only in the case of a vanishing loading.

If a premium principle is defined by a utility function, then the above mentioned,
(so-called) plausible properties are in general very restrictive: The Swiss premium
calculation principle e.g. is translation invariant if and only if the corresponding
utility function is exponential or linear, and it is positively homogeneous if the
utility function u(x) is—up to linear transformations—a power of x. Therefore,
e.g., the Swiss premium calculation principle is both translation invariant and
homogeneous only in the case of a linear utility function. Such an analysis has
been performed already for all known principles and all properties mentioned
above. If ir denotes a premium calculation principle, which therefore to any real
random variable X assigns a real number n(X)—the premium of X—then in
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all cases it turns out that, e.g., in the case of translation invariance (that means

(1) TT(X + C) = TT( X) +c

for all risks X and all real numbers c), it is sufficient to know equation (1) for
all ceU and only all Xe D2 (D2 the set of all 2-atomic random variables): If
(1) is valid for all c e R, X e D2, then automatically (1) is fulfilled also for those
X not in D2. This reduction to the essence of a property has been worked out
for the property of translation invariance by REICH (1984) in a definitive sense:
Any principle is already translation invariant (i.e., (1) holds for all ceU and all
risks X), if (l)_is fulfilled for all X e D2 and two specific values of c only, say
c = 1 and c = v2. In case of the Orlicz principle (HAEZENDONCK and GOOVAERTS

(1982)) a single value of c, e.g., c = 1, suffices. A further reduction is impossible
as one can see from the counterexamples in REICH (1984).

In the case of the property of homogeneity (sometimes also called proportion-
ality)

(2) TT(CX) = cn(X)

(more exactly we will examine positively homogeneous principles, i.e., ceR+)
we will now give a similar analysis of the analogous problems. Equation (2)
means for c = \, say, that the premium of X should be homogeneously divided
in two equal parts, if the risk X is split up into two parts in a homogeneous way.
The aim of this paper therefore is to give an answer to the question: How little
does one really need to know, to have already property (2) in full generality (i.e.,
for arbitrary risk X and arbitrary c e R+)? Of course, this leads to other conditions
than in the case of translation invariance and other principles are now of special
interest. A mere corollary from the results (still to be formulated and proved)
should be mentioned here: Take for example the Swiss premium calculation
principle. If (2) holds for all X e D2 only and for all c e [|, {-], then (2) holds
automatically for all risks X and all ceR+. There is therefore no difference in
homogeneity as a local or global property. This fact is a trivial consequence of
theorem 2.2, which is best possible in the precise sense specified there. Moreover
for every known premium calculation principle the following is true (X e D2):
If (2) holds in the two special cases c = \ and c = \ only, then again (2) is fulfilled
for all c> 0.

From this one can prove that even an extremely weaker assumption than the
homogeneity is (with the Orlicz principle as the only exception) very restrictive
for all utility principles.

2. RESULTS AND REMARKS

Among the known principles the following are in every case (i.e., independent
of the choice of the corresponding parameters or utility functions) positively
homogeneous: Expected value principle, maximal loss principle, percentile prin-
ciple, standard deviation principle and Orlicz principle. The variance principle
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on the contrary is certainly not positively homogeneous in the case of a non-
vanishing loading (cf. GOOVAERTS, DE VYLDER and HAEZENDONCK (1984)).

For the remaining cases of the Swiss Premium calculation principle, the zero
utility principle (which is indeed a special case of the Swiss premium calculation
principle, but has for technical reasons to be treated separately) and the Esscher
principle it will now be proved for example: If one has for all X e D2

then

and

ir(cX) = cir(X)

holds for all X and all ceR+, i.e., TT is positively homogeneous. More generally
and more exactly:

2A. 77 = zero utility principle

This principle was introduced by BUHLMANN (1970). One starts with a utility
function u with w'(x)3=0, u"(x)s£0. For a given risk X the premium P= n(X)
is determined by

(3)

We prove

E[u(P-X)] = u(0).

THEOREM 2.1. For fixed, positive c,, c 2 ^ 1 let log c,/log c2 not be rational. If
for every X e D2

and TT(C2X) = C2TT(X)

hold, then u is linear. Conversely, if u is linear, then for all X and all ceU+

TT(CX) = CTT{X)

holds, i.e. TT is positively homogeneous.

REMARK. Theorem 2.1 is best possible in the following sense: For any pair
c{, c2eU+ (ct = c2 is admissible), which the condition of theorem 2.1 (i.e.,
log c,/log c2 € Q) does not fulfil, there is a non-linear utility function u such that

7T(ciX) = c,n(X), i=l,2,XeD2,

holds. In this case the zero utility principle certainly is not positively
homogeneous.

2B. IT = Swiss premium calculation principle

This principle was introduced by BUHLMANN, GAGLIARDI, GERBER and STRAUB

(1977): If ze[0, 1] and u is a strictly monotonic, continuous function on U the
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premium P= n(X) for a risk X is given by the equation

(4) E[u(X-zP)]=u((l-z)P).

In the case z= 1 and by the substitution u(x)-* -u(-x) one just gets the zero
utility principle. By a different proof than in the case 2A one proves for 0 =s z < 1

THEOREM 2.2. For fixed, positive cu c 2 ^ 1 let log c,/log c2 not be rational. If
for every X e D2

and TT(C2X) = C2TT(X)

hold, then for suitable a, (S, y, reU (with / 3y>0 , r > 0 )

ra + (3xr,

Conversely, if u has the form (5), then for all X and all ceU+

TT(CX) = CTT(X)

holds, i.e., TT is positively homogeneous.

REMARK. Theorem 2.2 is best possible in the following sense: For any pair
c{, c2eU+, which does not fulfil the conditions of theorem 2.2, there is an
admissible utility function u, not of the form (5), such that

7r(c,A:) = cj7r(X), i=l,2,XeD2

holds. In this case the Swiss premium calculation principle certainly is not
positively homogeneous.

2C. -n = Esscher principle

This principle was introduced in BUHLMANN (1980) and so named in view of
the formal similarity to the Esscher transform: Given a sO the premium P = TT(X)
is determined explicitly by the equation

E[Xcxp(aX)]

It is very easy to see (cf. GOOVAERTS, DE VYLDER and HAEZENDONCK (1984)),
that the Esscher principle is positively homogeneous only in the case a =0, i.e.,
Esscher premium = net premium. A simple proof will give the following sharp
result:

THEOREM 2.3. If for a fixed co# 1, a single (non-degenerated) Xoe D2 the
equation

ir(c0X0) = con(Xo)

holds, then a = 0.
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2D. General premium principles

The result mentioned in the introduction, namely that the property of positive
homogeneity is already fulfilled in the global sense if it is known only locally with
respect to the variable c, now follows easily: If rr denotes the zero utility principle,
the Swiss premium calculation principle or the Esscher principle, then the
theorems above yield at once

COROLLARY 2.4. If for all X e D2 and all c in a given (arbitrarily small) bounded
interval in U+ one has

TT(CX) = CTT{X),

then TT(CX) = CTT(X) holds for all X and all c e U+.

Finally one should pay attention to a very general result, which on the one hand
makes the results above more transparent, on the other hand is true for general,
possibly still unknown principles: Denote by IT any premium principle with the
very weak and plausible continuity condition, that for every convergent sequence
(yk) c u+ and every X e D2

lim n(ykX) = 7r(lim yk • X).

For such principles one has throughout

THEOREM 2.5. For fixed, positive c,, c2^ 1 let log c,/log c2 not be rational. If

TT(C,X) = C,7T(X) and TT(C2X) = c2v(X), X e D2,

then TT(CX) = CTT(X) holds for all X e D2 and even all c > 0.

As a corollary (because in any interval /, however small it may be, there are of
course always two numbers c,, c2^ 1 in / such that log c,/log c2£Q) we note:
The (global) property of such premium calculation principles of being positively
homogeneous is always a local property in the following sense:

If TT(CX) = CTT(X) holds for only all eel, then automatically also for even all
ceU+.

REMARK. Simple and explicit examples for pairs of numbers c,, c2^\, which
satisfy log c,/log c2iQ, are the following:

(i) C = 2, c2 = 3,
(ii) ci=i c2 = i
(iii)
(iv)
(v)
(vi) c, = e, c2 = i
(vii) c, = 1.25, c2 =

c, = 1.1,
c,=2,
c,=2,

c2=1.2,
C 2 = 77,

c2=e\
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As was pointed out by GERBER (1979), pp. 73-74, the global property of positive
homogeneity is not reasonable for practical reasons. From example (vii) e.g., one
can deduce by the corollary of theorem 2.5 more precisely that it is in the same
way again unreasonable to accept the homogeneity property as a local property
with respect to c only: If for all X

ir(cX) = CTT(X)

holds for, say all c between 1 and 1.25 (local property), then automatically by
the results above also for all c> 0 (global property). In accordance with GERBER

(1979) the quotient TT{CX)/TT(X) should depend not only on c but also on X.

3. PROOFS

Ad 2A: First of all we consider the zero utility principle v with strictly monotonic
utility function w, such that u'(x) s» 0, u"(x) =£ 0. To prove theorem 2.1 we assume
M ( 0 ) - 0 without loss of generality, because for a given risk X the premium
P= IT(X) does not change if in (3) u is substituted by u-w(0).

LEMMA 3.1. If for a fixed co>0

(6) 7r(c0X) = c07r(X), XeD2,

then there exists a flo = po(co) such that

u(cox) = p0u(x)

holds for all x EU.

PROOF. For the present let be x > 0, and for a, b e R, q e [0,1] let X = XaMq e D2

be denned by

pr(X = a)=l-q, pr(X = b) = q.

With the abbreviation P = P(a, b, q) = TT{X) one has by (3)

(7) (l-q)u(P-a) + qu(P-b) = u(0),

and by (6)

(8) (l-q)u{co(P-a))+qu(co(P-b)) = u(0).

(7) and (8) yield

( 9 ) l-q_u(P-b)-u(0)
q u(0)-u(P-a)'

(10) l-q_u(co(P-b))-u(0)

q u(0)-u(co(P-a))'

Putting x' = -l, a = 2, y=\, b=\-x one gets

(11) a = y — x', b = y-x and b<y<a.
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If

then 0 < q < 1 in view of the strict monotonicity of u. Because of x = y-b,
x' = y-a and by (12) one concludes

(\-q)u(y-a)+qu(y-b) = u(O),

therefore y = P(a, b, q) according to (7). From this, in view of (10), (11) it follows

,.., \-g_u{c0x)-u(0)
( ' q u{0)-u(cox')

for arbitrary x > 0. Together with (9) this leads to

«(CQ%)-M(0)_M(X)-U(0)

u(0)-u(cbx')

Therefore

M(0)-U(CQX')

«(0)-u(x')

u(x)

M ( 0 ) - » ( C Q X ' ) 1

L «(0)-u(x') J

M(X')

for all x > 0 , respecting the normalization u(0) = 0. With /30= U(COX')/M(X') this
is the assertion for x > 0.

In the case x «£ 0 one proves in an analogous way the existence of a real number
y0 such that

(14) M(cox) = yow(x)

holds for all x «£ 0. Now certainly /30 = To (this is exactly the statement of lemma
3.1), because with regard to (9) and u(0) = 0 one has

(15) l_Zq=_u(P~b)

Correspondingly by (10)

\-q u(co(P-b)) p0 u(P-b)
(16)

q u(co{P-a)) y0 u(P-a)

if b < P < a, which is true in view of (11) and P = y. Comparing (15) and (16)
one has ]80 = y0.
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PROOF OF THEOREM 2.1. Under the assumptions of theorem 2.1 there are by
lemma 3.1 real numbers fiu f52 such that

(17) M(C,X) = /3,w(;c) and u(c2x) = /32"(x), xeR.

Successive application of these relations gives for x = 1

u(clc?) = tfp?u(l), n,meZ.

Together with (17) it follows for xeU, n, meZ

(18) u(c"lC?x) = u{c1c?)u (X)/II(1).

By assumption one has log cJXog c2f£Q, therefore according to Kronecker's
approximation theorem (cf. REICH (1984), Appendix) the set

{fclogc,+/logc2: k,leZ}

is dense in U. From this it follows at once that for every given number y > 0
there are two sequences k(n), l(n)eZ such that

(19) y = lim cf(n)c2
<n>.

n-*oo

By (18) and the continuity of u one concludes

(20) u(yx) = u(y)u(x)/u(l).

for arbitrary y>0,xeR. The only continuous solution of this functional equation
are

(21) u(x) = u(l)xr, x>0,

with some reU, as is well known. Because u is strictly increasing, (21) holds
for all x > 0 with suitable r>0 . Moreover, if x<0 then it follows from (20)

so indeed there are numbers /? > 0, y < 0 such that

u(x) = •
x<0

In the case r = 1 one has certainly /S = - y for continuous u', therefore u is linear.
The case r 3*2 is impossible in view of u"(x)=sO, the case 0 < r < 2 , r ^ l , is
impossible according to the existence of M"(0). Because of the assumed normaliz-
ation of u theorem 2.1 is proved.

The remark after theorem 2.1 can be easily proved.

Ad2B:

PROOF OF THEOREM 2.2 (Swiss premium calculation principle). Let be z < l
and without any restriction of generality let u be strictly increasing. Assume as
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in theorem 2.2 that two numbers c,, c25* 1 are given and that TT(CJX) = C,TT(X)

holds for i = 1,2. According to (4) one has more precisely

(22) £[M(ciX-zcjP)]=u((l-z)c,P), XeD2,

Denning g,(x) = u(CiX) equation (22) gives

E[g i (X-zP)] = g j ( ( l -

By GOOVAERTS, DE VYLDER and HAEZENDONCK (1984), theorem 2, p. 72, there
exist real numbers a,, /?,, i = 1,2, such that

(23) u(cix) = ai+piu(x), xeR.

Without any restriction one can assume u to be normalized, especially M(0) = 0.
Then, of course, a, = 0 and

(24) u(cix) = piu(x), xeR.

From this it follows immediately for arbitrary n, meZ, xeU

(25) u(c:c?x) = PWTuix) = u{c1c?)u(x)lu(\).

The condition log c^/log c2i Q leads via Kronecker's approximation theorem and
the continuity of u to

(26) u(yx) = u(y)u(x)/u(\)

for all y > 0, x e R.

In the case x3=0 one introduces u,(x) = u(x)/u(l) and gets by (26)

ui(yx) = ul(y)u](x), x,y>0.

As is well known for continuous u, it follows that u, is monomial, therefore M too:
u(x) = u(l)xr, x^O,

with suitable r > 0.
In the case x < 0 one defines z= -x and u 2 ( z ) = ~"( z ) - By (26)

u2(yz) = u2(y)u2(z)/u2(l),

therefore it follows in a similar way that u2 is a monomial. This means

M ( X ) = - U ( - 1 ) ( - J C ) S , X < 0 ,

for suitable s>0. In view of (26) r = s holds, so the first part of theorem 2.2 is
proved. The second part is trivial.

The remark after theorem 2.2 is easily proved and the proof is omitted.

Ad2C:

PROOF OF THEOREM 2.3 (Esscher principle). Let X O G D 2 not be degenerated,
say

p r ( X 0 = a ) = l - q , pr(X0=b) = <7
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for some a, ft e U, a ̂  ft, q e (0, 1). If for a fixed c0 ̂  1

n(c0X0) = cov(Xo)

is true, then

coa(l -q) exp (acoa) + cobq exp (acob) _ a(l - q ) exp (aa)+ftg exp (aft)
(1 -<?)exp (acoa) + (7 exp (acoft) ° (1 -q) exp (aa) + <7 exp (aft)

Multiplication yields

(a - ft) exp [a(coa +ft)] = (a - ft) exp [a(cQb+a)],

therefore in view of a y* ft

exp [a(coa + ft)] = exp [a(cob+a)].

Assume a > 0, then coa + ft = cob+a, therefore a = ft according to c0 5* 1. This is

a contradiction, so necessarily a = 0.

If / = (a, ft), 0 «£ a < ft =£ oo, is any interval in R+, then by trivial arguments there
are two numbers cu c2e I such that log c,/log c2iQ. From this it is clear that
Corollary 2.4 follows from the preceding Theorems.

PROOF OF THEOREM 2.5. By induction one immediately proves for n, meN

Because of

/ i \ /i \
' = 1,2,

equation (27) even holds for n, meZ. Then one has

(28) T K C ^ X ) = cnMciX) = C1C^TT{X).

Given an arbitrary c > 0 there are according to Kronecker's approximation
theorem (cf. REICH (1984), Appendix) two sequences n{k), m(k)eZ such that

The continuity condition for IT and (28) yields

hm yk- ir(X) = cir(X),
k-*oo

therefore the assertion.
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