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Abstract

Metal–organic polyhedra (MOPs) are discrete, porous metal–organic assemblies known for their wide-ranging
applications in separation, drug delivery, and catalysis. As part of The World Avatar (TWA) project—a universal
and interoperable knowledge model—we have previously systematized known MOPs and expanded the explorable
MOP space with novel targets. Although these data are available via a complex query language, a more user-friendly
interface is desirable to enhance accessibility. To address a similar challenge in other chemistry domains, the natural
language question-answering system “Marie” has been developed; however, its scalability is limited due to its
reliance on supervised fine-tuning, which hinders its adaptability to new knowledge domains. In this article, we
introduce an enhanced database of MOPs and a first-of-its-kind question-answering system tailored for MOP
chemistry. By augmenting TWA’s MOP database with geometry data, we enable the visualization of not just
empirically verified MOP structures but also machine-predicted ones. In addition, we renovated Marie’s semantic
parser to adopt in-context few-shot learning, allowing seamless interaction with TWA’s extensive MOP repository.
These advancements significantly improve the accessibility and versatility of TWA, marking an important step
toward accelerating and automating the development of reticular materials with the aid of digital assistants.

Impact statement

Molecular engineering based on the modular reuse of chemical building units is a powerful methodology for the
rapid development of new advanced materials relevant to sustainability, energy transition, and life science.
Metal–organic polyhedra (MOPs) are an emerging class of rationally designed advanced materials demanding
increased digitalization efforts for automated exploration of their chemical space and allocation of candidates for
tailor-made applications. Building on our previous effort in the digitalization of MOPs, we introduce a question-
answering (QA) system for MOPs based on a knowledge graph-retrieval-augmented generation (KG-RAG)
system. This system provides a user-friendly exploration of MOP chemistry and offers rapid adaptation to new
data and domains. The developed methodology provides a solid platform supporting domain experts and shows
strong potential as a blueprint for developing adaptable QA systems for specialized knowledge areas.
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1. Introduction

Metal–organic polyhedra (MOPs) represent a class of materials characterized by their self-assembled,
cage-like discrete nanomolecular architecture constructed from metal-based and organic building blocks
(Gosselin et al., 2020; Lee et al., 2021). Considering their network-like discrete assembly topologies
combining internal cavitation and a plethora of organic and inorganic cluster functionalities, MOPs are
typically considered a subset of reticular materials with promising applications in catalysis, separation,
and energy technologies (Perry Iv et al., 2009; Vardhan et al., 2016). However, in light of the chemical
space that emerges from brute combinatorial derivation of new hypothetical reticular structures, past years
in these domains have noted increased interest in the development of data-driven technologies formaterial
discovery (Chong et al., 2020; Rosen et al., 2021; Kang and Kim, 2024), selection (Guan et al., 2022; Li
et al., 2022), and synthesis (Luo et al., 2022), as well as the development of data infrastructures to support
these tasks, including data cataloging (Moghadam et al., 2017), mining (Bai et al., 2024), and accessing
(Kang and Kim, 2024).

Considering the relatively smaller sample size of MOPs compared to its extended metal–organic
framework (MOF) analogs, developing data-driven digital tools for MOP discovery has remained
challenging because big data-driven methods for MOFs cannot be easily extended to MOPs. In this
regard, our group has developed new formal and semantic approaches to describe MOPs, including
custom-designed inductive reasoning algorithms for the discovery of new structures. Thus, following a
careful development of a knowledge model for MOP chemistry, we have instantiated 151 experimentally
describedMOPs, and based on them, our reasoning algorithm designed 1,418 newMOP instances that are
rationally designed from existing building units, following expert-like patterns of molecular engineering
(Kondinski et al., 2022). The overall research has been originally contextualized within our The World
Avatar (TWA) digital infrastructure, which adopts Semantic Web principles to bridge the gap between
digital and physical realms.

Access to chemical information for a long time came with the requirement of some forms of
cheminformatics knowledge (Gasteiger, 2016). In a similar line, the acquisition of chemical information
instantiated in the form of a knowledge graph (KG) typically requires the use of querying tools such as
SPARQL (Quilitz and Leser, 2008; Pérez et al., 2009), which may appear unintuitive and even
cumbersome to new users, thus limiting the accessibility of chemical information. Despite our initial
success in describing MOP chemistry via a KG model and in developing agents for digital exploration of
its chemical space, semantic query tools often appear as a barrier for experimental chemists whomaywant
to rapidly leverage insights fromourwork toward developing newmaterials. Noticing similar experiences
along different chemistry domains, we have beenmotivated to build tools that integrate semantic querying
with natural language processing (NLP), enabling virtually any user with access to the Internet to be able
to query verified and expert-derived knowledge models simply via prompting. In this regard, we have
developed dedicated easy-to-use tools to navigate complex ideas and concepts that are either niche in
nature or not fully in the public domain and, therefore, not accessible via traditional search engines or
general-purpose large languagemodels (LLMs). One such interface isMarie, a natural language question-
answering (QA) system for chemistry. Previously designed to facilitate access to data in the domains of
combustion kinetics and crystalline zeolitic materials, Marie has demonstrated the potential of NLP-driven
tools to help human users navigate complex knowledge bases (Pascazio et al., 2024; Kondinski et al.,
2024b). However, Marie’s reliance on supervised fine-tuning in developing its semantic parser curtails its
scalability. In TWA’s dynamic environment, new knowledge domains are continually introduced and
extended, making repeated retraining of Marie’s semantic parser necessary, which is not only resource-
costly but also risks catastrophic forgetting (Hadsell et al., 2020). Finally, specific to reticular chemistry is
the problem of understanding complex information and structures, which calls for visualization.

The purpose of this article is to present an enriched knowledge base and an enhanced QA system
tailored for digital engagement withMOP chemistry. TWA’s MOP domain is restructured and augmented
with geometry data for new MOP instances deduced in our previous work, allowing the visualization of
not just empirically verified MOP structures but also those predicted by our “MOP Discovery” agent.
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Additionally, we update Marie’s semantic parser to adopt the approach of few-shot in-context learning
with demonstration retrieval, which enables more agile incorporation of new domains and acceleration of
development cycles. The presented approach enables the fast and economical creation of reliable QA
systems for specialized fields.

2. Background

In this section, we first introduce the TWA knowledge ecosystem and its application to the chemistry
domain, particularly MOPs. We then give a short overview of current trends in QA systems in related
domains.

2.1. TWA – A virtual hub for digital chemistry

TWA is a pioneering project that creates a universal digital twin of the real world, building on the early
potential of the SemanticWeb to enhance cheminformatics and broader chemical applications (Berners-
Lee et al., 2001; Taylor et al., 2006; Murray-Rust, 2008). The Semantic Web, an evolution of the World
Wide Web, addresses the gap between human-readable documents and machine-readable data by
prioritizing semantics over presentation. It builds on layers of technologies standardized by the World
WideWebConsortium, starting with raw data expressed using Unicode and uniquely identified through
Internationalized Resource Identifiers (IRIs). Information is represented through the Resource Descrip-
tion Framework (RDF) in triples of subject, predicate, and object. Ontologies formalize this knowledge
by defining the structure of instances within a KG, enabling querying via SPARQL. The Semantic
Web’s core principle is Linked Data, which promotes accessibility and integration across different
sources.

Initially conceptualized in 2010, TWA has evolved from the representation of a single chemical
industry park on Jurong Island (Singapore) into an unrestricted worldmodel capable of integrating a range
of phenomena from the atom to multiscale features impacting environment, climate, and population
health (Akroyd et al., 2021), including power and heat network optimizations for CO2 savings, environ-
mental monitoring, and cross-domain climate resilience planning through the Climate Resilience

Figure 1. Illustration of TWA’s digital infrastructure that enables the retrieval of structured and validated
MOP data via natural language requests.
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Demonstrator (Mosbach et al., 2020; Akroyd et al., 2021; Akroyd et al., 2022). TWA operates on the
principles of the Semantic Web and adheres to the FAIR guidelines, to ensure that all data are findable,
accessible, interoperable, and reusable (Wilkinson et al., 2016). It integrates software agents that manage
information flows, interface with computational models, and continuously enhance TWA’s KGswith new
data (Zhou et al., 2019; Akroyd et al., 2021).

The digital chemistry in TWA is aligned and structured around foundational ontologies such as
OntoSpecies, OntoKin, OntoCompChem, and OntoPESScan, facilitating a comprehensive mapping of
chemical species, reaction mechanisms, and quantum chemistry calculations, respectively (Kondinski
et al., 2024a, Kondinski et al., 2023). This framework supports detailed data relationships and enhances
interoperability, enabling multifaceted data usage and reducing ambiguities (Farazi et al., 2020; Akroyd
et al., 2021). Additionally, computational agents in TWA perform complex tasks such as calibrating
kinetic mechanisms and automating discovery processes (Kondinski et al., 2024a), exemplified by the
development of novel MOPs (Kondinski et al., 2022) which, among a variety of applications, can be used
for photocatalytic CO2 reduction (Ghosh et al., 2022; Adeola et al., 2024).

The OntoMOPs ontology is designed to provide and enrich semantic relationships between MOPs,
chemical building units (CBUs), and assembly models (Kondinski et al., 2022). This ontology enables
advanced query capabilities for professionals engaged in the modeling and preparation of MOPs,
supporting informed decision-making with detailed information on the construction and functionalities
of these materials. OntoMOPs links manually curated MOP instances to crucial metadata such as
molecular mass, charge, formulas, and provenance information like DOIs and CCDC numbers for precise
identification and cross-referencing with crystalline databases. Additionally, the assembly model concept
details how different generic building units (GBUs) contribute to the formation of specific polyhedral
shapes recognized in reticular chemistry, such as tetrahedra and octahedra, while the CBU conceptmodels
chemical functionalities and binding sites necessary for MOP formation.

2.2. Trends in knowledge-intensive chemistry QA systems

In recent years, the field of NLP has experienced a remarkable rise in popularity, primarily driven by the
accessible deployment of LLMs. The advent of LLMs is marked by their ability to tackle diverse
knowledge-intensive tasks that range from the humanities to the sciences, including chemistry
(OpenAI et al., 2023). However, despite their impressive performance on standardized examinations,
general-purposed LLMs like GPT-4 often struggle with more advanced and specialized requests,
revealing their lack of in-depth understanding of the subject matter (Guo et al., 2024). While fine-
tuning is a possible remedy (Zhang et al., 2024), a significant challenge remains: these models are
inherently limited by the scope and recency of their training data, rendering them inadequate for querying
up-to-date information or applying the latest research knowledge without undergoing further retraining.

In-context few-shot learning is a technique where LLMs are provided with a few input–output
examples during testing to align their behavior with user expectations without updating their weights.
In-context means the model processes and utilizes examples provided within the same input context,
rather than relying on weight updates or external training. First observed in GPT-3 during model scaling
experiments (Brown et al., 2020), in-context learning enables models to perform tasks based on
demonstrations alone, and recent research suggests that smaller models can also be trained for this
capability (Min et al., 2022). Few-shot means the model requires only a small number of examples to
generalize and perform a task effectively. This helps reduce cost by eliminating the need for extensive
fine-tuning or retraining, leveraging existing model capabilities to adapt to new tasks efficiently.

In the realm of chemistry, LLMs are increasingly utilized for a variety of tasks, including data
processing, engineering, inference, and augmentation, in conjunction with various computational tools
(Guo et al., 2023; Jablonka et al., 2024; M. Bran A et al., 2024). Despite these advancements, concerns
about the explainability of these technologies continue to persist (Gallegos et al., 2024), prompting further
research into integrating LLMs with semantic technologies. QA systems have historically leveraged
external knowledge bases, particularly throughKG-basedQA systems. These are designed to retrieve and
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reason over structured data from KGs to deliver precise and fact-based answers (Zhang et al., 2018; Kim
et al., 2023).

The emergence of retrieval-augmented generation (RAG) systems has taken this a step further by
combining the reasoning capabilities of LLMs with the retrieval of up-to-date information from external
sources (Lewis et al., 2020). This allows RAG systems to generate more contextually relevant and
accurate responses (Zheng et al., 2023; Kang and Kim, 2024). Using KGs as the foundation for
information retrieval, recent studies have shown the great promise of KG-RAG to reliably handle
knowledge-intensive and cognitive tasks (Sanmartin, 2024).

Another challenge for knowledge-intensive QA systems is handling of private, niche, or proprietary
data, which is encountered in both industrial contexts and academic research. This necessitates a flexible
QA system capable of integrating various data sources and domains while also allowing for the dynamic
inclusion of new information. LLMs’ strong generalization ability and versatility are key to addressing
these dual goals. For example, ChemCrow (M. Bran A et al., 2024) is a tool-calling agent capable of
incorporating information pulled from a mixture of public and private data sources and computational
tools, including the PubChem database and the RoboRXN platform by IBM Research (IBM, 2021). It
does so by employing an LLM pretrained for the tool-calling task to orchestrate when to use which
external tool and how to process and combine the results to form a coherent response (Schick et al., 2023).

Similarly, Marie is capable of querying across various domains and accessing information from
distributed data sources within the fields of combustion kinetics and crystalline zeolitic materials
(Pascazio et al., 2024; Kondinski et al., 2024b). However, the previous version of Marie relies on
supervised fine-tuning for its semantic parser, which necessitates retraining whenever it needs to integrate
with a new knowledge domain in TWA. In contrast, the in-context learning capability of LLMs (Brown
et al., 2020) offers a promising approach to expanding Marie’s coverage across TWA’s domains without
the need for retraining. This capability allows LLMs to perform tasks based solely on task demonstrations
provided at test time, without updating model weights—particularly, if coupled with advanced entity
linking algorithms (Nie et al., 2024).

3. Methodology and Implementation

In this section, we detail the methods developed for our natural language access point forMOP chemistry.
We begin by outlining the refinements and extensions made to the existing knowledge model within
TWA. Following this, we describe the integration of Marie into the MOP chemistry domain and the
substantial improvements to its architecture.

3.1. Updates to OntoMOPs

To include MOP knowledge in our chemistry QA systemMarie and extend it for better user interactivity,
the MOP knowledge base needed to be restructured and extended first. As a first step, we made
adjustments to the original OntoMOPs ontology to improve robustness and ease of querying. The
changes concern two main aspects: the storage of geometry data and the elimination of potential data
redundancy. In a second step, the MOP KGwas enriched with 370 new geometries of machine-predicted
MOPs in addition to the 151 existing geometries of previously synthesized MOPs. These molecular
geometries were deduced from information represented in the KG and will help researchers to better
visualize these structures and screen possible synthesis candidates.

The updated ontology is shown in Figure 2. Its core concepts form a rectangle: MOPs can be classified
by their geometric assembly models made up of distinct GBUs as which a variety of CBUs can function
(Kondinski et al., 2022). These four core concepts now provide access to a range of geometric and
molecular properties alike.

In the original implementation, geometry data of MOPs and CBUs are provided as XYZ documents or
XYZ-formatted strings in the KG. A potential limitation of this method is that a string can, in principle,
exceed the stringent length limits imposed by the KG engine—for example, in the case of a very large
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chemical superstructure. An alternative implementation entails the instantiation of every atom in anMOP
or CBU structure and linking these atoms to an intermediate Geometry node, which is then connected to
an MOP or CBU instance via the hasGeometry predicate, as done in the OntoSpecies domain of TWA
(Pascazio et al., 2023). However, doing so for large MOP structures could introduce an overwhelming
number of triples and, consequently, may slow downKGoperations. In this work, wemake a compromise
between limiting the number of instantiated triples and avoiding storing long strings directly in the KG by
moving the storage of the geometry data to XYZ files on disk. These files are hosted on a web server so
that they are accessible on the Internet via URLs, which are discoverable in TWA through hasGeome-
tryFile links to Geometry nodes.

The original assertion component created redundancy in the assignment of IRIs for instances of
assembly models and GBUs, necessitating the postprocessing of aggregate queries. In the new imple-
mentation, redundant entries were merged or removed, allowing for simpler traversal of the KG without
lengthy queries. On a terminological level, our effort to increase interoperability and overlap between
chemical TWA ontologies, particularly with the renewed implementation of OntoSpecies (Pascazio et al.,
2023), has facilitated the reuse of general-purpose concepts. As illustrated in Figure 2, this reuse covers
many concepts related to shared molecular properties and literature provenance. This way, we intensify
the interlinkedness of TWA and simplify agentic data curation and the training of Marie modules.

Figure 2. Illustration of the terminological component (TBox) of the MOP chemistry domain in TWA and
its related ontologies. Core concepts are shown in bold.
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3.2. The architecture of Marie TWA

A QA system for TWA is not only required to map user intents to a machine-readable format accurately
but it must also identify the correct data repository that contains the requested information. The latter
stipulation arises from TWA’s compartmentalization of its data into distinct triplestores to allow domain
experts to own and manage them independently. Earlier versions of Marie struggle with the dynamic
nature of TWA, as its semantic parser relied on supervised fine-tuning (Tran et al., 2024), requiring
resource-intensive retraining. This limitation not only impedes Marie’s scalability but also poses the risk
of catastrophic forgetting (Hadsell et al., 2020). In contrast, the current version ofMarie is designedwith a
more agile and adaptable architecture, ensuring continued support for existing chemical domains within
TWAwhile seamlessly extending coverage to new domains, such as OntoMOPs.

To achieve this, we set up a KG-RAG system based on a modular architecture and adapted in-context
few-shot learning methods to it. As depicted in Figure 3, Marie’s online workflow comprises three main
components:

1. The input rewriter aligns all physical quantities mentioned in the input question to the unit systems
in our knowledge base.

2. The semantic parser jointly generates the logical form of a SPARQL query, detects the surface
forms of entities present in the input question, and determines the triplestore to execute the query.

3. The response generator presents the structured SPARQL response and LLM-generated styled text,
accompanied by visualization of the 3D structures of any invoked chemical entities.

Both the quantity recognizer and semantic parser are powered by LLMs prompted with in-context
examples; the exact structure of these prompts is available in the Supplementary Materials. While the
LLM prompt for the physical quantity recognizer is fixed, the semantic parser dynamically adapts to the
input question by incorporating only the kdemonstrations most relevant semantic parsing demonstrations and
kKG_relations most relevant KG relations. This approach is key to Marie’s rapid integration with new
knowledge domains because only a small number of semantic parsing demonstrations and KG relations
need to be prepared, unlike the relatively larger training dataset required for supervised fine-tuning.
Additionally, the on-demand retrieval of the most relevant elements for prompt construction ensures that
the prompt is as compact as possible to fit within the context window of common LLMswhile also saving

Figure 3.Architecture of “Marie,” comprising one offline indexing stage and three online stages, namely
input rewriting, semantic parsing, and response generation.
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processing time. Relevance is measured by the cosine similarity of their Sentence-BERT embeddings
(Reimers and Gurevych, 2019) using the all-mpnet-base-v2 variant. We use OpenAI’s gpt-4o-mini-2024-
07-18 model for in-context learning and the Redis Community Edition for all retrieval needs. These
techniques allow us to construct Marie as a modular KG-RAG system that leverages pretrained LLMs
without requiring fine-tuning or retraining itself. This not only drives down the cost of operatingMarie as
well as adding more subjects but also ensures response accuracy.

Marie’s entity linking component uses different strategies depending on the entity class:

• Inverted index lookup for entities with well-defined labels, for example, chemical species with their
IUPAC names, molecular formulas, and SMILES strings.

• Semantic search for entities that represent concepts or categories, for example, chemical classi-
fications.

• RDF subgraph matching for more complex entities that are conceptually defined by their relation-
shipswith other entities, for example, assemblymodels composed ofGBUs (Kondinski et al., 2022).

Compared to earlier versions, this multistrategy approach has been refined to accommodate the diverse
and growing range of entities within TWA, particularly the complex entities in the MOP chemistry
domain. In the Supplementary Materials, we provide a summary of entity linking strategies and an
illustration of RDF subgraph matching.

The response generation component in Marie has been enhanced to provide more comprehensive and
user-friendly outputs. Marie’s structured output is presented in both JSON and tabular format, allowing
users to view the raw SPARQL response in JSON and the formatted version in a table. On top of this, the
natural language text generated by an LLM explains the results in a more accessible manner. A major
update in the current version is the visualization of intricate chemical structures like MOPs; this is done
using the library 3Dmol.js (Rego and Koes, 2014). This feature not only broadens the utility of the QA
system by making complex chemical data more tangible but also enhances the overall user experience,
allowing researchers to engage with the data more interactively.

4. Results and discussion

By integrating the OntoMOPs knowledge domain and its semantically structured data with our QA
system Marie, we have successfully created a functioning KG-RAG system for MOP-related research.
Not limited to a simple database lookup, Marie can access deep domain knowledge of MOPs, including
their underlying structures, components, and design principles. Figure 4 illustrates how the modular
architecture of Marie facilitates a powerful KG-RAG system that can reliably traverse a complex
KG. Retrieving different kinds of data, including molecular geometries, enables informative multilayered
output: as shown in Figure 5, factual answers can be given in natural language combined with integrated
3D visualizations. The adapted architecture of Marie, utilizing in-context prompting coupled with entity
recognition techniques, enables shorter development cycles for new RAG systems. Moreover, it allows
for iterative extension beyond their common scope to more niche domains like MOPs. This brings us a
step closer to creating a “Digital Research Scientist” (Rihm et al., 2024) by providing an assistant with
which researchers can have a productive conversation to aid them in the scientific discovery process
(Klami et al., 2024), as shown in Figure 6.

Figure 4 demonstrates the usability of our QA system and the functions of its components with a
rundown of Marie’s handling of an exemplary query in the domain of MOP chemistry, “Which CBUs are
used as two-linear GBUs?” The QA process follows the general flowchart given in Figure 3: as no
quantities are detected, unit conversion and input rewriting are not needed in this case, so only the
processes related to semantic parsing and response generation are triggered. The invocation of a particular
GBU in the second part of the question triggers Marie’s entity recognition and linking module, which
identifies the exact IRI that corresponds to thementioned entity. In this case,Marie can find the instance of
GenericBuildingUnit with the required unique combination of hasModularity and hasPlanarity properties
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via RDF subgraph matching. The recognized entity serves as a starting point for traversing the KGwith a
SPARQL query. The prediction of such a query is invoked by the first part of the question, asking for
entities of type ChemicalBuildingUnit that are linked to the previously recognized entity (and thereby its

Figure 4. Processing steps to respond to a natural language question in the MOP chemistry domain as
implemented in Marie. These steps are displayed on theMarie page and can be retraced for every question.
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IRI) via an isFunctioningAs predicate. As the query is valid, it is automatically extended before execution
so that the results returned are not only machine-readable IRIs of appropriate CBUs but also scientifically
meaningful identifiers that can be supplied to the user, such as chemical formulas. The retrievedCBUs and
associated data (here in JSON format) can now be used to generate tabular overviews or natural language
responses. In the case of reticular chemistry, lengthy formulas are often not enough for a human user to
understand the presented structures intuitively. For this reason, the geometries of certain entity types are
retrieved as well and structures are visualized in an interactive 3D viewer, giving users a tangiblemeans of
comprehending the results. Notably, the presentation of Marie’s internal workings—including its entity
linking, SPARQL query formulation, and retrieval of node IRIs—contributes to the system’s interpret-
ability and users’ confidence in its accuracy. Sanity checks can also be performed at any step by looking up
intermediate values directly in the RDF triplestore.

Figure 5 demonstrates how the structure visualization combinedwith natural language responses based
on knowledge retrieval can be especially valuable for complexMOP structures. In the illustrated example,
a user enquires about MOPs described in a specific scientific paper—a typical question a chemist would
try to answer when reviewing publications reporting different types of MOPs. This can be quite an
extensive task when done by hand, especially when trying to compare structural similarity in terms of
assembly models and symmetry. Even when consulting a dedicated review or, in this case, a single work
that includes a collection of MOPs and their properties, it is hard to successfully keep track of and
distinguish theseMOPs. Their formulas are often insufficient for human users to construct amental image
of the MOPs, and although they can be broadly described in terms of polyhedral shapes, the vast
variability in geometric shapes means that even morphology experts might not be able to immediately
conceive of the structures. By providing interactive visualization of these structures enabling 3D rotation,

Figure 5. Example of a multilayered response by Marie, combining a natural language summary of data
retrieved from the knowledge graph with 3D visualization of chemical structures.
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our platform not only aids the understanding ofMOP topologies but also enhances the output provided by
Marie by rendering it more intuitive and accessible. Finally, a summarizing sentence as shown in Figure 5
can provide instant comprehension, even when the number of items returned might be much larger for
some queries.

Marie’s detailed responses and interactive usage enable users to navigate the knowledge base ofMOPs
efficiently. This could prove useful for chemists who look to synthesizeMOPs with certain properties and
need to probe potential candidates. Figure 6 illustrates how this use case can be realized with Marie.
Starting with a desired structural shape, the chemist may use Marie to retrieve all assembly models that
exhibit this geometry. Subsequently, the frequent occurrence of the five-pyramidal GBU among retrieved
assembly models may prompt the chemist to search for CBUs that can function as such. Marie identifies
two potential CBUs, of which the chemist chooses one to focus on, querying for MOPs that contain them

Figure 6. Example of a conversation with Marie via chained questions.
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and checking for their molecular weight, to whichMarie responds with a comprehensive list of materials.
The results are not limited to MOPs that have been previously reported in the literature but also include
machine-predicted ones, enabling the chemist to explore potential synthesis targets thoroughly.

With a question chain as illustrated in Figure 6, users can traverse the KG step-by-step, using each
response as additional information to base the next question on. With these three questions, the user was
able to explore theKG across the four core concepts highlighted in Figure 2: starting at an assemblymodel
(via entity recognition and query prediction), the user picks a GBU for which Marie provides appropriate
CBUs. The user picks a CBU and asks Marie for MOPs, which Marie returns and augments with
molecular data, provenance information, and structural geometry.

In verifying the QA system with both the examples presented and other sample questions, Marie’s
responses were consistently accurate and repeatable. However, Marie does have two modes of failure:
(1) if a question is misunderstood, it can lead to an incorrect KG query being generated and (2) if the
requested information is not available in the knowledge base, the query response will be empty. In both
cases, no data are retrieved, and the user will be notified accordingly. Marie is limited to the specific
knowledge base it operates on, making it more suitable for highly specialized topics, such as MOPs and
their properties. In contrast, a general-purpose LLM can answer questions across various domains but
lacks in-depth knowledge in niche areas and can potentially introduce hallucinations. Within the scope of
its intended topic, previous work has demonstrated that Marie outperforms general-purpose QA systems
like ChatGPT (Pascazio et al., 2024). A similar evaluation for the updated version of Marie, along with a
more quantitative assessment of the QA system’s accuracy and repeatability, can be found in the
Supplementary Materials.

5. Conclusion

This article presents a QA system tailored for MOP chemistry, backed by the MOP knowledge base of
empirically verified and machine-predicted instances enriched with geometry data. Our work focused on
overcoming three critical pain points: the difficulty of navigating complex and domain-specific concepts
not fully accessible by general-purpose LLMs, the challenge of effectively understanding and visualizing
complex information and structures in reticular chemistry, and the need to accelerate development cycles
for QA systems by reducing model (re-)training requirements. To address these issues, we introduced
several key innovations, including the integration of MOP data into an existing KG-integrating QA system
calledMarie, the incorporation ofmultilayered output incorporating visual, textual, and tabular hyperlinked
outputs to enhance the interpretation of complex data, and the adaptation of few-shot learning techniques to
optimize the system’s performance in new domains. Through these advancements, we have demonstrated
notable improvements in the capability and efficiencyof theMarieQAsystemwithin the specialized context
of MOPs, paving the way for more effective and accessible scientific inquiry in this field.

Our work demonstrates the use of natural language to efficiently navigate TWA’s vast repository of
MOPs, which can aid chemists in rapidly screening for synthesis targets with desired properties. These
enhancements broaden the scope of exploration within the MOP space and provide a visual interface that
makes the data more tangible. This marks a significant step forward in makingMOP data more accessible
and actionable for researchers, ultimately supporting ongoing efforts inMOP design and application. The
architecturewe have developed for theMarieQA systemholds significant potential for broader applications
in scientific research. Enabling the simple and resourceful creation of KG-RAGmodels based on a body of
knowledge described in individual papers, collections of papers, or comprehensive scientific databases can
help gather insights from large data sources and drastically increase the accessibility of scientific knowledge.
This flexibility allows researchers to quickly adapt the system to emerging fields or specific niches,
democratizing access to cutting-edge research and fostering innovation.

The scope of this work is limited to the retrieval of facts from a KG, but answering more complex
questions based on the available information is an important research question on the path to creating
increasingly autonomous “digital research scientists.” Marie’s knowledge base consists of different
topical KGs to which the QA system has access. The accuracy of information inside them is currently
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ensured by human and agentic curation. While it can be restored from local copies at any time, data
protection needs to be addressed. Going forward, expanding the KG while ensuring its accuracy and
security will be crucial, as data safety and security in TWA are areas of ongoing research. Future efforts
will also focus on integratingMariewith automated synthesis planning tools to enable the swift design and
optimization of new MOPs with targeted functionalities (Rihm et al., 2024; Kondinski et al., 2024a).
Additionally, future work could explore the application of the presented architecture to other specialized
domains, further refining the integration of multilayered outputs and combining the use of in-context
prompting and query prediction with embedding methods to enhance the efficiency of KG-RAG-based
QA systems.
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