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An extension of Buchberger’s criteria for Gröbner basis decision

John Perry

Abstract

Two fundamental questions in the theory of Gröbner bases are decision (‘Is a basis G of a
polynomial ideal a Gröbner basis?’) and transformation (‘If it is not, how do we transform it
into a Gröbner basis?’) This paper considers the first question. It is well known that G is a
Gröbner basis if and only if a certain set of polynomials (the S-polynomials) satisfy a certain
property. In general there are m(m− 1)/2 of these, where m is the number of polynomials in
G, but criteria due to Buchberger and others often allow one to consider a smaller number.
This paper presents two original results. The first is a new characterization theorem for Gröbner
bases that makes use of a new criterion that extends Buchberger’s criteria. The second is the
identification of a class of polynomial systems G for which the new criterion has dramatic impact,
reducing the worst-case scenario from m(m− 1)/2 S-polynomials to m− 1.

1. Introduction

Gröbner bases ease significantly the investigation of many important questions in commutative
algebra and algebraic geometry. Fundamental questions in the theory of Gröbner bases include
(1) the decision problem, Is a basis G of a polynomial ideal a Gröbner basis? and (2) the
transformation problem, If it is not, how do we transform it into one? This paper considers
question (1).

Buchberger [4] showed that G is a Gröbner basis if and only if the S-polynomials of every pair
of the polynomials in G satisfy a certain property. Ordinarily, if G contains m polynomials, one
has to examine m(m− 1)/2 S-polynomials. Buchberger and others [2, 4, 6, 8, 12, 13, 15, 18]
have found criteria on the leading terms of G that often detect the property before building
the S-polynomial, reducing significantly the number of S-polynomials that require inspection.

In § 2 we show that one of Buchberger’s two fundamental criteria can be extended in a new
and non-trivial way. We will see that this extended criterion specializes to the criterion of [13].
The main theorem uses the extended criterion to formulate a new characterization theorem
for Gröbner bases. In § 3 we prove the main theorem. In § 4 we identify a class of polynomial
systems where Buchberger’s criteria have no effect, whereas the extended criterion reduces the
maximum number of S-polynomials required to answer question (1) from m(m− 1)/2 to m− 1.

2. The extended criterion

We begin with a review of the essential notation and background material. Standard references
in the theory of Gröbner bases are [1, 3, 10].

Fix a commutative ring R of polynomials in x1, x2, . . . , xn over a field, and an admissible
term ordering ≺ over the terms of R. (In this paper, a term is a monomial whose coefficient
is (1).) For any non-zero p ∈R, we denote the leading term of p with respect to ≺ by lt≺(p),
and the leading coefficient by lc≺(p).
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Definition 1 (Gröbner basis). We say that G ∈Rm is a Gröbner basis with respect to ≺
if, for every polynomial p in the ideal I generated by G, there exists some g ∈G such that
lt≺(g) | lt≺(p).

Gröbner bases provide an elegant framework that allows one to decide easily many otherwise
difficult problems in commutative algebra and algebraic geometry [3, 5, 10, 11, 16]. From
an algorithmic perspective, however, Definition 1 is not useful; after all, p ranges over the
infinite set I, so it is impossible to decide whether G is a Gröbner basis by inspecting every
p ∈ I. Buchberger launched the theory of Gröbner bases by developing a characterization that
requires finitely many inspections.

Before stating Buchberger’s characterization, we need a little more notation. For any
f, g ∈R, write

σf,g =
lcm(lt≺(f), lt≺(g))

lt≺(f)
,

and define the S-polynomial of f and g as

S≺(f, g) = lc≺(g) σf,gf − lc≺(f) σg,fg.

Let G ∈Rm and p ∈R, with p 6= 0. We say that p reduces to zero with respect to G if p= 0
or there exist monomials q1, q2, . . ., qr and integers ν1, ν2, . . . , νr ∈ {1, 2, . . . , m} such that:

– p= q1gν1 + q2gν2 + . . .+ qrgνr
;

– lt≺(q1) lt≺(gν1) is a term of p; and
– for i > 1, each lt≺(qi) lt≺(gνi) is a term of p− q1gν1 − q2gν2 − . . .− qi−1gνi−1 .

If p 6= 0 and no lt≺(gj) divides a term of p, then p does not reduce to zero with respect to G.
The notions of S-polynomials and reduction to zero allowed Buchberger to formulate the

following [4].

Theorem 2 (Buchberger’s characterization). Let G ∈Rm. The following are equivalent.
(A) G is a Gröbner basis with respect to ≺.
(B) For every i, j such that 1 6 i < j 6m, S≺(gi, gj) reduces to zero with respect to G.

Unlike p in Definition 1, i and j in (B) range over finitely many integers. Moreover, deciding
whether a polynomial reduces to zero with respect to G requires a finite number of steps. This
gives Buchberger’s characterization a decided computational advantage over Definition 1.

Nevertheless, it is usually burdensome to check all the S-polynomials. Buchberger developed
two criteria [4, 15] that modify condition (B) of Buchberger’s characterization.

Theorem 3. Let G ∈Rm. The following are equivalent.
(A) G is a Gröbner basis with respect to ≺.
(B) For every i, j such that 1 6 i < j 6m, one of the following holds.

(B0) S≺(gi, gj) reduces to zero with respect to G.
(B1) lt≺(gi) and lt≺(gj) are relatively prime.
(B2) There exist k1, . . . , kn such that i= k1, j = kn, each of the lt≺(gk`

) divides
lcm(lt≺(gi), lt≺(gj)), and each S≺(gk`

, gk`+1) reduces to zero with respect to G.

These criteria, along with adaptations of them, are widely used in both decision and
transformation [2, 7, 8, 12, 18]. On this account, we make the following definition.

Definition 4 (Buchberger’s criteria). Let t1, t2, and t3 be terms of R. If t1 and t2 are
relatively prime, we say that (t1, t2) satisfies Buchberger’s gcd criterion. If t2 | lcm(t1, t3), we
say that (t1, t2, t3) satisfies Buchberger’s lcm criterion.

Remark. The criteria of Definition 4 appear under different names in the literature. Some
authors refer to them as Buchberger’s first and second criteria [3]; others refer to themmerely
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as optimizations of the singular Buchberger’s criterion, by which they mean criterion (B) of
Theorem 2 [10, 16]. The convention we have chosen is based on the content of the criterion,
and should avoid confusion.

The lcm criterion can be viewed as a ‘chain condition’ due to the requirement that the
chain S≺(gk`

, gk`+1) reduces to zero, linking gi to gj . The gcd criterion can also be viewed as a
chain condition, where the ‘chains’ contain zero S-polynomials. It is not obvious that the gcd
criterion can, or even should, be extended to longer chains.

A number of researchers have studied how to apply Buchberger’s criteria as efficiently as
possible [8, 12]. The algorithm described by Gebauer and Möller [12] is considered a standard
benchmark algorithm for approaches to question (2) posed in the introduction.

The main contribution of this paper is to introduce the following criterion, which addresses
question (1) by means of a new characterization theorem (the main theorem) as well as the
identification of a class of polynomial systems for which the criterion gives a dramatic reduction
in the number of S-polynomials required to answer the question (§ 4).

Definition 5 (The extended criterion). Let t1, . . . , tm be terms of R. We say that
(t1, . . . , tm) satisfies the extended criterion (EC) if it satisfies (EDiv) and (EVar), where:
(EDiv) for every k such that 1 6 k 6m, gcd(t1, tm) divides tk; and
(EVar) for every variable x, degx gcd(t1, tm) = 0 or {degx tk}mk=1 is a monotonic sequence.

Observe that (t1, t2, . . . , tm) satisfies the extended criterion if and only if its reversal
(tm, tm−1, . . . , t1) does. This is because (EVar) tests for ‘monotonic’ without reference to
a direction.

Example 6. The list T1 = (x0x1, x0x2, . . . , x0xm) satisfies (EC). Why? (EDiv) is satisfied
because x0 divides tk for k = 1, . . . , m, and (EVar) is satisfied because {degx0

tk}mk=1 =
(1, 1, . . . , 1) and degxi

gcd(t1, tm) = 0 for i= 1, . . . , m. Observe that no pair or triplet of terms
in T satisfies either of Buchberger’s criteria.

Similarly, the list T2 = (x0x1, x
2
0x2, x

2
0x3, x

3
0x4) satisfies (EC) without satisfying

Buchberger’s criteria, as illustrated by Figure 1: gcd(t1, t4) = x0 divides both t2 and t3, and
{degx0

tk}4k=1 = (1, 2, 2, 3) is monotonic.
On the other hand, the list T3 = (x0x1, x

2
0x2, x

3
0x3, x

2
0x4) does not satisfy (EC), because

(EVar) is violated: {degx0
tk}mk=1 = (1, 2, 3, 2) is not monotonic. This is illustrated by

Figure 2. A permutation of T3, (x0x1, x
2
0x2, x

2
0x4, x

3
0x3), would satisfy (EC), but such

permutations are not always possible if t1 and tm share more than one variable; consider
(x1yz, x2y

2z, x3yz
2, x4y

3z2, x5yz).

We can use the extended criterion to generalize Buchberger’s characterization theorem.

Main Theorem. Let G ∈Rm. The following are equivalent.

(A) G is a Gröbner basis with respect to ≺.
(B) For every i, j such that 1 6 i < j 6m, one of the following holds.

(B0) S≺(gi, gj) reduces to zero with respect to G.
(B1) lt≺(gi) and lt≺(gj) are relatively prime.
(B2) There exist k1, . . . , kn such that i= k1, j = kn, each of the lt≺(gk`

) divides
lcm(lt≺(gi), lt≺(gj)), and each S≺(gk`

, gk`+1) reduces to zero with respect to G.
(B3) There exist k1, . . . , kn such that i= k1, j = kn, the list of leading terms of
gk1 , . . . , gkn

satisfies EC, and each S≺(gk`
, gk`+1) reduces to zero with respect to

G′ = (gk1 , . . . , gkn
).
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x0

x1

x2

x3

x4

t4t3t2t1

Figure 1. A list of terms that does not satisfy Buchberger’s criteria, but satisfies the extended
criterion. Observe that gcd(t1, t4) divides t2 and t3, and {degx0

ti}4i=1 is monotonic.

x0

x1

x2

x3

x4

t4t3t2t1

Figure 2. A list of terms that satisfies neither Buchberger’s criteria nor the extended criterion.
Observe that although gcd(t1, t4) divides t2 and t3, {degx0

ti}4i=1 is not monotonic.

It is essential that in (B3), the reductions to zero are with respect to G′ and not to G. If we
use G instead of G′, then we may not have a Gröbner basis; see Example 8. This also makes
it a bad idea to try to combine (B3) and (B2) into one disjunction.

When m= 3, EC is equivalent to the criterion of [13], which generalizes both of Buchberger’s
criteria. For m> 3, this is not the case. Terms can satisfy Buchberger’s lcm criterion without
satisfying EC and, as in Example 6, terms can satisfy EC without satisfying Buchberger’s lcm
criterion.

However, if the terms t1 and tm are relatively prime, then (t1, . . . , tm) satisfies (EDiv) and
(EVar) easily. Hence, pairs of leading terms that satisfy Buchberger’s gcd criterion also satisfy
the extended criterion. It is not easy to condense (B1) and (B3) into one criterion, because (B3)
requires a chain of S-polynomials that reduce to zero, while (B1) does not. We can therefore
view EC as an extension of Buchberger’s gcd criterion to a chain condition.

The remainder of this section consists of examples:
– Example 7 provides a straightforward application of the main theorem;
– Example 8 shows an invalid application of the main theorem.

Example 7. Let G= (g1, g2, g3, g4), where

g1 = 4x0x1 + 2x0x2 + 3x0x4 − 8x1 − 4x2 − 6x4,

g2 = 3x2
0x2 + 2x2

0x4 − 6x0x2 − 4x0x4,

g3 = 4x2
0x3 + 2x2

0x4 − 8x0x3 − 4x0x4,

g4 = 2x3
0x4 − 2x2

0x3 − x2
0x4 + 4x0x3 − 6x0x4.

Let ≺ represent any term ordering such that lt≺(g1) = x0x1, lt≺(g2) = x2
0x2, lt≺(g3) = x2

0x3,
and lt≺(g4) = x3

0x4. We pose this question: Is G a Gröbner basis with respect to ≺?
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Routine computation verifies that the pairs (1, 2), (2, 3), and (3, 4) satisfy (B0) of Theorem 3
and of the main theorem; that is, S≺(g1, g2), S≺(g2, g3), and S≺(g3, g4) reduce to zero with
respect to G. We can say something more: in the process of reducing them, we discover that for
i= 1, 2, 3 each S≺(gi, gi+1) reduces to zero with respect to {gi, gi+1}. This will prove important
in a moment.

As for the remaining pairs, they do not satisfy (B1) or (B2) of either theorem, because no
permutation of the leading terms x0x1, x2

0x2, x2
0x3, and x3

0x4 satisfies Buchberger’s criteria.
Thus, Theorem 3 does not help us answer the question posed.

However, the main theorem does. Observe that

(lt≺(g1), lt≺(g2), lt≺(g3), lt≺(g4)) = T2,

where T2 was defined in Example 6; the extended criterion applies to T2. In addition, S≺(g1, g2),
S≺(g2, g3), and S≺(g3, g4) reduce to zero with respect to G. Hence, (1, 4) satisfies (B3) of the
main theorem with G′ =G.

We are not quite done: to decide whether G is a Gröbner basis, we must resolve the pairs
(1, 3) and (2, 4). The main theorem shows that these pairs also satisfy (B0).

– To show that S≺(g1, g3) reduces to zero, we claim that {g1, g2, g3} is a Gröbner basis.
∗ We know that the pairs (1, 2) and (2, 3) satisfy (B0) of the main theorem.
∗ The extended criterion applies to (lt≺(g1), lt≺(g2), lt≺(g3)).
∗ Recalling that each S≺(gi, gi+1) reduces to zero with respect to {gi, gi+1}, we infer that
S≺(g1, g2) and S≺(g2, g3) reduce to zero with respect to G(1,2,3) = (g1, g2, g3). Thus,
the pair (1, 3) satisfies (B3) of the main theorem.

∗ This implies that G(1,2,3) is a Gröbner basis, which implies that S≺(g1, g3) reduces to
zero.

– To show that S≺(g2, g4) reduces to zero, we claim that {g2, g3, g4} is a Gröbner basis.
∗ We know that the pairs (2, 3) and (3, 4) satisfy (B0) of the main theorem.
∗ The extended criterion applies to (lt≺(g2), lt≺(g3), lt≺(g4)).
∗ Recalling that each S≺(gi, gi+1) reduces to zero with respect to {gi, gi+1}, we infer that
S≺(g2, g3) and S≺(g3, g4) reduce to zero with respect to G(2,3,4) = (g2, g3, g4). Thus,
the pair (2, 4) satisfies (B3) of the main theorem.

∗ This implies that G(2,3,4) is a Gröbner basis, which implies that S≺(g2, g4) reduces to
zero.

Recall that (1, 4) satisfies (B3) of the main theorem with G′ =G. We now know that the
other pairs satisfy (B0). It follows from the main theorem that G is indeed a Gröbner basis
with respect to ≺. We have answered the question posed by reducing only three of the six
S-polynomials to zero.

To achieve this, we had to know not only that the S-polynomials reduced to zero, but also
over which subsets of G they were reduced. Had those subsets been different, the extended
criterion probably would not apply, as Example 8 shows below. Conversely, it is conceivable
that one could apply the extended criterion but not realize it, because one has verified that
the S-polynomials in question reduce to zero with respect to a different subset of G than the
one needed.

The following example illustrates why (B3) of the main theorem requires G′ and not G.

Example 8. Let G= (g1, g2, g3, g4), where

g1 = x2y + z,

g2 = xyz,

g3 = xy2,

g4 = z2.
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Let ≺ be any ordering such that x2y � z. Again we ask, Is G a Gröbner basis with respect
to ≺?

It is easy to verify that the pairs (1, 2), (1, 4), (2, 3), (2, 4), and (3, 4) satisfy (B0) of the
main theorem. The leading terms of g1, g2, and g3 satisfy the extended criterion, so set G′ =
(g1, g2, g3). A subquestion: Does (B3) of the main theorem imply that G is a Gröbner basis?
No, because the S-polynomials S≺(g1, g2) and S≺(g2, g3) reduce to zero with respect to G, but
not with respect to G′. In fact, S≺(g1, g3) = yz does not reduce to zero with respect to G even
though all the other S-polynomials do. Thus, G is not a Gröbner basis with respect to ≺.

3. Proof of the main theorem

Before diving into details, we pause a moment to describe the fundamental goal of the proof.
A previous example will serve us well. The polynomials of Example 7 factor as follows:

g1 = (x0 − 2)(4x1 + 2x2 + 3x4)
g2 = x0(x0 − 2)(3x2 + 2x4)
g3 = 2x0(x0 − 2)(2x3 + x4),
g4 = x0(x0 − 2)(2x0x4 + 3x4 − 2x3).

Any pair of the polynomials has a common divisor whose cofactors have relatively prime
leading terms: for example, the common divisor of g1 and g4 is x0 − 2, and the leading terms
of the cofactors are x1 and x2

0x4, respectively. From Theorem 3(B1), we know that the system
of cofactors of the gcd is a Gröbner basis. Generating a new system whose polynomials are
multiples of the cofactors does not alter this, provided that for each pair the multiple of the
cofactors is common.

The fundamental goal of the proof is to generalize this observation. Theorem 18 accomplishes
this. Lemma 11 is a technical lemma that fills in a crucial step of Lemma 16, which in its turn
is a technical lemma that fills in a crucial step of Theorem 18. Lemmas 12 and 14 are also
technical lemmas that help clarify some linear algebra necessary for the proof of Lemma 11.

Although Lemma 16 and Theorem 18 generalize similar lemmas and theorems in [13],
the increased size of the list (m> 3) required the development of an entirely new lemma
(Lemma 11), as well as substantial changes to the proof of Lemma 16. In addition, Theorem 18
leads to the important consequence of Corollary 17; this consequence went unremarked in the
previous work, but will show itself useful in § 4.

Besides a proof of the main theorem, this section develops several results that are interesting
or useful in other contexts. Lemma 11, for example, took us completely by surprise. Lemma 16
generalizes a relationship between the gcd of two polynomials and their S-polynomial.
Theorem 18 is similar to a well-known theorem regarding Buchberger’s lcm criterion; it will
prove useful in § 4, whereas the main theorem does not.

We turn to the proof. We regularly make implicit use of Proposition 9 below. The proof is
easy and well known, so we do not repeat it here.

Proposition 9. For all f, g ∈R, each of the following holds.
(A) If f + g 6= 0, then lt≺(f + g)�max≺(lt≺(f), lt≺(g)).
(B) lt≺(f · g) = lt≺(f) · lt≺(g).
(C) If f/g is a polynomial, then lt≺(f/g) = lt≺(f) / lt≺(g).

At this point we introduce the concept of an S-representation, which is essential to the proof.

Definition 10. Let p ∈R, t a term of R, and G ∈Rm. We say that h ∈Rm is a
t-representation of p with respect to G if p= h1g1 + . . .+ hmgm and, for all i such that
1 6 i 6m, we have hi = 0 or lt≺(higi)� t.
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Furthermore, let gi, gj ∈G. If t≺ lcm(lt≺(gi), lt≺(gj)) and h is a t-representation of
S≺(gi, gj) with respect to G, then we say that S≺(gi, gj) has an S-representation with respect
to G, and that h is an S-representation of S≺(gi, gj) with respect to G. We may omit ‘with
respect to G’ if it is clear from the context.

The notion of S-representation is related, but not equivalent, to the notion of reduction to
zero. We discuss this relationship near the end of the section, where it becomes important for
the main theorem. For the time being, we content ourselves with exploring how the extended
criterion can link a chain of S-representations.

To do that, we will need Lemma 11, which identifies a useful and interesting structure in a
certain chain of S-representations.

Lemma 11. Let G ∈Rm. Then (A) =⇒ (B), where the following hold.

(A) S≺(g1, g2), S≺(g2, g3), . . . , and S≺(gm−1, gm) all have S-representations with respect
to G.

(B) There exist P, Q ∈R such that P · g1 =Q · gm and
lt≺(P ) = σg1,g2σg2,g3 . . . σgm−1,gm

, and
lt≺(Q) = σg2,g1σg3,g2 . . . σgm,gm−1 .

The proof of Lemma 11 requires some non-trivial linear algebra, so we defer it to page 121.
Lemmas 12 and 14 provide the necessary results. Lemma 12 describes a relationship between
the elimination of variables in a linear system and the coefficients of those variables.

Lemma 12. Let n ∈ N+. Consider the system of n− 1 linear equations in the n variables
y1, . . . , yn:

S1 =
{ n∑
j=1

ai,jyj

}n−1

i=1

.

For k = 1, . . . , n− 2, define the matrix

Ak =


a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k

...
. . .

...
ak,1 ak,2 . . . ak,k

.
If each Ak has non-zero determinant, then, for each k = 2, . . . , n− 1, the system

Sk =
{ n∑
j=i

b
(k)
i,j yj = 0

}n−1

i=k

with

b
(k)
i,j =

∣∣∣∣∣∣∣∣∣∣∣
Ak−1

a1,j

a2,j

...
ak−1,j

ai,1 ai,2 . . . ai,k−1 ai,j

∣∣∣∣∣∣∣∣∣∣∣
is consistent.

To prove Lemma 12, we use the following special case of Jacobi’s theorem on determinants,
whose proof we do not reproduce here [14, 19].
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Theorem 13. Let A be an n× n matrix, M a 2× 2 minor of A, M ′ the corresponding 2× 2
minor of the adjugate of A, and M∗ the (n− 2)× (n− 2) minor of A that is complementary
to M . Then

detM ′ = detA · detM∗.

We will use Theorem 13 by putting M as the corners of the matrix, making M∗ the interior.

Proof of Lemma 12. We proceed by induction on k. For the inductive base k = 2, eliminate
y1 from the equations i= 2, . . . , n− 1 in S1 by subtracting the product of the first equation
and ai,1 from the product of the second equation and a1,1. It is routine to verify that for
i= 2, . . . , n− 1 and j = 2, . . . , n, we have

b
(k)
i,j =

∣∣∣∣a1,1 a1,j

ai,1 ai,j

∣∣∣∣.
Now assume that the assertion is true for all `, where 1 6 ` < k. In the system Sk−1, use the

equation k − 1 to eliminate the variable yk−1 from the equations k, . . . , n− 1. We obtain a
new system of equations

Sk =
{ n∑
j=i

βi,jyj = 0
}n−1

i=k

,

where, for each i, j, k, we have

βi,j =

∣∣∣∣∣∣∣
b
(k−1)
k−1,k−1 b

(k−1)
k−1,j

b
(k−1)
i,k−1 b

(k−1)
i,j

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Ak−2

a1,k−1

...
ak−2,k−1

ak−1,1 . . . ak−1,k−2 ak−1,k−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Ak−2

a1,j

...
ak−2,j

ai,1 . . . ai,k−2 ai,j

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
Ak−2

a1,k−1

...
ak−2,k−1

ai,1 . . . ai,k−2 ai,k−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Ak−2

a1,j

...
ak−2,j

ak−1,1 . . . ak−1,k−2 ak−1,j

∣∣∣∣∣∣∣∣∣.
Perform the following row and column swaps:

– in b
(k−1)
k−1,k−1, move the bottom row to the top, and the right-most row to the left-most;

– in b
(k−1)
k−1,j , do nothing;

– in b
(k−1)
i,k−1 , move the right-most row to the left-most; and

– in b
(k−1)
i,j , move the bottom row to the top.

Denote the resulting matrices by B1, B2, B3, and B4; the negations introduced by the row and
column swaps cancel, so that βi,j =B1B2 −B3B4.

Let

C =

∣∣∣∣∣∣∣∣∣∣∣

ak−1,k−1 ak−1,1 . . . ak−1,k−2 ak−1,j

a1,k−1 a1,j

... Ak−2

...
ak−2,k−1 ak−2,j

ai,k−1 ai,1 . . . ai,k−2 ai,j

∣∣∣∣∣∣∣∣∣∣∣
.
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Theorem 13 with

M =
(
ak−1,k−1 ak−1,j

ai,k−1 ai,j

)
and M∗ =Ak−2

implies that

βi,j = |C| · |Ak−2|.

Move the top row of C to the next-to-last row, and the left-most row of C to the next-to-last
column; the negations introduced by the row and column swaps cancel, so that

βi,j =

∣∣∣∣∣∣∣∣∣
a1,j

Ak−1

...
ak−1,j

ai,1 . . . ai,k−1 ai,j

∣∣∣∣∣∣∣∣∣ |Ak−2|.

From the assumption that Ak−2 is non-zero, we can divide each equation of Sk by Ak−2,
obtaining the desired linear system.

From this point on, the presence of several S-representations requires a notation that will
allow us to distinguish them.

Notation. Let G ∈Rm. Let i, j ∈ {1, . . . , m− 1} be distinct. We write

h(i,j) = (h(i,j)
1 , h

(i,j)
2 . . . , h(i,j)

m )

for an S-representation of S≺(gi, gj) with respect to G. In addition, when i < j, we write

Zi,j = −lc≺(gj)σgi,gj + h
(i,j)
i ,

Zj,i = lc≺(gi) σgj ,gi
+ h

(i,j)
j .

Note that lt≺(Zi,j) = σgi,gj
and lt≺(Zj,i) = σgj ,gi

.

In the proof of Lemma 11, we will simplify a linear system of the form shown in Lemma 12.
To perform this simplification, we must ascertain that the matrices Ak in that context have
non-zero determinant.

Lemma 14. Let G ∈Rm. Then (A) =⇒ [(B) and (C)], where:

(A) S≺(g1, g2), S≺(g2, g3), . . . , and S≺(gm−1, gm) all have S-representations with respect
to G;

(B) for each k = 2, . . . , m− 1, the k × k matrix

Pk =



Z1,2 Z2,1 h
(1,2)
3 . . . h

(1,2)
k

h
(1,2)
1 Z2,3 Z3,2 . . . h

(2,3)
k

h
(3,4)
2

. . .
. . . h

(3,4)
k

...
. . .

. . .
...

h
(k,k+1)
1 . . . h

(k,k+1)
k−1 Zk,k+1


has non-zero determinant; indeed, lt≺(det Pk) = σ1,2σ2,3 . . . σk,k+1;
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(C) for each k = 2, . . . , m− 1, the k × k matrix

Qk =



Z2,1 h
(1,2)
3 h

(1,2)
4 . . . h

(1,2)
k+1

Z2,3 Z3,2 h
(2,3)
4 . . . h

(2,3)
k+1

h
(3,4)
2

. . .
. . . h

(3,4)
k+1

...
. . .

. . .
...

h
(k,k+1)
2 . . . h

(k,k+1)
k−2 Zk,k+1 Zk+1,k


has non-zero determinant; indeed, lt≺(detQk) = σ2,1σ3,2 . . . σk+1,k.

The proof of Lemma 14 is tricky, so we present a simple but non-trivial example to illustrate
the strategy.

Example 15. Suppose m> 3 and the system G ∈Rm satisfies (A) of Lemma 14. We show
that (C) is satisfied for k = 3. A determinant is a sum of elementary products; since

Q3 =

 Z2,1 h
(1,2)
3 h

(1,2)
4

Z2,3 Z3,2 h
(2,3)
4

h
(3,4)
2 Z3,4 Z4,3


and the leading term of Z2,1Z3,2Z4,3 is τ = σ2,1σ3,2σ4,3, the leading term of at least one
elementary product of detQ3 has the desired form.

We claim that the leading term of every other elementary product of detQ3 is smaller than τ .
We proceed by way of contradiction. Assume that some other term in the elementary product
has a leading term greater than or equal to τ . Consider the leading terms of the other five
polynomials, denoting lcm(lt≺(gi), lt≺(gj)) by Li,j and lt≺(gi) by ti.

Case 1: Suppose τ � lt≺(h(1,2)
3 · h(2,3)

4 · h(3,4)
2 ). Multiply both sides of the inequality by t2t3t4

to obtain

L1,2L2,3L3,4 � [t3 · lt≺(h(1,2)
3 )][t4 · lt≺(h(2,3)

4 )][t2 · lt≺(h(3,4)
2 )],

which contradicts the definition of an S-representation.

Case 2: Suppose τ � lt≺(h(1,2)
4 · Z2,3 · Z3,4). Multiply both sides of the inequality by t2t3t4

to obtain

L1,2L2,3L3,4 � [t4 · lt≺(h(1,2)
4 )] · L2,3 · L3,4,

and divide both sides by the common lcm’s to obtain

L1,2 � t4 · lt≺(h(1,2)
4 ),

which contradicts the definition of an S-representation.

Case 3: Suppose τ � lt≺(h(3,4)
2 · Z3,2 · h(1,2)

4 ). Multiply both sides of the inequality by t2t3t4
to obtain

L1,2L2,3L3,4 � [t2 · lt≺(h(3,4)
2 )] · L2,3 · [t4 · lt≺(h(1,2)

4 )],

and divide both sides by the common lcm’s to obtain

L1,2L3,4 � [t2 · lt≺(h(3,4)
2 )][t4 · lt≺(h(1,2)

4 )],

which contradicts the definition of an S-representation.

https://doi.org/10.1112/S1461157008000193 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157008000193


AN EXTENSION OF BUCHBERGER’S CRITERIA 121

Case 4: Suppose τ � lt≺(Z(3,4) · h
(2,3)
4 · Z2,1). Multiply both sides of the inequality by t2t3t4

to obtain

L1,2L2,3L3,4 � L3,4 · [t4 · lt≺(h(2,3)
4 )] · L1,2,

and divide both sides by the common lcm’s to obtain

L2,3 � t4 · lt≺(h(2,3)
4 ),

which contradicts the definition of an S-representation.

Case 5: Suppose τ � lt≺(Z4,3 · Z2,3 · h(1,2)
3 ). Multiply both sides of the inequality by t2t3t4

to obtain

L1,2L2,3L3,4 � L3,4 · L2,3 · [t3 · lt≺(h(1,2)
3 )],

and divide both sides by the common lcm’s to obtain

L1,2 � t3 · lt≺(h(1,2)
3 ),

which contradicts the definition of an S-representation.

The proof of Lemma 14 follows this strategy. It is clear from the main diagonal of each Qk
that the leading term t of one elementary product of the determinant ofQk has the desired form;
assume by way of contradiction that the leading term of another elementary product is greater
than or equal to t; simplify the equivalent inequality by clearing the denominators and dividing
by the lcm’s; the resulting inequality will contradict the definition of an S-representation.

Proof of Lemma 14. We prove that (A) =⇒ (C). The proof that (A) =⇒ (B) is similar.
It is clear that detQk is a polynomial, each of whose terms is an elementary product of the

matrix. We can write any elementary product as T =
∏k
i=1 Bi such that:

– each Bi is an element of row i; and
– if i 6= j, then Bi and Bj are elements of different columns.

As noted above, the main diagonal of Qk produces an elementary product whose leading term
has the desired form; we claim that every other elementary product has a smaller leading term.

We proceed by way of contradiction. Assume that some elementary product T besides the
main diagonal satisfies

k∏
i=1

σi+1,i � lt≺(T ). (3.1)

Partition the set of factors of T into three sets:
– D, containing those factors which are on the main diagonal, which have the form Zi+1,i

for some i= 1, . . . , k;
– L, containing those factors which are immediately below the main diagonal, which have

the form Zi,i+1 for some i= 2, . . . , k; and
– O, containing the other factors, which have the form h

(j,j+1)
i for appropriate i, j.

Since T is not the product of the main diagonal, the uniqueness of row and column
representatives among the factors of T implies that O is guaranteed to be non-empty.

Denote lcm(lt≺(gi), lt≺(gj)) by Li,j and lt≺(gi) by ti. Multiply both sides of (3.1) by
∏k+1
`=2 t`.

This results in the equation

k∏
i=1

ti+1 · σi+1,i �
k+1∏
`=2

t` ·
∏

Zi+1,i∈D
σi+1,i ·

∏
Zi,i+1∈L

σi,i+1 ·
∏

h
(j,j+1)
i ∈O

h
(j,j+1)
i .
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Simplify the left-hand side to obtain
k∏
i=1

Li,i+1 �
k+1∏
`=2

t` ·
∏

Zi+1,i∈D
σi+1,i ·

∏
Zi,i+1∈L

σi,i+1 ·
∏

h
(j,j+1)
i ∈O

h
(j,j+1)
i . (3.2)

Rearrange the right-hand side of (3.2) by pairing each t` with the corresponding factor
taken from column `− 1. The uniqueness of column representatives among the factors of
an elementary product of a matrix guarantees a one-to-one pairing. If t` is paired with an
element of:

– D, it is paired with Z`,`−1, and the product simplifies to L`−1,`;
– L, it is paired with Z`,`+1, and the product simplifies to L`,`+1;
– O, it is paired with h

(j,j+1)
` for appropriate j.

In addition, the uniqueness of row representatives among the factors of an elementary product
implies that for each i, at most one pairing simplifies to Li,i+1. Thus, if we simplify the
right-hand side of (3.2), we have

k∏
i=1

Li,i+1 �
∏

h
(j,j+1)
i 6∈O

Li,i+1 ·
∏

h
(j,j+1)
i ∈O

tih
(j,j+1)
i .

Divide both sides by
∏
hi 6∈O Li,i+1 and we have∏

h
(j,j+1)
i ∈O

Li,i+1 �
∏

h
(j,j+1)
i ∈O

tih
(j,j+1)
i .

Recall that O was guaranteed to be non-empty, so these products are greater than 1. This
contradicts the definition of an S-representation.

We have shown that the leading term of the elementary product of detQk formed on the
main diagonal is

∏k
i=1 σi+1,i, while the leading terms of the remaining elementary products

are strictly smaller. The sum of the elementary products thus derives its leading term from the
main diagonal, whose leading term is the form described by (B).

Finally, we turn to the proof of Lemma 11.

Proof of Lemma 11. Assume (A). We must show (B).
For each i= 1, . . . , m− 1, fix h(i,i+1), an S-representation of S≺(gi, gi+1). We have the

system of m− 1 equations

Z1,2g1 + Z2,1g2 + h
(1,2)
3 g3 + . . . + h

(1,2)
m gm = 0,

h
(2,3)
1 g1 + Z2,3g2 + Z3,2g3 + . . . + h

(2,3)
m gm = 0,

...
. . .

...
h

(m−1,m)
1 g1 + . . . + h

(m−1,m)
m−2 gm−2 + Zm−1,mgm−1 + Zm,m−1gm = 0.

We will study this system in the context of Lemmas 12 and 14.
To apply Lemma 12, we put yk = gk+1 for k = 1, . . . , m− 2, ym−1 = g1, and ym = gm. For

each k = 1, . . . , m− 2,

Ak =


Z2,1 h

(1,2)
3 h

(1,2)
4 h

(1,2)
k+1

Z2,3 Z3,2 h
(2,3)
4 . . . h

(2,3)
k+1

h
(3,4)
2 Z3,4 Z4,3 h

(2,3)
k+1

...
. . . . . .

...
h

(k,k+1)
2 . . . h

(k,k+1)
k−3 Zk,k+1 Zk+1,k

.
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It is evident that A1 is non-singular; by Lemma 14, Ak is non-singular for k > 1. By Lemma 12,
the system

Sm−1 =
{ m∑
j=i

b
(m−1)
i,j yj = 0

}m−1

i=m−1

with

b
(m−1)
m−1,m−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

Z1,2

Am−2 h
(2,3)
1
...

h
(m−2,m−1)
1

h
(m−1,m)
2 . . . Zm−1,m h

(m−1,m)
1

∣∣∣∣∣∣∣∣∣∣∣∣
and

b
(m−1)
m−1,m =

∣∣∣∣∣∣∣∣∣∣∣∣

h
(1,2)
m

Am−2 h
(2,3)
m

...
h

(m−2,m−1)
m

h
(m−1,m)
2 . . . Zm−1,m Zm,m−1

∣∣∣∣∣∣∣∣∣∣∣∣
is consistent. In other words,

−b(m−1)
m−1,m−1 · g1 = b

(m−1)
m−1,m · gm.

Let
P = det(b(m−1)

m−1,m−1) and Q= det(b(m−1)
m−1,m).

We claim that lt≺(P ) and lt≺(Q) have the form specified. For lt≺(Q), it is clear that
Lemma 14(C) applies. For lt≺(P ), use column swaps to shift the right-most column to the
left-most, while shifting the other columns one position to the right; at this point Lemma 14(B)
applies.

Gröbner basis theory generalizes many algorithms for univariate polynomials to systems of
multivariate polynomials; one oft-cited example is how Buchberger’s algorithm to compute a
Gröbner basis can be viewed as a generalization of the Euclidean algorithm to compute the
gcd. We likewise expect relationships to exist between the S-polynomials and the gcd’s of
polynomials.

Moreover, the construction of S-polynomials relies on the computation of

σgi,gj
=

lcm(lt≺(gi), lt≺(gj))
lt≺(gi)

,

which can be rewritten as

σgi,gj =
lt≺(gj)

gcd(lt≺(gi), lt≺(gj))
.

Based on this, one might expect the existence of criteria on S-polynomials that relate the gcd
of two polynomials with the gcd of their leading terms.

One such criterion exists for two polynomials: if G= {g1, g2} is a Gröbner basis, then the
S-polynomial of g1 and g2 reduces to zero, and in addition g1 = f1p and g2 = f2p, where
p= gcd(g1, g2) and the leading terms of f1 and f2 are relatively prime [1]. In this case, we
infer a surprising fact. Observe that

lt≺(gcd(g1, g2)) = lt≺(gcd(f1p, f2p))
= lt≺(gcd(f1, f2) · p).
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Since p is the gcd of g1 and g2, we know that f1 and f2 must be relatively prime, so

lt≺(gcd(g1, g2)) = lt≺(1) · lt≺(p)
= gcd(lt≺(f1), lt≺(f2)) · lt≺(p)
= gcd(lt≺(f1) lt≺(p), lt≺(f2) lt≺(p))
= gcd(lt≺(g1), lt≺(g2)).

Lemma 16 generalizes this observation in a way that does not require a Gröbner basis, but
does require the extended criterion.

Lemma 16. Let G ∈Rm, and suppose that the leading terms of G satisfy the extended
criterion. Then (A) =⇒ (B), where:

(A) each of S≺(g1, g2), S≺(g2, g3), . . . , S≺(gm−1, gm) has an S-representation with respect
to G;

(B) gcd(lt≺(g1), lt≺(gm)) = lt≺(gcd(g1, gm)).

Proof. Assume (A). We must show (B). For the sake of convenience, denote lt≺(gi) by ti.
By Lemma 11, we have

g1P = gmQ,

where

lt≺(P ) = σg1,g2σg2,g3 . . . σgm−1,gm and lt≺(Q) = σg2,g1σg3,g2 . . . σgm,gm−1 .

Let p= gcd(g1, gm) and put f1 = g1/p and fm = gm/p. Then

f1P = fmQ. (3.3)

Since f1, fm are relatively prime, f1 |Q. Thus, lt≺(f1) divides lt≺(Q).
Observe that for any i= 1, . . . , m− 1, we have

σgi+1,gi
=

lcm(ti, ti+1)
ti+1

=
ti

gcd(ti, ti+1)
.

Thus,

lt≺(f1) | t1t2 . . . tm−1

gcd(t1, t2) gcd(t2, t3) . . . gcd(tm−1,m)
.

Denote gcd(ti, tj) by di,j . For all variables x, we have

degx lt≺(f1) 6 degx
t1 . . . tm−1

d1,2d2,3 . . . dm−1,m
.

Recall that f1 = g1/p. For all variables x, we have

degx t1 − degx lt≺(p) 6
∑

16i<m

degx ti −
∑

16i<m

degx di,i+1,∑
16i<m

degx di,i+1 6 degx lt≺(p) +
∑

1<i<m

degx ti. (3.4)

We claim that for all variables x, degx d1,m 6 degx lt≺(p). Let x be arbitrary, but fixed. If
degx t1 = 0 or degx tm = 0, the claim is trivially true. So, assume degx t1 6= 0 and degx tm 6= 0.
We consider two cases.

If degx t1 6 degx tm, then degx d1,m = degx t1. Recall that t1, . . . , tm satisfy EC. Therefore,
degx t1 6 degx t2 6 . . . 6 degx tm. Thus, degx di,i+1 = degx ti for all i such that 1 6 i 6m− 1.
Apply this to (3.4) to obtain

degx d1,m = degx t1 6 degx lt≺(p).
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If degx t1 > degx tm, a similar argument gives degx d1,m 6 degx lt≺(p).
Since x is arbitrary, d1,m divides lt≺(p) or, equivalently, gcd(lt≺(g1), lt≺(gm)) divides

lt≺(gcd(g1, gm)). That lt≺(gcd(g1, gm)) divides gcd(lt≺(g1), lt≺(gm)) is trivial. Hence,
lt≺(gcd(g1, gm)) = gcd(lt≺(g1), lt≺(gm)).

The following result will be useful both for the proof of the main theorem and for § 4.

Corollary 17. Let G ∈Rm, and suppose that the leading terms of G satisfy the extended
criterion. Then (A) =⇒ (B), where:

(A) S≺(g1, g2), S≺(g2, g3), . . . , S≺(gm−1, gm) all have S-representations with respect to G;
(B) if p= gcd(g1, gm), then lt≺(g1/p) and lt≺(gm/p) are relatively prime.

Proof. Assume (A). Let p= gcd(g1, gm), and denote g1/p and gm/p by f1 and fm,
respectively. From Lemma 16, we know that

gcd(lt≺(g1), lt≺(gm)) = lt≺(p).

Thus, for any variable x,

degx gcd(lt≺(g1), lt≺(gm)) = degx lt≺(g1)− degx lt≺(f1)
= degx lt≺(gm)− degx lt≺(fm).

Let x be arbitrary, but fixed. If degx lt≺(g1) 6 degx lt≺(gm), then

degx lt≺(g1) = degx gcd(lt≺(g1), lt≺(gm)) = degx lt≺(g1)− degx lt≺(f1),

so degx lt≺(f1) = 0. Similar reasoning shows that if degx lt≺(g1) > degx lt≺(gm), then
degx lt≺(fm) = 0. It follows that lt≺(g1/p) and lt≺(gm/p) are relatively prime.

Theorem 18 is the main tool used to prove the main theorem. Note that a similar statement
holds for Buchberger’s lcm criterion, although the chain needed for the lcm criterion, unlike
the chain for the extended criterion, does not need to use all the polynomials of G.

Theorem 18. Let G ∈Rm, and suppose that the leading terms of G satisfy the extended
criterion. Then (A) =⇒ (B), where:

(A) S≺(g1, g2), S≺(g2, g3), . . . , S≺(gm−1, gm) all have S-representations with respect to G;
(B) S≺(g1, gm) has an S-representation with respect to G.

Proof. Assume (A). We want to show (B). For the sake of convenience, denote lt≺(gi) by ti.
Recall that

S≺(g1, gm) = lc≺(gm) · lcm(t1, tm)
t1

· g1 − lc≺(g1) · lcm(t1, tm)
tm

· gm. (3.5)

Let p= gcd(g1, gm), where lc≺(p) = 1. Put f1 = g1/p and fm = gm/p. From Lemma 16, we
know that gcd(lt≺(g1), lt≺(gm)) = lt≺(gcd(g1, gm)). This and the facts that lc≺(f1) = lc≺(g1)
and lc≺(fm) = lc≺(gm) give

lc≺(g1) · lcm(t1, tm)
tm

= lc≺(g1) · t1tm
tm gcd(t1, tm)

= lc≺(f1) · lt≺(f1)

and

lc≺(gm) · lcm(t1, tm)
t1

= lc≺(gm) · t1tm
t1 gcd(t1, tm)

= lc≺(fm) · lt≺(fm) .
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This allows us to rewrite (3.5) as

S≺(g1, gm) = lc≺(fm) lt≺(fm) ·g1 − lc≺(f1) lt≺(f1) ·gm
= p · S≺(f1, fm).

By Corollary 17, the leading terms of f1 and fm are relatively prime; by Buchberger’s gcd
criterion, S≺(f1, fm) has an S-representation h. It follows that hp= (h1p, . . . , hmp) is an
S-representation of S≺(g1, gm).

Theorem 18 provides us with sufficient information to conclude that the main theorem is true.
This may not be clear, because we have discussed only S-representations, and not reduction
to zero. To show how the two come together, we need to recall two additional results. The first
is the characterization of Gröbner bases due to Lazard [17].

Theorem 19 (Lazard’s characterization). Let G ∈Rm. The following are equivalent:

(A) G is a Gröbner basis with respect to ≺;
(B) for every i, j such that 1 6 i < j 6m, S≺(gi, gj) has an S-representation with respect

to G.

It turns out that Buchberger’s characterization implies Lazard’s, thanks to the following
lemma [3].

Lemma 20. Let G ∈Rm and let i, j satisfy 1 6 i < j 6m. Then (A) =⇒ (B), where:

(A) S≺(gi, gj) reduces to zero with respect to G;
(B) S≺(gi, gj) has an S-representation with respect to G.

However, the converse of Lemma 20 is known to be false, so the fact that Lazard’s
characterization implies Buchberger’s is not obvious. It depends on the fact that in
Lazard’s characterization, every pair (i, j) has an S-representation for S≺(gi, gj), whereas
Lemma 20 deals only with one S-representation.

We can now show how Theorem 18 proves the main theorem.

Proof of the main theorem. That (A) implies (B) is trivial, so we assume (B) and show (A).
To prove (A), we will employ Lazard’s characterization.

From (B), every pair (i, j) satisfies one of (B0)—(B3). Let i, j be such that 1 6 i < j 6m.
Clearly, S≺(gi, gj) has an S-representation:

– if (i, j) satisfies (B0), then, by Lemma 20;
– if (i, j) satisfies (B1) or (B2), then, by well-known results [1, 3, 10];
– if (i, j) satisfies (B3), then, by Theorem 18.

By Lazard’s characterization (Theorem 19), G is a Gröbner basis with respect to ≺.

4. ‘Pham-like’ systems

In this section, we describe a class of polynomial systems for which the extended criterion
provides a dramatic reduction in the number of S-polynomial computations required for
verification (Corollary 23).

A well-studied system of polynomials is the Pham system [9, Chapter 6, p. 147].

Definition 21 (Pham system). Let P ∈ F[x1, x2, . . . , xn]n. We say that P is a Pham
system if lt≺(pi) and lt≺(pj) are relatively prime whenever i 6= j.
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Thanks to Theorem 3, one can verify that any Pham system is a Gröbner basis without
checking any S-polynomials at all. Now we obfuscate matters somewhat through multiplication.

Definition 22 (Pham-like systems). Suppose that G= (g1, . . . , gm) has leading terms
(c1d, . . . , cmd), where, for all i= 1, . . . , m,

– ci and d are relatively prime; and
– for all j 6= i, ci and cj are relatively prime.

We call such a G a Pham-like system.

Consider the following question.
Is a Pham-like system a Gröbner basis?

The temptation may arise to answer in the affirmative, because the cofactors of the leading
terms’ gcd are relatively prime, which through some manipulation might allow Buchberger’s
gcd criterion to apply. It does not. Numerous systems are not Gröbner bases even though this
property is true; for example,

g1 = xy + y, g2 = xz.

So, deciding whether G is a Gröbner basis requires us to check whether the S-polynomials
reduce to zero. We would like to avoid checking all of them if possible.

To that end, we turn first to Buchberger’s criteria, but:
– none of the leading terms cid, cjd are relatively prime; and
– for any pair cid and cjd, no ckd divides their lcm.

If we were to rely only on Buchberger’s criteria, we would have to reduce all m(m− 1)/2
S-polynomials to zero to see that a Pham-like system is a Gröbner basis.

However, the extended criterion allows us to decide whether a Pham-like system is a Gröbner
basis by checking at most m− 1 S-polynomials, even though Buchberger’s criteria provide no
benefit.

Corollary 23. Let G ∈Rm be a Pham-like system. The following are equivalent:

(A) G is a Gröbner basis with respect to ≺;
(B) the S-polynomials S≺(g1, g2), S≺(g2, g3), . . . , S≺(gm−1, gm) reduce to zero with respect

to G.

Proof. That (A) implies (B) is trivial, so we assume (B) and show (A). From (B), we know
that S≺(g1, g2), S≺(g2, g3), . . . , and S≺(gm−1, gm) reduce to zero with respect to G. It follows
from Lemma 20 that they have S-representations with respect to G.

For the sake of convenience, denote lt≺(gi) by ti. Write ti = cid, where ci and d are as
in Definition 22. Recall that gcd(ci, tj) = 1 whenever i 6= j; inspection shows that the list
of terms (t1, t2, . . . , tm) satisfies the extended criterion. By Theorem 18, S≺(g1, gm) has an
S-representation with respect to G. Let p1,m = gcd(g1, gm) and choose f1, fm ∈R such that:

– g1 = f1p1,m; and
– gm = fmp1,m.

Recall Lemma 16 and the assumption that c1 is relatively prime to tm; then

d= gcd(c1d, cmd) = gcd(lt≺(g1), lt≺(gm)) = lt≺(p1,m).

Thus,

c1d= t1 = lt≺(g1) = lt≺(f1p1,m) = lt≺(f1) lt≺(p1,m) = lt≺(f1) d,

whence c1 = lt≺(f1). Similarly, cm = lt≺(fm).
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Inspection shows that the list of terms (t1, tm, tm−1, . . . , t3, t2) also satisfies the extended
criterion. We now know that S≺(g1, gm) has an S-representation with respect to G, so we can
reason as before that there exist ϕ1, ϕ2, p1,2 ∈R such that:

– g1 = ϕ1p1,2;
– g2 = ϕ2p1,2;
– p1,2 = gcd(g1, g2); and
– the leading terms of ϕ1 and ϕ2 are relatively prime.

As before, we obtain d= lt≺(p1,2) and c1 = lt≺(ϕ1). Thus, lt≺(f1) = lt≺(ϕ1). We claim that
in fact f1 = ϕ1. By way of contradiction, assume that f1 and ϕ1 are not equal. From
f1p1,m = ϕ1p1,2, we conclude that f1 has a common factor with p1,2 or ϕ1 has a common
factor with p1,m; but this contradicts the hypothesis that c1 is relatively prime to d. Hence,
f1 = ϕ1 and p1,m = p1,2. Write p= p1,m, g1 = f1p, g2 = f2p, and gm = fmp.

Proceeding in like fashion, we can factor every gi as gi = fip such that lt≺(fi) and lt≺(fj)
are relatively prime whenever i 6= j. By Theorem 3, F = (f1, f2, . . . , fm) is a Gröbner basis
with respect to ≺. Let i, j be arbitrary, but fixed. Assume 1 6 i < j 6m. By Lazard’s
characterization, S≺(fi, fj) has an S-representation h(i,j). This implies that S≺(gi, gj) has
an S-representation ph(i,j) = (ph(i,j)

1 , . . . , ph
(i,j)
m ). Since i and j are arbitrary, by Lazard’s

characterization G is a Gröbner basis with respect to ≺.
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