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Abstract
ATO4 compounds are a class of oxides which includes the rare earth element (REE) bearing phosphates and arsenates, REEPO4 and
REEAsO4. In this study, we have investigated the isothermal high-pressure and the isobaric high-temperature behaviour of natural samples
of xenotime-(Y) (ideally YPO4), chernovite-(Y) (YAsO4) and monazite-(Ce) (CePO4) from the hydrothermal veins cropping out at Mt.
Cervandone in theWestern Italian Alps. Experimental data based on in situ X-ray diffraction (both single-crystal and powder techniques
with conventional or synchrotron radiation) have allowed us to fit the unit-cell volumes and axial thermal and compressional evolution
and provide a suite of refined thermo-elastic parameters. A comprehensive analysis of the role played by the crystal chemistry on the
thermo-elastic response of these minerals is discussed, along with the description of the main crystal-structural deformationmechanisms
for both the zircon (xenotime and chernovite) andmonazite (monazite) structural types. Pressure-induced phase transitions of xenotime-
(Y) and chernovite-(Y) are discussed and compared with previous literature data, whereas a change in the compressional behaviour of
monazite-(Ce) at ∼18 GPa, involving an increase in the coordination number of the REE-hosting A site, is presented and discussed.
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Introduction

The general formula ATO4 is commonly used in the literature to
define ternary inorganic oxides (Vorres, 1962), where A and T
represent two cations that can be combinedwith oxygen (and occa-
sionally with other anions) into several structural types, including,
but not limited to, scheelite, zircon, monazite, fergusonite, baryte,
quartz, cristobalite, wolframite and rutile (Fukunaga andYamaoka,
1979). In the context of the present study, the A site is occupied
by a rare earth element (REE: lanthanides and Y), Ca, U and Th,
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whereas T stands for tetrahedrally-coordinated cations (As and P).
In regard to the structural types, this manuscript focuses almost
exclusively on the zircon andmonazite structures, as demonstrated
by the four minerals which are subject of this and two previous
works (Pagliaro et al., 2022a, 2022b): chernovite-(Y) [nominally
YAsO4], xenotime-(Y) [nominally YPO4], gasparite-(Ce) [nomi-
nally CeAsO4] and monazite-(Ce) [nominally CePO4].The crystal
structure of these minerals has been the subject of a large num-
ber of studies and reviews (e.g. Mooney, 1948; Ni et al., 1995;
Boatner, 2002; Finch and Hanchar, 2003 Kolitsch and Holtstam,
2004; Clavier et al., 2011) and an overview of the monoclinic
monazite-type structure and of the tetragonal zircon-type (also
known, but occasionally reported as ‘xenotime-type’) is discussed
in the next section.

As reported by several authors (Fukunaga and Yamaoka, 1979;
Ushakov et al., 2001; Boatner, 2002; Kolitsch and Holtsam, 2004),
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whether the monazite or the zircon-type structure is stable (within
ATO4 phosphates and arsenates) depends on different factors.
Among others, the atomic radii of either the A or T sites play a
dominant role. In general, a large sizedA cation promotes the crys-
tallisation of the monazite structural type over the zircon one; on
the other hand, the larger the T-site cation, the more stable is the
zircon structure across the REE series. Within the REE-bearing
phosphates, light REE ranging from La to Eu, with larger ionic
radii than heavy REE, are hosted preferentially by the monazite-
type structure, whereas heavy-REE, fromTb to Lu, including Y and
Sc, fit best into the zircon-type structure (Mooney, 1948; Ni et al.,
1995; Boatner, 2002; Kolitsch and Holtstam, 2004; Clavier et al.,
2011). A similar behaviour has been reported for the REEAsO4
series, although the threshold among the two structures is shifted
to smaller Z numbers in the lanthanoid series: the monazite-type
structure preferentially hosts REE from La to Nd, whereas the REE
from Sm to Lu (as well as Y and Sc) are hosted by the tetragonal
zircon-type crystal structure (e.g. Ushakov et al., 2001; Boatner,
2002).

The REE-bearing phosphates are common accessory minerals
in hydrothermal alteration of granitoid rocks that can control the
partitioning of REE, as well as uranium and thorium, as they tend
to incorporate these elements into their crystal structures (Rapp
andWatson, 1986). In addition, due to their much lower tendency
to incorporate Pb, they have found a significant use in geochrono-
logical applications (Harrison et al., 2002). Due to their peculiar
physical, chemical and optical properties (such as low solubility in
water fluids), REE phosphates are used, or have been proposed,
in several technological applications, e.g. to produce phosphors
(de Sousa Filho and Serra, 2009), ceramic coatings (Morgan et al.,
1995; Davis et al., 1998), and materials for the safe storage of
actinides originating from radioactive waste (Oelkers and Montel,
2008; Orlova and Ojovan, 2019). Consequently, there has been
significant interest in studying the behaviour of REE phosphate
minerals and their synthetic counterparts under varying pressure
and temperature conditions.

Recent reviews have been published by Errandonea (2017) and
Strzelecki et al. (2024) for monazite- and zircon-type structures,
respectively. Tables S1 and S2 (supplementary material, see below)
provide a comprehensive list of the thermo-elastic parameters pub-
lished in the literature for several REETO4 compounds, along with
the related bibliographic references. Concerning the response of
REETO4 compounds to high pressure (hereafter HP), as a gen-
eral rule it has been postulated that, for a given structural type, the
bulk modulus shifts towards lower values as the atomic radius of
the A and T sites increases, which has been highlighted by sev-
eral authors and corroborated by both theoretical (Zhang et al.,
2008; Li et al., 2009) and experimental studies (Zhang et al., 2008;
Lacomba-Perales et al., 2010; Errandonea et al., 2011). Regarding
the thermal behaviour, there is general agreement on the thermal
expansion coefficient of REETO4, which shows a clear compo-
sitional trend: the thermal expansivity increases along with the
ionic radii of the A cation, while it reduces if the radius of the T
site increases (Subbarao et al., 1990; Perrière et al., 2007; Zhang
et al., 2008; Li et al., 2009). Unfortunately, the published values of
both the compressibility and thermal expansivity of the REETO4
studied are not always internally consistent (see Tables S1 and S2),
showing a certain degree of scattering, even for the same com-
pound. In the case of thermal studies, the use of different ther-
mal equations of state further complicates a comparative analysis.
Therefore, in this study, we used the linear thermal expansion
coefficient, which is commonly used in the literature, although it

is not the most accurate model of the thermal elastic response
(along with thermal equations of state commonly used in Earth
Sciences).

The relative ratio of the A and T ionic radii not only affects
the structure types adopted by a given compound at ambient
conditions, but also its pressure stability field and the structural
type of the high-pressure polymorphs. Such a relationship is well
described by the so-called ‘Bastide diagram’ (Bastide, 1987), for
which one of the most recent graphical representations is reported
in Lopez-Solano et al. (2010) (Fig. 1, modified). The zircon-type
compounds, xenotime-(Y) and chernovite-(Y) in this study, may
transform at high-pressure into monazite-type or scheelite-type
polymorphs. Whether a zircon → scheelite or a zircon → mon-
azite → scheelite transformation occurs depends on the reciprocal
relations among the ionic radii of the three atoms involved. A large
T cation promotes a zircon-to-scheelite phase transition, whereas a
small T cation favours an intermediate monazite-type polymorph.
For the A-site cation, the larger it is, the more likely it is that a
monazite polymorph will form over the scheelite one, ‘shifting’
the stability field to higher pressures. All the studied zircon-type
ATO4 silicates show a zircon-to-scheelite phase transition, with
high-pressure Raman and Density Functional Theory calculations
suggesting the occurrence of a high-pressure lower symmetry poly-
morph preserving the zircon structural configuration before the
reconstructive phase transition to reidite (Stangarone et al., 2019).
The zircon-to-scheelite phase transition has been described for
YAsO4 (∼8 GPa) and YCrO4 (∼4.2 GPa) (Errandonea et al., 2011),
as well as YVO4 (above ∼7.5 GPa) (Jayaraman et al., 1987; Wang
et al., 2004; Manjón et al., 2010). A comprehensive description of
the zircon-to-monazite phase transition in phosphates, including
YPO4 (xenotime) is reported in Hay et al. (2013). The relations
between monazite and its HP-polymorphs again depend upon the
reciprocal relations among the A, T and oxygen ionic radii. The
monazite-to-post-baryte phase transition (space group P212121)
has been described for REEPO4 and REEVO4 at increasing pres-
sures with decreasing REE atomic radius (Lacomba-Perales et al.,
2010; Ruiz-Fuertes et al., 2016; Errandonea, 2017). On the other
hand, monazite-type LaVO4, PrVO4 and NdVO4, under compres-
sion, undergo a phase transition to a monoclinic BaWO4-II-type
structure (Errandonea et al., 2016; Panchal et al., 2017; Marqueño
et al., 2021). Eventually, the monazite-to-scheelite transition has
been described for the high-pressure polymorphs of YPO4 and sev-
eral other REE-free compounds, as SrCrO4 and CaSeO4 (Crichton
et al., 2012; Gleissner et al., 2016).

This study, following the research conducted by Pagliaro
et al. (2022a, 2022b), which includes a detailed crystal chem-
istry description, focuses on the high-pressure and temperature
behaviour of four REETO4 mineralogical species from the same
locality (Mt. Cervandone, Piedmont, Italy).

Based on experimental single-crystal or powder X-ray diffrac-
tion data collected in situ (high-P or high-T) at synchrotron beam-
lines or in conventional diffraction laboratories, a comparative
analysis of the elastic behaviour and structural deformation mech-
anisms as a function of the crystal chemistry and structure type has
been performed. The adoption of up-to-date experimental tech-
niques and crystallographic methods has allowed us to describe
a P-induced structural re-arrangement peculiar of the monazite
structure type, previously reported by Pagliaro et al. (2022b) for
gasparite-(Ce) and here confirmed also formonazite-(Ce). Such an
intermediate structural configuration, implying an increase in the
number of oxygen atoms bonded to theA site (from 9 to 10), before
the occurrence of the phase transition to the post-baryte-type
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Figure 1. The so-called ‘Bastide diagram’ showing the relationships among structural types as a function of the atomic radii of cations at the A site (rA), T site (rT)
and oxygen (rO), within the ATO4 family. The fields corresponding to the SrUO4 and BaWO4-II structures are labelled as orthorhombic (Cmca, Pbcm, Pnma) and
monoclinic 14, respectively (2, 10, 12, 14 refer to the space group numbers). The post-baryte field is not reported (modified after López-Solano et al., 2010).

polymorph at higher pressures, has not been reported in earlier
literature for monazite-type phosphates.

Crystal structure description

Zircon-type crystal structure

The first studies concerning the crystal structure of zircon date
back to the early 20th century and were carried out independently
by Vegard (1916, 1926), Binks (1926), Hassel (1926) and Wyckoff
and Hendricks (1928), in the framework of the pioneering works
about the silicate’s structure determination, later gathered by Bragg
(1929) in hisAtomic Arrangement in Silicates. After the first studies
on zircon, its structural type has been described in several REE-
bearing compounds, including xenotime-(Y) (Vegard, 1927) and
the synthetic counterpart of chernovite-(Y), YAsO4 (Strada and
Schwendimann, 1934).

The zircon-type structure is characterised by a tetragonal
I-centred lattice (space group I41/amd).The tetragonal zircon-type
structure is constructed by infinite chains of polyhedra, devel-
oped along the [001] direction (Fig. 2a and 2d), as the result of
the connection, along the polyhedral edges, between the eight-
fold coordinated A-site dodecahedron (AO8 or REEO8) and the
TO4 tetrahedra (Fig. 2c). The AO8 polyhedron displays two inde-
pendent A–O atomic distances (Fig. 2c), whereas the TO4 is
an undistorted tetrahedron defined by a single T–O bond dis-
tance. Each chain is in contact with four others on the (001)
plane, through connecting edges along an AO8 unit and the sur-
rounding four (Fig. 2b). The atomic coordinates of the A- and
T-sites are placed in special, fixed positions, both characterised

by a 2m point symmetry. The oxygen atom is also at a special
position (m), being its y and z coordinates the sole refinable
parameters.

Monazite-type crystal structure

Parrish (1939), within the first crystallographic studies on
monazites, identified its correct space group as P21/n. The first
description of the monazite-type structure has been reported by
Mooney (1948), who investigated the La, Ce, Pr andNdphosphates
as part of the Manhattan project and described the REE atomic
site in eightfold coordination. The crystal structure of monazite
with the REE site in ninefold coordination has been proposed by
Ueda (1953, 1967), butwith non-reliable average P–Obond lengths
of ∼1.6 Å. The structure was later described correctly by Beall
et al. (1981), Mullica et al. (1984) and Ni et al. (1995), whereas
an exhaustive review of the monazite-structure type has been car-
ried out by Boatner (2002) and then by Clavier et al. (2011).
The monazite-type structure can be described as made by infinite
chains running along the [001] direction (c-axis), comprising the
alternation of the REE-coordination polyhedra and the T-hosting
tetrahedra (Fig. 3).

The REE-polyhedron coordination environment has nine cor-
ners (oxygen ligands, REEO9, Fig. 3c). According to Mullica et al.
(1984), the REEO9 polyhedron can be described as an equatorial
pentagon (sharing vertices with fiveTO4 tetrahedra of five adjacent
chains in correspondence of the O1b, O2b, O2c, O3b and O4b oxy-
gens), interpenetrated by a tetrahedron (made by theO1a, O2a, O3a
and O4a oxygen atoms, see Fig. 3c), which is along the [001] direc-
tion in contact with two subsequent TO4 tetrahedra, leading to
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Figure 2. Crystal structure of the zircon-type materials viewed (a) along the [010] and (b) [001] directions and showing (c) the chains running along the c directions
and the bond distances configuration among the AO8 polyhedron and (d) a side view of the overall crystal structure. Structure drawings have been made using the
software Vesta3 (Momma and Izumi, 2011).

the formation of the infinite chain units (Fig. 3a,b). The REE–O2a
bond length is significantly longer than the other REE–O bonds,
contributing to a significant distortion of the REEO9 polyhedron
(Beall et al., 1981; Ni et al., 1995; Clavier et al., 2011), which can be
considered as 8+1 coordinated.

Samples and experimental methods

The mineral samples of monazite-(Ce), xenotime-(Y) and
chernovite-(Y), investigated in this study, originate from the
same locality at Mt. Cervandone, Piedmont, Italian western Alps,
where they are found as accessory phases in alpine-type fissures
within hydrothermal quartz veins (Graeser and Albertini, 1995)
that cross-cut pegmatitic dykes (Guastoni et al., 2006). The latter,
intruded in leucocratic gneisses, are enriched in REE and have a

strong NYF (Niobium-Yttrium-Fluorine enrichment) signature
(Černý, 1991a, 1991b; Černý and Ercit, 2005). An overview of
the geological background of the source rocks is described in
Pagliaro et al. (2022a), along with a detailed chemical analysis
of the samples of this study by means of an electron microprobe
operating in WDS mode. The experimental chemical formulas of
the investigated minerals are summarised in Table 1.

In situ high-pressure experiments

In situ high-pressure single-crystal synchrotron X-ray diffraction
experiments have been conducted on chernovite-(Y), xenotime-
(Y) and monazite-(Ce) at the P02.2 beamline (PETRA-III syn-
chrotron at DESY, Hamburg, Germany) and ID15B beamline
(European Synchrotron Radiation Facility, Grenoble, France)
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Figure 3. Crystal structure of monazite, viewed along (a) the [100] and (b) [010] directions; a chain-like unit is highlighted in blue; (c) coordination polyhedron of
the REE-bearing A site, with 9 independent A–O bonds; and (d) general view of the monazite structure. Structure drawings have been made using the software
Vesta3 (Momma and Izumi, 2011).

using different classes of P-transmitting fluids as shown in Table 2.
For all the experiments, the crystals were loaded in membrane-
driven diamond anvil cells (DAC), equipped with Boehler-Almax
designed diamonds/seats. Metallic foils (steel or rhenium) were
pre-indented to ca. 40–70 μm and then drilled by spark-erosion to
obtain P-chambers. Ruby spheres were employed as pressure cali-
brants (pressure uncertainty ±0.05 GPa; Mao et al., 1986; Chervin
et al., 2001). All data collections were based on a ω-rotation with
0.5∘ per step and 0.5 s (monazite and chernovite) or 1 s (xeno-
time) of exposure time per frame. At ID15B, X-ray diffraction
(XRD) data were collected using an Eiger2 9MCdTe detector posi-
tioned at 179mm from the sample with amonochromatic 30.2 keV
(λ = 0.4099 Å) beam, whereas XRD patterns at P02.2 were col-
lected on a Perkin Elmer XRD1621 detector at 373 mm from the
sample and a monochromatic incident beam with E = 42.67 keV
(λ = 0.2906 Å). Further details on the beamlines setups are pre-
sented in Merlini and Hanfland (2013) and Poreba et al. (2022)
for ID15B and Rothkirch et al. (2013), Liermann et al. (2015)

and Bykova et al. (2019) for P02.2. Indexing of the X-ray diffrac-
tion peaks, unit-cell refinements and intensity data reductions
were performed using the CrysAlisPro package (Rigaku Oxford
Diffraction, 2020). Absorption effects, due to the DAC compo-
nents, were corrected using the semi-empirical ABSPACK routine,
implemented in CrysAlisPro.

Based on the experimental intensity single-crystal XRD data,
the structure refinements were performed using the Jana2020 soft-
ware (Pet ̌rí ̌cek et al., 2023), starting from the structural models
reported by Pagliaro et al. (2022a) for the mineral samples from
the same locality. The site occupancy factors of the A (lanthanide-
bearing) and tetrahedral sites were fixed according to the aver-
age chemical composition obtained from EPMA-WDS analysis
(Table 1), disregarding the elements with a concentration lower
than 0.03 atoms per formula unit and assuming a full occupancy
for both the sites. In addition, for monazite-(Ce), the atomic dis-
placement parameters (ADP) of the oxygen atoms were refined
as isotropic. All the refinements converged with no significant
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Table 1. Average (and range of the measured) chemical composition (expressed in oxide wt.% and in atoms per formula unit (apfu) calculated on the basis of 4
oxygen atoms) of the chernovite-(Y), xenotime-(Y) and monazite-(Ce) samples under investigation

Chernovite-(Y)* Chernovite-(Y)** Xenotime-(Y)*** Monazite-(Ce)****

As2O5 36.11 (34.77−36.91) 36.36 (30.95−42.80) 5.49 (3.45−6.81) 1.95 (1.36−2.84)
P2O5 5.41 (3.93−6.86) 2.30 (1.38−4.52) 28.70 (25.99−31.00) 27.71 (26.60−28.55)
SiO2 0.82 (0.45−1.59) 2.40 (1.10−3.61) 0.34 (0−0.81) 0.24 (0.02−0.69)
V2O5 0.01 (0−0.05) <0.01 (0−0.02) b.d.l. b.d.l.
CaO 0.01 (0−0.03) 0.52 (0.03−1.26) 0.01 (0−0.06) 1.19 (0.54−1.59)
Y2O3 33.10 (29.91−35.38) 29.20 (25.94−31.94) 39.44 (37.11−41.55) 0.54 (0.39−0.62)
La2O3 0.01 (0−0.05) 0.05 (0−0.20) 0.03 (0−0.12) 14.18 (12.31−15.82)
Ce2O3 0.13 (0.01−0.25) 0.16 (0.07−0.26) 0.07 (0−0.20) 30.84 (28.41−32.95)
Pr2O3 0.04 (0−0.09) 0.05 (0−0.13) 0.03 (0−0.18) 3.46 (3.09−3.93)
Nd2O3 0.37 (0.03−0.65) 0.57 (0.07−0.94) 0.26 (0.08−0.48) 12.88 (12.21−14.46)
Sm2O3 0.73 (0.55−1.06) 0.84 (0.26−1.60) 0.73 (0.43−1.04) 2.20 (1.86−2.45)
Eu2O3 b.d.l. b.d.l. b.d.l. b.d.l.
Gd2O3 2.30 (1.73−3.07) 3.02 (1.70−5.44) 3.84 (2.95−5.03) 1.41 (1.04−2.06)
Tb2O3 0.55 (0.39−0.60) 0.63 (0.40−0.86) 0.87 (0.68−1.07) b.d.l.
Dy2O3 5.10 (4.39−5.58) 4.51 (3.81−5.05) 6.23 (5.36−6.70) 0.27 (0.13−0.43)
Ho2O3 2.39 (2.09−2.78) 2.40 (1.87−3.44) 3.27 (2.65−4.14) 0.25 (0.10−0.44)
Er2O3 3.51 (2.98−4.24) 2.58 (1.76−3.73) 3.55 (3.13−4.13) 0.03 (0−0.22)
Tm2O3 0.48 (0.27−0.83) 0.37 (0−0.71) 0.46 (0−0.68) 0.07 (0−0.21)
Yb2O3 3.38 (1.87−5.07) 2.29 (1.24−4.58) 3.08 (2.34−3.71) 0.04 (0−0.39)
Lu2O3 1.29 (1.01−1.73) 1.06 (0.92−1.14) 1.56 (1.07−1.95) 0.07 (0−0.24)
PbO 0.26 (0.19−0.31) 0.16 (0−0.39) 0.25 (0.04−0.47) 0.03 (0−0.20)
ThO2 2.40 (0.78−4.94) 7.32 (1.40−12.70) 1.89 (0.31−3.87) 2.55 (0.57−5.70)
UO2 1.90 (1.26−2.32) 3.93 (3.95−4.27) 0.40 (0.01−0.74) 0.05 (0−0.17)
Total 100.41 100.84 100.62 100.05
Apfu
As 0.766 0.798 0.102 0.040
P 0.185 0.081 0.861 0.934
Si 0.033 0.101 0.012 0.009
V
Ca 0.023 0.051
Y 0.714 0.652 0.744 0.011
La 0.001 0.208
Ce 0.001 0.002 0.449
Pr 0.050
Nd 0.005 0.008 0.003 0.183
Sm 0.010 0.012 0.008 0.030
Eu
Gd 0.044 0.042 0.039 0.018
Tb 0.007 0.008 0.010
Dy 0.066 0.061 0.071 0.003
Ho 0.030 0.032 0.036 0.003
Er 0.022 0.034 0.015
Tm 0.006 0.005 0.005
Yb 0.042 0.029 0.033
Lu 0.015 0.013 0.016
Pb 0.002 0.001 0.002
Th 0.022 0.070 0.015 0.023
U 0.017 0.036 0.003

*(Ca,Th)-poor chernovite in the text and Ch10 sample in Pagliaro et al. (2022a); **(Ca,Th)-enriched chernovite in the text and Ch13 in Pagliaro et al. (2022a); ***Xen14 sample in Pagliaro et al.
(2022a); ****Mon14 sample in Pagliaro et al. (2022a)
b.d.l. – below detection limit

correlations among the refined variables. Refined structural mod-
els are deposited as crystallographic information files (cifs) and are
available as Supplementary material (see below).

For a chernovite-(Y) sample with a slightly larger amount of
Ca and Th replacing Y and REE, an in situ high-pressure pow-
der XRD experiment was conducted at the P02.2 beamline of

PETRA III (Hamburg, Germany) with a wavelength of λ = 0.2906
Å (42.67 keV) and a Debye-Scherrer geometry. The sample was
loaded into a DAC equipped with Boehler-Almax designed dia-
monds of 400 μm culet size along with the pressure-transmitting
medium (see Table 2 for details) and ruby spheres for pressure
determination (P – uncertainty ±0.05 GPa; Mao et al., 1986;
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Table 2. Details pertaining to the in situ high-pressure and high-temperature experiments of this study

Experiment Technique* Wavelength (Å)
P-transmitting
medium**

Maximum
P/T (GPa/∘C)

Detector
type/Instrument

model
Exposure time
per frame (s)

Synchrotron
beam-

line/Institution

High-pressure experiments

(Ca,Th)-poor
chernovite-(Y) at
high-P

SC-XRD 0.41066 He 10.71(5) Eiger2 9M CdTe 0.2 ID15B, ESRF

(Ca,Th)-enriched
chernovite-(Y) at
high-P

PXRD 0.29060 m.e.w. 8.20(5) Perkin Elmer
XRD1621

*** P02.2, Petra-III

Xenotime-(Y) at high-
P

SC-XRD 0.41029 He 30.38(5) Eiger2 9M CdTe 0.5 ID15B, ESRF

Monazite-(Ce) at
high-P

SC-XRD 0.29060 Ne 23.50(5) Perkin Elmer
XRD1621

1 P02.2, Petra-III

High-temperature experiments

(Ca,Th)-poor
chernovite-(Y) at
high-T

SC-XRD 0.71359 – 790(5) Stoe IPDS II 5.5 IMP#

(Ca,Th)-enriched
chernovite-(Y) at
high-T

PXRD 0.7293 – 1000(5) Scintillator *** MCX, Elettra

Xenotime-(Y) at high-
T

SC-XRD 0.71359 – 790(5) Stoe IPDS II 2 IMP#

Monazite-(Ce) at
high-T

SC-XRD 0.71359 – 790(5) Stoe IPDS II 2 IMP#

*SC-XRD: single-crystal X-ray diffraction; PXRD: powder X-ray diffraction
**He: helium (Klotz et al., 2009); Ne: neon (Klotz et al., 2009); m.e.w.: methanol:ethanol:water = 16:3:1 (Angel et al., 2007)
***See the text for further details
#Institute of Mineralogy and Petrography, University of Innsbruck, Austria

Chervin et al., 2001). The data collection strategy at any pressure
point consisted of a 30∘ rotation along ω, for an exposure time of
60 s. The X-ray diffraction signals captured by the Perkin Elmer
XRD1621 flat panel detector have been finalised and integrated by
means of the Dioptas software (Prescher and Prakapenka, 2015),
in order to remove the background noise due to DAC compo-
nents and extract the 2θ-intensity pattern for any experimental
dataset. The unit-cell parameters were determined by fitting the
powder XRD data by means of the Rietveld full-profile method
using the GSAS-II software (Toby and Von Dreele, 2013): the unit-
cell parameters, crystallite size, individual scale factor and profile
parameters (pseudo-Voigt function) have been refined. Moreover,
the background signal has been interpolated through a Chebychev
polynomial function, with 4 to 15 terms.

In situ high-temperature experiments

In situ high-temperature single-crystal X-ray diffraction data were
collected at the Institute of Mineralogy and Petrography of the
University of Innsbruck, using a Stoe IPDS II diffractometer
equipped with a Heatstream HT device, providing a continuous
flow of hot N2.The primary X-ray beamwas generated by an X-ray
tube (Mo-anode), operating at 50 kV and 40 mA. A plane graphite
monochromator and a multiple pinhole collimator (0.5 mm) were
used to guide the beam onto the sample. The image-plate detector
was placed at a distance of 100 mm. The temperature calibra-
tion had been conducted previously using phase transitions of
KNO3, Ag2SO4, K2SO4 and K2CrO4 powders into glass capillar-
ies. The samples, single crystals of monazite-(Ce), xenotime-(Y)
and chernovite-Y (ca. 50–120 μm3) have been inserted into SiO2
glass capillaries (0.1 mm in diameter). For all the samples, the

data collection consisted in a 180∘ ω-rotation with a step size
of 1∘ and variable exposure times. The temperature accuracy is
≤ 5∘C. Further details about the experimental setting are reported
in Krüger and Breil (2009). Data collection and reduction has been
performed using X-Area (Stoe and Cie, 2008). The indexed cell
parameters were always compatible with either the unit cells of
chernovite-(Y), xenotime-(Y) or monazite-(Ce).

Structure refinements were performed based on the single-
crystal XRDdata adopting the same procedure reported previously
for the high-pressure data, and refined structural models are avail-
able as cifs (supplementary materials, see below). The thermal
evolution of significant structural parameters (i.e. A–O bonds,
A-coordination polyhedral and T-coordination polyhedral vol-
umes) has been determined from the refined structure models, by
means of the tools implemented in theVESTA3 software (Momma
and Izumi, 2011).

In situ high-temperature X-ray powder diffraction experiments
were performed on the chernovite sample relatively enriched in Ca
andThat theMCXbeamline of the Elettra synchrotron (Basovizza,
Trieste Italy), with a wavelength of λ = 0.7293 Å (17 keV) and
a Debye-Scherrer setting. The sample, ground to powder in an
agate mortar, was loaded in a SiO2 glass capillary (0.3 mm as outer
diameter). For any experimental point, the data collection strategy
consisted of a 2θ-scan between 8∘ and 60∘. A step size of 0.008∘

was applied and an equivalent counting time for 1 s/step used.
The X-ray diffraction effects were collected by the high-resolution
scintillator detector available at the beamline. During the data
collection, the sample was spun at a rate of 1000 rotations per
minute along the φ-axis. The sample was heated by an air blower,
operating between 30 and 1000∘C. Further details concerning the
experimental setting are reported in Rebuffi et al. (2014) and Lausi
et al. (2015).
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Figure 4. High-pressure evolution of the unit-cell parameters (normalised to
ambient conditions values) of (a) the investigated (Ca,Th)-poor and (b)
(Ca,Th)-enriched chernovite-(Y) samples and (c) of their respective normalised
unit-cell volumes with the refined Birch-Murnaghan equations of state. Empty
symbols refer to data collected in decompression.

Results and discussion

Compressional behaviour of the REETO4 minerals

The evolution of the unit-cell parameters of the investigated
samples with pressure is reported in Table S3 and shown in
Figs 4 and 5. For monazite-(Ce), the evolution of unit-cell param-
eters vs. P shows no evidence of phase transformation in the entire
P-range investigated. Both the zircon-type minerals, on the other
hand, show the occurrence of a phase transition. Chernovite-(Y),
at pressures higher than ∼10 GPa is no longer stable, under-
going a phase transition to several single-crystal fragments, for
which, the position of the peaks in the XRD pattern is compatible
with a tetragonal scheelite-type structure. Otherwise, at pressures
exceeding ∼17 GPa, xenotime-(Y) undergoes a single-crystal to
single-crystal phase transition towards a monazite-type structure.
For any pressure ramp, the elastic behaviour of the mineral studied
has been described by fitting an isothermal Birch-Murnaghan
EoS (BM-EoS), truncated at the second or third order, to the
P–V data (a comprehensive description of the BM-EoS formal-
ism can be found in Angel, 2000) using the EoS-Fit7_GUI software
(Gonzalez-Platas et al., 2016). For monazite, similarly to what was
observed for the isostructural gasparite-(Ce) by Pagliaro et al.
(2022b), a change in the compressional behaviour was detected at
∼18 GPa. The parameters refined by fitting the experimental data
by BM-EoS are reported in Table 3, among them: the bulk mod-
ulus KV = βV

–1 = –V*(𝜕P/𝜕V) and its pressure derivative KV’ =
(𝜕KV/𝜕P)T.

The evolution of significant structural parameters (i.e., A–O
bonds, A-coordination polyhedral and T-coordination polyhedral
volumes) with pressure has been determined, based on the refined
structure models, by using the VESTA3 software (Momma and
Izumi, 2011). The corresponding values are reported in Table S4.

The results of this study confirm that arsenates are always more
compressible than the isostructural phosphates (Table 3), in agree-
ment with the observed relationship that the larger the ionic radii
of the A and T sites, the higher the bulk compressibility (e.g.
Zhang et al., 2008; Li et al., 2009; Lacomba-Perales et al., 2010;
Errandonea et al., 2011). The refined bulk moduli apparently sug-
gest that monazite-structure type minerals are more compressible
than those with a zircon-structure type (Table 3). However, inter-
nally consistent theoretical data (Zhang et al., 2008; Li et al., 2009)
show that there is a clear increase in compressibility along the lan-
thanoid series from Lu to La, with a discontinuity in the form
of a stiffening when transforming from the zircon to the mon-
azite structure type. Therefore, it can be concluded that, for the
investigated minerals, the softening induced by the larger A site
has a stronger impact than the stiffening induced by the monazite
structure type.

The two minerals investigated, with the same zircon struc-
ture type, i.e. chernovite-(Y) and xenotime-(Y), undergo differ-
ent phase transitions paths. Chernovite-(Y) experiences an irre-
versible transition, from a single-crystal to several crystal frag-
ments, towards a scheelite-type polymorph between ca. 10.5 and
11 GPa. The same phase transition occurs, for synthetic YAsO4 in
a powder XRD experiment, in a broader pressure range between
8 and 12 GPa (Errandonea et al., 2011). The apparent discrepancy
between these two studies may be ascribed to: (1) a different kinet-
ics of the phase transition between a single crystal and a polycrys-
talline material; and (2) slightly different chemical compositions,
as a higher phosphorous content in the presently investigatedmin-
eral decreases the average radius of the T site; or a combination
of both. In general, the same phase transition has already been
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Figure 5. High-pressure evolution of the unit-cell parameters (normalised to ambient-conditions values) of (a) xenotime-(Y) and (c) monazite-(Ce), (b) the normalised
unit-cell volumes of the ambient-pressure and high-pressure polymorphs of xenotime-(Y) and (d) of the monoclinic β angle of monazite-(Ce).

observed to occur in other ATO4 compounds, where the pressure
of transition increases with the decrease of the A and T atoms
ionic radii (Wang et al., 2004; Zhang et al., 2009; Lacomba-Perales
et al., 2010; Errandonea et al., 2011). The relationship between the
ionic radii of the A and T atoms and the type of structure sta-
ble at ambient and high-pressure conditions is well known and
was first described by Fukunaga and Yamaoka (1979) and Bastide
(1987), and later discussed in other publications, e.g. in Lopez-
Solano et al. (2010). As suggested by the Bastide diagram (Fig. 1)
and already reported in the literature (Tatsi et al., 2008; Zhang
et al., 2009; Lacomba-Perales et al., 2010;Musselman, 2017;Heuser
et al., 2018), xenotime-(Y) and isomorphous phosphates undergo
a single-crystal to single-crystal phase transition towards a high-
pressure polymorph, xenotime-(Y)-II, showing a monazite-type
structure. The transition observed in our experiments occurs at a
pressure (> 17 GPa) consistent with those reported for synthetic

YPO4 compounds (Zhang et al., 2008; Lacomba-Perales et al.,
2010). The reversibility of this phase transition is confirmed by
this single-crystal study, even though with a significant hysteresis,
as the tetragonal polymorph is recovered in decompression only
between 6.3 and 1.3 GPa.

Despite a relative scattering between the published values of
bulk compressibilities of zircon- and monazite-type phosphates
and arsenates, determined on the basis of experimental and
theoretical studies, the elastic parameters refined for the min-
eral species of this study (Table 3) are in agreement with those
reported in the literature (Table S1). In the zircon-type minerals
chernovite-(Y) and xenotime-(Y), the bulk compression is sig-
nificantly anisotropic. Indeed, the structure is approximately two
times more compressible within the (001) plane than along [001]
(Figs 4 and 5, Table S5), which corresponds to the direction of
the polyhedral chains evolution. Such a behaviour is strongly
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Table 3. Refined equations of state parameters from the fit to the experimental high-pressure and high-temperature unit-cell volume data (see text for further
details)

High-pressure experiments

BM3 EoS BM2 EoS

KV0 βV KV’ V0 KV0 βV V0

(GPa) (GPa−1) (Å3) (GPa) (GPa−1) (Å3)

(Ca,Th)-poor chernovite-(Y) 136(2) 0.0074(1) 4.0(5) 310.43(3) 135.5(5) 0.00738(1) 310.43(3)
(Ca,Th)-enriched chernovite-(Y) 125(3) 0.0080(1) 3.8(9) 316.16(9) 123.8(9) 0.00808(7) 316.17(7)
Xenotime-(Y) 145(4) 0.0068(2) 4.4(5) 290.4(2) 148(1) 0.00676(5) 290.4(1)
Monazite-(Ce) – – – – 121(3) 0.0083(2) 299.3(4)
Gasparite-(Ce)* 109(4) 0.0092(3) 4.3(6) 320.6(3) 105(1) 0.00951(9) 320.7(2)

High-temperature experiments

Holland-Powell EoS 1st order polynomial fit

𝛼V a0 a1 V0 LTEC V0

(×10−6 K−1) (×10−5 K−1) (×10−4 K−1/2) (Å3) (×10−6 K−1) (Å3)

(Ca,Th)-poor chernovite-(Y) 9.7(1) 2.33(3) 0 307.02(3) 4.81 306.74
(Ca,Th)-enriched chernovite-(Y) 8.0(1) 1.90(2) 0 313.06(2) 3.98 312.84
Xenotime-(Y) 9.6(12) 3.5(3) 0.8(4) 288.07(4) 6.00 287.73
Monazite-(Ce) 19.9(13) 4.9(3) 0.2(4) 297.97(5) 9.73 297.50

*From Pagliaro et al. (2022b).
αV: volume thermal expansion coefficient at ambient conditions calculated on the basis of the Holland-Powell EoS.
a0 and a1 are two refinable variables in the Holland-Powell EoS (Holland and Powell, 1998).

controlled by the high tetragonal symmetry, which limits the
intra-chain deformation, as confirmed by the behaviour of the
two independent A–O bond distances, where the A–Oa bonds,
oriented parallel to [001] (Fig. 2), are the less compressible in
both the minerals (Table S4). The bulk compression is therefore
mainly accommodated by the AO8 coordination polyhedron, as
suggested by its bulk modulus, refined by modelling the polyhe-
dral volume data obtained using Vesta3 with a II-BM equation of
state by means of the EoS-Fit7-GUI software (Table 4). For both
chernovite-(Y) and xenotime-(Y), bulk moduli values of the A-
polyhedra are much lower than those obtained for the AsO4 and
PO4 tetrahedra, which behave as quasi-rigid units (Table 4). The
same conclusion can be drawn for monazite-(Ce) (Table 4) and
gasparite-(Ce) (Pagliaro et al., 2022b), which, in addition, show
that the AsO4 tetrahedra are slightly more compressible than the
PO4 ones. As observed previously by Pagliaro et al. (2022a), the
structural features (and responses to external T and P stimuli)
of these compounds are strongly controlled by the crystal chem-
istry, in particular of the T sites. Moreover, not only do PO4 and
AsO4 tetrahedra have a different compressional behaviour, but the
nature of the prevailing T site controls the size (i.e. the average
ionic radius) at ambient conditions of the A polyhedron (Pagliaro
et al., 2022a). This leads, given a similar chemical composition of
theA site, to slightly larger compressibility for the more ‘expanded’
A-polyhedra of the arsenates among isostructural minerals. The
control exerted by the crystal chemistry on the elastic response is
also pointed out by the chernovite sample relatively enriched in
Ca and Th studied here, which shows a slightly lower bulk mod-
ulus value (Table 3). The lack of structure refinements prevents an
unambiguous derivation of the structural mechanisms responsible
for this behaviour, but it can be suggested that the more ‘expanded’
A-polyhedron (due to the higher content of the larger Th and Ca
ions, as reported in Table 1) is coherent with the previous observa-
tions that a larger average ionic radius of theA site generates a softer
polyhedron.

The description of the elastic anisotropy in monazite-(Ce)
is less straightforward, as the monoclinic symmetry does not

allow us to rely on the axial compressibilities alone, given the
variation of the β angle with pressure. Therefore, the finite
Eulerian unit-strain tensor of monazite-(Ce) between ambient-P
and 18.39 GPa has been calculated using the Win_Strain soft-
ware (Angel, 2011) and with a geometric setting with X//a* and
Y//b. The results show that the principal axes of maximum and
minimum unit-strain do not correspond with any of the crystal-
lographic axes, as described by the tensor values in the following
matrix:

⎛⎜⎜
⎝

𝜀1
𝜀2
𝜀3

⎞⎟⎟
⎠

⎛⎜⎜
⎝
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90∘ 180∘ 90∘
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⎞⎟⎟
⎠

⋅ ⎛⎜⎜
⎝
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c
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The analysis of the finite Eulerian unit-strain tensor allowed
the determination of the mean compressibility values along the
axes of the strain ellipsoid (with 𝜀1>𝜀2>𝜀3): 𝜀1 = 0.003030(11)
GPa–1, 𝜀2 = 0.00200(2) GPa–1, 𝜀3 = 0.0014(12) GPa–1. The direc-
tions of minimum and maximum compressibility are within the
(010) plane and the anisotropic scheme is 𝜀1:𝜀2:𝜀3=2.16:1.43:1. A
comparison with the finite Eulerian unit-strain tensor reported
for gasparite-(Ce) by Pagliaro et al. (2022b) points out that these
isostructuralminerals share a similar elastic anisotropy.The shared
compressional behaviour extends to the structural deformation
mechanisms acting on the atomic scale: the nine independentA–O
bond distances inmonazite-(Ce) have different compressional evo-
lutions, as shown in Fig. 6 (see also Table S4). A moderate scat-
tering of the monazite-(Ce) unit-cell parameters can be observed
between 10 and 18 GPa, which implied that we should fit the
V–P data using a Birch-Murnaghan equation of state truncated to
the II-order (Table 3). On the basis of the available experimental
data and structure refinements, it is not possible to unambigu-
ously detect a change in the compressional behaviour at P < 18
GPa. On the contrary, a change in the response to compression
clearly occurs at pressures exceeding ∼18.4 GPa, as evidenced
by the significant deviation in the high-pressure evolution of the
monoclinic β angle (Fig. 5; Table S3), similar to gasparite-(Ce)
(Pagliaro et al., 2022b). This behaviour has already been reported
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Table 4. Refined equation-of-state parameters pertaining to the A- and T-sites coordination polyhedra from the high-pressure (BM2 EoS) and high-temperature
(Holland-Powell EoS, only A-site coordination polyhedron) experiments

High-pressure experiments

KV(AO8/AO9) (GPa) V0(AO8/AO9) (Å3) KV(TO4)* (GPa) V0(TO4) (Å3)

(Ca,Th)-poor chernovite-(Y) 120(12) 23.53(9) 262(56) 2.319(10)
Xenotime-(Y) 126(4) 23.18(4) 299(62) 1.900(9)
Xenotime-(Y)-II 87(26) 30.4(12) – –
Monazite-(Ce) 110(4) 32.45(8) 395(130) 1.863(12)
Gasparite-(Ce)** 99(3) 33.02(4) – –

High-temperature experiments

αV(AO8/AO9) (x10−6 K−1) a0 (x10−5 K−1) a1 (x10−4 K−1/2) V0(AO8/AO9) (Å3)

(Ca,Th)-poor chernovite-(Y) 16(3) 3.8(7) 0 23.49(4)
Xenotime-(Y) 18(2) 4.2(5) 0 23.03(4)
Monazite-(Ce) 25(2) 6.0(5) 0 32.36(4)

*Due to the high uncertainties, these data should be considered as a qualitative estimation of the TO4 units rigid behaviour
**From Pagliaro et al. (2022b)

for synthetic monazite-type LaPO4 and CePO4 (Huang et al.,
2010), but not in another high-pressure investigation of CePO4
(Errandonea et al., 2018). The structure refinements performed in
this study allows us to draw a relationship between the change in
the elastic behaviour and the structural re-configuration. Figure
6 and Table S4 show that, at lower pressures, the O3c atom is
too far from the A site to be considered to effectively belong
to its coordination sphere (Fig. 3). However, the A–O3c inter-
atomic distance shows a significant shortening under compression
(Fig. 6; Table S4), so that, at a pressure consistent with the change
in the compressional behaviour, the O3c atom is close enough to
theA site to enter its coordination sphere, as suggested by the indi-
vidual bond valences calculated for selected structure refinements
and reported in Table S6. As a consequence, the coordination num-
ber of the A site would increase from 9 (8+1) to 10 (8+2), even
though with different contributions from the individual bonds,
given the longer bond distances of the ofA–O2a andA–O3c (Tables
S4 and S6). As the same behaviour has already been independently
described for gasparite-(Ce) (Pagliaro et al., 2022b) and is analo-
gous to what is described to occur at 3.25 GPa in themonazite-type
crocoite (PbCrO4, Bandiello et al., 2012; Errandonea and Kumar,
2014), we are inclined to believe that this is an intrinsic feature of
the monazite structure type. Therefore, the known transition to a
post-baryte-type polymorph atP higher than 26GPa (Ruiz-Fuertes
et al., 2016) is accomplished through an intermediate structural
configuration, still preserving the monazite symmetry and atomic
arrangement, but characterised by an increase from 9 to 10 in the
number of the oxygen atoms bonded to the lanthanide-bearing site.
This intermediate structural configuration is accomplished, with
no clear discontinuity, by a smooth approach of theO3c atom to the
A site (whereO3c corresponds toO3a andO3b in the coordination
sphere of two further A atoms). It is worth noting, that the same
configuration, with a 10-fold coordinated A-site, is also shared by
the monazite-type high-pressure polymorph of CaSO4 (Crichton
et al., 2005). The higher pressure at which the change of the elastic
behaviour occurs in monazite-(Ce) (ca. 18.4 GPa, vs. ca. 15 GPa in
gasparite-(Ce), Pagliaro et al., 2022b) is consistent with the higher
P-stability expected for the isostructural phosphate with smaller
average atomic radii.

Despite being affected by larger experimental uncertainties,
the same deformation mechanisms described for monazite-
(Ce) and gasparite-(Ce) can be derived by the analysis of the
refined structural models of the monazite-type high-pressure

xenotime-(Y)-II polymorph (Table S4). In this case, the possible
occurrence of a change in the compressional behaviour, accord-
ing to the previous description, should be verified by investigations
performed up to higher pressure values, though interatomicA–O3c
bond distances of ∼2.8–2.9 Å (Table S4) can suggest a 10-fold
coordinated A site. A striking and anomalous feature shown by
the experimental results of this study concerns the much larger
refined compressibility if compared to what is reported in other
studies for the same polymorph (KV = 146(5) GPa in this study;
KV = 206 and 266 GPa in Zhang et al. (2009) and Lacomba-
Perales et al. (2010), respectively). The relatively high number of
experimental data of this study leads us to the conclusion that the
refined bulk modulus value we obtained is very reliable, implying
a similar compressibility between the ambient and high-pressure
polymorphs of the investigated xenotime-(Y). It is worth men-
tioning that a similar compressibility can also be found between
the zircon- and monazite-type polymorphs of LaVO4, with KV0
= 93(2) GPa (Yuan et al., 2015) and 95(5) GPa (Errandonea
et al., 2016), respectively. The thorough re-investigation of the
zircon-to-monazite phase transition in xenotime and of the elas-
tic behaviour of the xenotime-II polymorphs appear, therefore,
mandatory for a comprehensive understanding.

Thermal behaviour of the REETO4 minerals

The thermal unit-cell parameters evolution from the three in
situ single-crystal high-T ramps onmonazite-(Ce), chernovite-(Y)
and xenotime-(Y) and from the powder ramp on chernovite-
(Y), relatively enriched in Ca and Th, are reported in Table S7
and shown in Fig. 7. The thermo-elastic behaviour has been
modelled according to the isobaric equation of state modified
from Pawley et al. (1996) and Holland and Powell (1998) and
implemented in the EoS-Fit7_GUI (Gonzalez-Platas et al., 2016).
The linear thermal expansion coefficients have also been refined
using the TEV software (Langreiter and Kahlenberg, 2015). The
refined parameters and the calculated thermal expansion coeffi-
cients at ambient conditions αV = 1/V*(𝜕V/𝜕T)P are reported in
Table 3.

A comparison of the linear thermal expansion coefficients
refined in this study for xenotime-(Y) and monazite-(Ce) and
those already published for the same compounds reveal a good
agreement with the literature data (see Table S2 and references
therein). However, a significant discrepancy is observed between
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Figure 6. (a) Bulk moduli as a function of the A-site atomic radii for several REETO4 (T = As,P,V) minerals, after Li et al. (2009) and Zhang et al. (2008).
(b) High-pressure evolution of the A–O interatomic bond distances in monazite-(Ce).

the values refined for chernovite-(Y) in this study and those
reported previously by experimental investigations of YAsO4
(Kahle, 1970; Schopper, 1972; Reddy et al., 1988). As none of the
cited references provide experimental unit-cell parameters, nor
structure refinements, it is not possible to discuss such a discrep-
ancy, but it is worth noting that the refined values for both the
(Ca,Th)-poor and (Ca,Th)-enriched chernovites of this study are
self-consistent and diverge from the literature data. With this in
mind, future investigation of other natural or synthetic YAsO4-type
zircon compounds seems imperative.

A comparative analysis of the thermo-elastic behaviour
of the investigated minerals shows that monazite-(Ce) is
much more expansible than the two zircon-type compounds
(Table 3). In the latter, the [001] direction, i.e. the least compress-
ible at high-P, is found to be the most expansible at high-T. The
thermo-elastic anisotropy of monazite-(Ce) cannot be directly
described based on the unit-cell parameters behaviour, given
its monoclinic symmetry. The thermal expansion of monazite-
(Ce) has been modelled with the TEV software (Langreiter and
Kahlenberg, 2015) and at the temperature of 400∘C (i.e. ΔT ∼
380∘C) its relationship with the unit-cell axes, with a geomet-
ric setting with X//a* and Y//b, is described by the following
matrix:
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Themean thermal expansivity along the axes of the unit-strain
ellipsoid, determined at 400∘C, is: α1 = 11.56⋅10–6 K–1, α2 =
9.93⋅10–6 K–1 and α3 = 7.39⋅10–6 K–1, leading to the anisotropic
scheme α1: α2: α3 = 1.56:1.34:1.

The structure refinements (thermal evolution of selected struc-
tural parameters is reported inTable S8) showed that for the zircon-
type minerals xenotime-(Y) and chernovite-(Y), the coordination
polyhedron hosting the lanthanides ions (A-polyhedron) has a
paramount role in accommodating the bulk thermal expansion, its
refined thermal expansivity being almost the double of the value
referred for the unit-cell volume (Tables 3, 4), whereas the two

independent A–O bond distances show a comparable behaviour,
different to what is shown at high-P (Table S8). In monazite-(Ce)
as well, the A-polyhedron plays a significant role in accommodat-
ing the thermal expansion, but of a lesser magnitude with respect
to the tetragonal minerals (Tables 3, 4), given the larger degrees
of freedom for structure deformation induced by the monoclinic
symmetry. In all the cases, it is worth noting that the tetrahedra,
being either PO4 or AsO4, appear to behave as rigid units in the
temperature range investigated (Table 4).

As a general observation based on the experimental data of this
study, xenotime-(Y) appears more expansible with temperature
than chernovite-(Y). Even though the discrepancy between our
data and the previously published thermal expansion behaviour
of other YAsO4 compounds (Kahle, 1970; Schopper, 1972; Reddy
et al., 1988) suggests caution in this regards. However, our obser-
vation is consistent with the results reported by Li et al. (2009)
for APO4 and AAsO4 (A = lanthanides) and based on theo-
retical calculations of lattice energies, where phosphates always
show a larger expansibility than isostructural arsenates sharing
the same A cation for both the zircon and monazite structural
types.

Concluding remarks

Theexperimental data reported in this study, alongwith those pub-
lished by Pagliaro et al. (2022b) on the high-pressure behaviour
of gasparite-(Ce), provide a suite of thermo-elastic parameters for
natural lanthanide-bearing phosphates and arsenates cropping out
in the hydrothermal veins of the Mt. Cervandone.

Consistently with the previous scientific literature, the two
zircon-type minerals undergo different P-induced phase transi-
tions. Chernovite-(Y), above ∼10 GPa converts to a scheelite-type
polymorph, whereas xenotime-(Y), above ∼17 GPa, transforms
into a monazite-type polymorph by a reconstructive phase tran-
sition, single-crystal to single-crystal in character.

The monazite-type phosphates and arsenates do not undergo
any phase transitions in the explored pressure range of this study.
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Figure 7. High-temperature evolution of the unit-cell parameters (normalised to ambient-conditions values) of (a) (Ca,Th)-poor and (b) (Ca,Th)-enriched
chernovite-(Y), (c) xenotime-(Y) and (d) monazite-(Ce).

However, the analysis of the compressional evolution of the unit-
cell parameters and of the crystal structures of monazite-(Ce)
(this study) and gasparite-(Ce) from the same locality (Pagliaro
et al., 2022b), highlighted a change in the compressional behaviour
occurring at ∼18 and 15 GPa, respectively. This is related, for both
the minerals, to a structural re-arrangement involving the smooth
approach of a tenth oxygen atom into the coordination sphere
of the lanthanide-bearing A site, which increases its coordination
from 9 (8+1) to 10 (8+2) before the expected phase transition
to a high-pressure polymorph. A general conclusion from both
the present experiments and previous studies is that, despite the
numerous papers publishing high-quality data on these crystalline
compounds relevant to Earth andMaterials sciences, there are still
unexplored regions, whose physical-chemical features should be
described by the adoption of up-to-date experimental techniques,
facilities and crystallographic methods.

The analysis of the elastic and structural response with pressure
and temperature of the investigated minerals of this study, com-
bined with those on gasparite-(Ce) (Pagliaro et al., 2022b), lead
us to conclude that their compressional and thermal behaviours
are not, as commonly observed, induced by the same mechanisms
opposite in sign. For example, phosphates are less compressible
than the isostructural arsenates, but at high temperature they are
more expansible. In the same way, the zircon-type structure is less
compressible along the c crystallographic direction, but at high-
T along the same direction the higher expansivity is shown. This
behaviour can be explained by the significant control exerted on
these compounds by the chemical strain. As described by Pagliaro
et al. (2022a), the chemical nature of the T cations (P or As) has
a paramount role in controlling not only the TO4 tetrahedra, but
also the other structural parameters: the substitution of P by As not
only expands the tetrahedron, but the A coordination polyhedron
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too (at the same chemical composition of the A site). This study
shows that the chemically more ‘expanded’ structures of the arsen-
ates are more compressible than the chemically more ‘compressed’
structures of phosphates, but in response to a thermal perturba-
tion they show the opposite behaviour being less expansible. Such
an observation is confirmed by the slightly different behaviours
of the two investigated chernovite samples. The sample relatively
enriched inTh and Ca, due to the larger ionic radii of these cations
with respect to the dominant Y in the A site, show a chemical
expansion at ambient conditions (as described in Pagliaro et al.,
2022a) that is reflected by a slightly larger compressibility at high
pressure and a slightly lower expansivity at high temperature.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1180/mgm.2024.70.
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