
A. Noda
Nagoya Math. J.
Vol. 105 (1987), 71-87

GENERALIZED RADON TRANSFORM AND LEVY'S
BROWNIAN MOTION, I*)

AKIO NODA

§ 1. Introduction

In connection with a Gaussian system X = {X(x); xe M) called Levy's
Brownian motion (Definition 1), we shall introduce two integral trans-
formations of special type—one is a generalized Radon transform J? on a
measure space (M, m), and the other is a dual Radon transform R* on
another measure space (H, v) such that H C 2M, the set of all subsets of
M (Definition 2). To each Levy's Brownian motion X, there is attached
a distance d(x, y):= E[(X(x) — X(y))2] on M having a notable property
named ZΛembeddability ([3]). The above measure v on H is then chosen
to satisfy

d(x, y) = v(Bx Δ By) with Bx: - {h e H; x e h},

where Δ stands for the symmetric difference.
It turns out that these transforms constitute a factorization of the

covariance operator of X (Theorem 3); a more explicit link between X
and R* can be noticed in the somewhat informal expression

X(x) = (R*W)(x),

where W = {W(dh); heH} is a Gaussian random measure with mean 0
and variance v(dh). In view of the quite simple probabilistic structure
of W, an idea comes to mind: The deep study of R and R* will yield
fruitful results on X. Thus, we shall investigate the transforms R and
jR* as well as the Levy's Brownian motion X in the present and subsequent
papers.

The main purpose of the present paper (I) is to obtain the singular
value decomposition of i?* (Theorem 5), which gives us the Karhunen-
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Loeve expansion of X (Theorem 6). The second paper (Π) will concentrate

on the investigation of the null spaces of R*:

iVi(A): = {ί e L\H, v); (R*g)(x) = 0, x e A}, A c M.

The structure of the closed linear span [X(x)'9 xeA] in U(Ω,P) will be

described in terms of N^A) and W.

In order to give some interpretation to the representation of Chentsov

type which is useful for our study, we begin with a familiar Brownian

motion X — {X(x) x e Rn} with n-dimensional parameter. The variance

of the increment X(x) — X(y) is, by definition, equal to the Euclidean

distance \x — y\ between x and y. The idea of Chentsov [6] (cf. [24] and

[26]) now leads us to take the following measure space (H,v): His the

set of all half-spaces htiΦ:= {x e Rn; (x, ω) > t) not containing the origin O;

an element hti0)eH is parametrized by the distance t > 0 and the direction

ω e Sn~1:= {ω e Rn; \ω\ — 1}. The measure v is an invariant measure on H,

explicitly given by

Then it is easy to verify that v{Bx/\By) = \x — y\. We thus get at the

conclusion that X is expressed in the form

( 1 ) X(x)=[ W(dh)=W(Bx).

A general framework behind the representation (1) of Chentsov type

consists of the following:

( i ) A centered Gaussian system X = {X(x) x e M} with parameter

space M; the variance of the increment is denoted by d(x, y):= E[(X(x)

- X(y)Yl
(ii) A Gaussian random measure W = {W(dh); heH} based on a

measure space (H, v) such that H C 2M and v(Bx) < co for all x e M.

It follows from (1) that

( 2) d(x,y)=[ \ XBv(h) - lBy(h) I v(dh) = v(Bx A Bv),

where 1B denotes the indicator function of a subset B C H. Conversely,

this equation (2) guarantees the existence of such a representation (1).

The variance of X admitting a representation (1) of Chentsov type is
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therefore a (semi-)metric on M of the form \\XBχ — XBV\\LHH,V)\ such a metric
is said to be U-embeddable ([3]).

We are now in a position to introduce the following

DEFINITION 1. Let (M, d) be an ZΛembeddable metric space. Then
a centered Gaussian system X— {X(x); xeM} with the variance d(x, y)
of the increment X(x) — X(y) is called Levy's Brownian motion with para-
meter space {M9 d).

With this terminology, our first conclusion (Theorem 1) is that every
Levy's Brownian motion admits of a representation of the form (1).

Another ingredient in our study is a pair of integral transformations
associated with the expression (1).

DEFINITION 2. Let m{dx) be a reference measure on M. The integral
transform

( 3 )

(resp.

( 4 )

(itfXΛ):=j

(R*g)(x): =

J(x)m(dx),

f g(h)v(dh),
1 Bx

fe L\M, m),

geU(H,u),)

is called a generalized (resp. dual) Radon transform.
The reason for using the symbol iϊ* lies in the obvious relation of

duality:

(Rf, 8)LHHIV) = (/, R*g)mMtm)

In case X is a Brownian motion with fi-dimensional parameter, the
value {Rf){hti<0) is nothing but the integral of / over the half-space hti<0

and hence the classical Radon transform, the integral over the hyperplane
δhti<0 (Radon's celebrated paper [31]; see also [8], [15] and [23]) can be
derived from the first variation of R (cf. [19], p. 47). On the other hand,
the dual Radon transform R* is closely related to the one studied by
Cormack and Quinto [7], because the set Bx is changed into the open ball
Bx with diameter Ox by means of the mapping

hUω e H\ >y = tω e Rn\{0}, the foot of the perpendicular from
O to the hyperplane δhty<u.

Another important example should be mentioned here; it is a Levy's
Brownian motion with parameter space (Sn, dG), dG being the geodesic
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distance on Sn. Due to Levy [21] (cf. also [18]), the corresponding measure

space (H, v) is chosen to be the set of all hemispheres endowed with an

invariant measure v. In this case, the transforms R and i?* take the same

form—the integral over a hemisphere. Since the integral over a great

circle can also be derived from the first variation of R, the study of R

and i?* has another origin in Funk [11] and [12].

In Section 2 we shall establish the representation (1) of Chentsov type,

and give several examples of (M, d) and (H, v), except the case of M = Rn,

the usual parameter space of random fields. A variety of ZZ-embeddable

metrics d on Rn will be described in the second paper (II).

Section 3 is devoted to the study of fundamental properties of R and

iϊ*. In particular, we shall obtain their singular value decompositions,

which will be applied to show that X admits of the Karhunen-Loeve

expansion in terms of an i.i. d. sequence of standard Gaussian random

variables.

Section 4 will concern the τι-sphere M = Sn equipped with the uni-

form probability measure σ. The Karhunen-Loeve expansion will be ex-

plicitly calculated for a certain class of Levy's Brownian motions X =

{X(x); xeS71} including the one due to Levy [21] mentioned above; all of

them have probability laws invariant under every rotation on Sn.

The author is grateful to Professor D. Kδlzow who suggested him to

use the theory of Radon transforms.

§ 2. Representations of Chentsov type

The purpose of this section is two-fold: to prove the representation

(1) of Chentsov type for each Levy's Borwnian motion X, and to give

several examples of (H, v) combined with (M, d) via the equality (2). Par-

ticular attention will be paid to the case of M = Sn.

Suppose that (M, d) is an ZΛembeddable metric space; by definition,

there exist a measure space (T, μ) and a mapping xe M h-> fx(t) e U(T, μ)

such that d(x,y) = \\fx(t) — fy(t)\\LHT,μ). Then, as was shown by Assouad

and Deza [3], we can find another measure space (H, v) satisfying H C 2M

and

(2 ) d(x, y) = v(Bx Δ By) = f πh(x, y)v{dh),

where we have used the notation

πh(x,y):= \xh(x) - xh(y)\ = \xB,(h) - lBy(h)\.
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Among various kinds of possible realizations of the distance d, the

above one in terms of the indicator function XBχ(h) in L\H, v) is most con-

venient for us to associate the transforms R and i?* with the expression

(1). It was called a multiplicity realization in [3]. The correspondence

(M, d) H-> (H, v) has a tiny fault, however; it is not one to one (see Example

lb below).

Having found a multiplicity realization XBχ(h) in L\H9 v) of a given

ZΛembeddable metric d on M, our first conclusion follows immediately:

THEOREM 1. A Levy's Brownίan motion X with parameter space (M, d)

admits of the representation

( 1 ) X(x) = ί W(dh)
JBX

in terms of a Gaussian random measure W based on the measure space

(H, y).

Now choose and fix a point O e M as the origin. In view of a simple

fact that πhC = πh, we may change an element he H with its complement

hc if O e h, so that H c (2M)0:= {h a M; O $ h}. This choice of H implies

that Bo = φ, which leads to the assumption X(O) = 0 often added in the

definition of Levy's Brownian motion.

EXAMPLE 1. Let us mention a couple of examples in which (M, d) is

induced by a graph G ([14]), i.e., M is the set of all vertexes and d(x, y)

is the number of edges in a shortest path between x and y.

(a) G = T, a tree. At each edge e of T, M is separated into the two

complementary subsets he and hc

e; the root O of T always belongs to h%

Define

H = {he for all edges e] c (2M)0 with weight v(he) = 1,

to get the desired distance d on M. With this choice of (H, v), the repre-

sentation (1) of Chentsov type can be regarded as a simple extension of

partial sums of a sequence of i.i.d. Gaussian random variables.

(b) G = Km, the complete graph of m vertexes. It is possible to find

several different kinds of (H, v). Indeed, for each k, 1 < k < [m/2], take

Γ ίm — 2\1 ~ί

Hk = {all subsets h of k vertexes} with weight vk(h) = <2ί J> .

Then it is easy to show that
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d(x,y):=Σ πΛ(x,y)vk{h) = 1 for any x, yeM.
heHk

We note that (M, d) induced by a cyclic graph Cm is a discrete ana-

logue of (S\ dG) and hence the corresponding measure space (H, v) can be

constructed after the manner of the one described in Section 1.

EXAMPLE 2. In case M is the set of all natural numbers, an easy

way to get an ZΛembeddable metric d on M is as follows: Take

H:= {hm;m> 2} with weight v(hm) > 0 ,

and define

oo

d(x, y):= Σ πhn(x, y)»(hm),
m=2

where hm:= {mk; k = 1, 2, •} is the set of all multiples of m. The special

choice of weight

v(hm) = logp if m has only one prime factor p, = 0 otherwise,

gives us the interesting distance d(x,y) = log(χ{JylxΠy) mentioned in [1]

and [2], where x\Jy (resp. x Π y) denotes the L. C. M. (resp. G. C. M.) of x and y.

A generalized Radon transform of the form

(Rf)(K):=f:f(mk)

was considered by Strichartz [34], who gave the inversion formula

( 5 ) f{x) = Σ μ(k)(Rf)(hxk) ,

where μ(k) is the Mδbius function defined by

Γ( — 1)*, \ί k has I distinct prime factors ,

\ 0, if k is divisible by the square of a prime.

The representation (1) for a Levy's Brownian motion X with parameter

space (Λf, d) now takes the form

, x>2, and X(l) = 0,
m\x

which is canonical ([16]) in the sense that

[X(2\ . , X(m)] = [W(h2\ , W(hJ] for every m > 2 .

To be more precise, we obtain the exact expression of W in terms of X:
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( 6 ) W(hm) = Σ μ(mlχ)X(χ).
x\m

The proof of (5) consists of an application of the inversion formula (5) to

a general relation

Σ f(χ)X(χ) = Σ (Rf)(hm)W(hm).
χ = 2 m = 2

The rest of this section concentrates of the case of the n-sphere (M, m)

= (Sn, σ). For each p e (0, 2τr), set

Cp(p): = {x e Sn; (x, p) > cos (p/2)}.

This is an open cap with north pole p e Sn and in particular Cπ(p) is the

hemisphere. Take Hp: = {Cp(p); peSn} with an invariant measure

dv(Cp(p)) = cdσ(p), c = v(H0) > 0 .

Then the corresponding distance becomes

( 7 ) dp(x, y): = c \ πc,U*> y)<*(dp) = cσ(Cp(x) Δ Cp(y)),

which is rotation-invariant and hence of the form crp(dG(x, j>)), where

dG(x,y):= arccos(x, y). Since, πC2π_p(P) = τr^(_p), we have r2π_p(t) ΞΞ rp(t).

Furthermore, a straightforward computation (p = π) yields the explicit

form of rκ: rπ{t) = t/π (cf. [18] and [21]).

A Levy's Brownian motion X with parameter space (Sn, dp) is then

expressed in the form

(10 X(x) = VT f W0(dy),

where Wo = {W0(dy); ye Sn} is a Gaussian random measure based on the

uniform probability space (Sn, σ). Instead of the pair of R and R* asso-

ciated with (1), it is more convenient to treat the following transform

associated with (10:

( 8 ) (RJ)(x):=\ f(y)σ(dy),

which is a self-adjoint operator on L2(Sn, σ). The expression (Γ) as well

as the transform Rp will be further discussed in Section 4.

In the one-dimensional case n = 1, we can go further by making a

superposition of {dp: 0 < p < π]:
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( 9 ) d(x,y):= ί dp(x, y)μ(dP),
J(0,*]

where μ is a probability measure on (0, π], A measure space (H, v) com-

bined with this d is obviously taken as follows:

H:= [hpy. = Cp(p)\ 0<p<π, peS1} with v(dhpj = cμ(dp)σ(dp).

Observe that the rotation-invariant distance d o n S1 takes the form

d(x, y) = r(dG(x, y))9 where

= c ί rp(t)μ(dp) = 2c f min (ί,

The right derivative r+(t) is of the form 2cμ((t, π]) and therefore non-

increasing in 0 < t < π.

What we have just observed is summed up in the following

PROPOSITION 2. Suppose that r(t) is a continuous function on [0, π],

r(0) = 0 and has the right derivative r+(i) > 0, non-increasing on [0, π).

Then the distance d(x,y):= r(dG(x,y)) on S1 is U-embeddable.

§3. Generalized Radon transform and its dual

This section is devoted to the study of basic properties of the gener-

alized Radon transform R and the dual Radon transform i?*. The main

fact we prove is the singular value decomposition of i?* regarded as a

Hilbert-Schmidt operator from L2(H, v) to L2(M, a(x)m(dx)), where the density

a(x) is chosen from among positive functions in L\M, m) satisfying

ί v(Bx)a(x)m(dx):= C < co .
J M

The decomposition of i?* implies the Karhunen-Loeve expansion of a Levy's

Brownian motion X with parameter space (M, d).

We shall begin by discussing the covariance operator of X. The

representation (1) of X implies that the covariance function Γ(x, y): =

E[X(x)X(y)] is equal to v(BxPιBy). With a choice of a mentioned above,

we consider the Hubert space L2(M, fh), fh(dx): = a(x)m(dx), instead of the

usual U(M, m). Then, the equation

(10) (Γf)(x) = f Γ(x, y)f(y)m(dy),

defines a positive, self-adjoint and trace class operator on L\M, m) (cf. [5],

p. 294). The operator Γ is called the covariance operator of X.
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We next consider the generalized Radon transform R. Observe that

multiplication by a is a well-defined operator from L2(M, fh) to L\M, m):

(TJ)(x): = a(x)f(x), feU(M,m).

So we can form the composition RoTa to infer that it is a bounded oper-

ator from L2(M, m) to L\H, v). The proof of this assertion is an easy

computation:

< j f f v(dh) { j j^ Xh(x)Xh{y) I /(*) 11 f(y) | m(dx)fh(dy)

= ff v(BxΠBy)\f(x)\\f(y)\m(dx)m(dy)

A similar argument implies that the dual Radon transform R* is

bounded from L\H, v) to L\M, m). We need one more step to get at the

following

THEOREM

(11)

The

Γ

proof

oRoTc

3. We have

= i?* o (js o :

α factorization

L\M.

Γ.) β o Γ ;

of (11) is immediate:

(^)7w(dy)|j^ZsJ

'(*,y)/(y)m(<ίy)

ofΓ:

fh) ί^-> L\M,

L2(//, v)

= (Γ/Xx),

? » )

/e L2(M, m).

We are now going to give the singular value decompositions of the

two factors, R°Ta and i?*, in Theorem 3. Positive eigenvalues λ\ of the

covariance operator Γ is enumerated by means of index i e I, where / is

a finite or countable infinite set and {̂ } e 12(I). Set

iV0:= {fe U(M, fh); (Γf)(x) = 0, xeM}, the null space of Γ .

T h e n we c a n select i n N$- SL C O N S {fi(x); ίel} c o n s i s t i n g of eigenfunc-

t i o n s of Γ:

(Γft)(x) = ΆfAx), iel.
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Note that any non-negative function in L2(M, m) cannot be in No since

Γ(x, y)>0 for all x, yeM.

Now, put

gi(h): = (R o TJz)(h)/λt e L%H,v),

and Nχi= [gt; ίel]1, where [gt; ίel] stands for the closed linear span of

{gt; ί e 1} in U(H, v). The functions gt(h)9 i e 7, constitute a CONS in N±;

the proof of this assertion is carried out by using Theorem 3:

(gi, ft W,0 = MjYW* ° R ° TJU QLW)

For our purpose we need the following

LEMMA 4. We have an expansion

(12) Xh(x) = XBχ{h) = Σ λtft(x)gi(h), x e l and heH.

Proof. We write the Fourier series of XBχ(h) as an element of U(H, v):

where (?,(*):= (ZΛχ(A), gt{h))LKH%y) = (R*gd(x) and °̂ e iV}. Since

for any i e I, we have i?*g0 e No. Actually this function (R*g°)(x) is con-

stantly equal to 0, because it is a non-negative function in No:

(R*g°χχ) = ω f t λ ί w u . ) = \\g°\\iHHt« > o.

We have thus proved that g°(h) = 0.

The next task is to calculate the Fourier coefficients ct(x) = (R*gi)(x),

i e I. Since

{R*guf*)mH,*<> - (gt,RoTar)LHH.* = (Λ, rnLKM^i?H = o

for any /° e iV0, we have i?*^ e iV̂ -. Furthermore, the equality

(R*gi9 fj)LHMtΆ) = (guR*TΛQLKH%v) - λjδitJ

shows that cz(x) = λtfi(x), which completes the proof. We note that (12)

is also the Fourier series of Xh(x) as an element of L2(M, m).

In view of the expressions

(R o TJ){h) = (Xh(x), f(x))LHM^ and (R*gXx) = (XBχ(h\
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Lemma 4 immediately gives us their singular value decompositions having

common positive singular values {λt ί e 1} e Z2(7).

THEOREM 5. (i) The operator R<>Ta is a Hilbert-Schmidt operator

from L\M, m) to L\H, v) and has the singular value decomposition

(13) (R o TJ)(h) = Σ Uf, ΛW.
iei

The null space of RoTa is N0 = [ft;ie I]\

(ii) The dual Radon transform JS* is a Hilbert-Schmidt operator from

L2(H, v) to U(M, m) and has the singular value decomposition

(14) (R*g)(x) = Σ Ug, gi)mH,Ji(x)
iei

The null space of ϋ * is N: = [gu i e I]1.

An application of Theorem 5 (ii) to the representation (1) is now in

order. Let us define

£<:= ί gMW(dh),
J H

to get an i.i.d. sequence ξ — {?*; ίe 1} of standard Gaussian random vari-

ables. Since (1) is rewritten as X(x) = (R*W)(x), the decomposition (14)

yields

(15) X(x) = Σ W*(*),
iei

which is nothing but the Karhunen-Loeve expansion usually derived from

Mercer's theorem (cf. [5] and [17]):

(16) Γ(x,y) = Σ%f(*)fi(y).
iei

Moreover, orthonormality of the system {/*; i e i } in Π(M, m) implies the

inverse expression of ξ in terms of X:

Summing up what we have just proved, we get

THEOREM 6. Every Levy's Brownίan motion X with parameter space

(M, d) admits of the Karhunen-Loeve expansion (15) in terms of ξ, and

moreover we have

(17) [X(x) x e M] = [ξt ί e I] = {J^ g(h) W(dh)
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As a direct consequence of (15), we obtain another useful expression

of the ZZ-embeddable metric d(x, y) = v(Bx Δ By) on M:

(18) d(x,y) = Σ%(fi(x)-fi(y))2,

which is equivalent to (16).

§ 4. Levy's Brownian motion with parameter space (Sn

9 dp)

The final section concerns the concrete examples on Sn discussed in

Section 2. We shall calculate explicitly the eigenvalues and eigenfunctions

of the self-adjoint operator Rp on Π(Sn,σ); then an application of the

decomposition of Rp to the expression (I7) will yield a new representation

for a Levy's Brownian motion X with parameter space (Sn, dp). In addi-

tion, we shall investigate the M(Z)-process of X introduced by Levy [20].

We recall some known facts about spherical harmonics (cf. [10] and

[33]). Let SHm denote the set of all spherical harmonics of degree m;

then the dimension of SHm is

h(m):= ̂ m + n-lίm+ n - 1\
m + n — 1 \ m /m +

We get the direct sum decomposition L\Sn, σ) = ΣZ=o ® SHm, as well as

a CONS {Sm,k(x); (m,k)eΔ} consisting of spherical harmonics, where J: =

{(m, k); m>0 and 1 < k < h(m)}. In the sequel we shall make use of the

addition formula

7 / \

h(m)

where Cλ

m(u) is the Gegenbauer polynomial of degree m with λ:= (n — l)/2.

Let us proceed to prove the explicit form of (12) in the present situ-

ation where d = dp and (M, m) = (Sn, σ) — (Hp, v) by the mapping x e Sn

~Cp(x)eHp.

LEMMA 7 (cf. [32]). We have an expansion

(19) xc,(.,ω= Σ Up)SUχ)SUy)
(ro,ί)eJ

= Σ λm(p)h(m)Ci((x, y))/CJL(l),
m = 0

where
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Up) =

IS"-1

is
lip

:os (p/2)

Proo/. Appealing to the Funk-Hecke theorem ([10]), we have (19) with

\Sn\ Jcos(,/2) Cλ

m(ΐ)

To compute the integral Cλ

m(u)(l — u2)λ~1/2du for m > 1, we use the
Jcos (p/2)

formula

CιJμ) = bλ

m(l - u2yλ+ί/2 ^ - u2)2)m+λ~1/2

where ( α ) m : = + J)- Since

in2^+1 (p/2)

the proof is completed.

The generalized (or dual) Radon transform Rp associated with (Γ) is

a self-adjoint and Hilbert-Schmidt operator on L2(Sn, σ), and the factori-

zation of the covariance operator Γ (Theorem 3) takes the simpler form

In order to state the decomposition of Rp, we set

Δp:= {(m, k)eΔ; λm{p) = 0} = {(m, *) e J ; m > 2, C^Λ(cos(^2)) - 0},

which corresponds to the null space N of Rp, and Ip:= Δ\ΔP. Recalling

that (RPf)(x) = tycp(χ){y), f{y))LHsn,o), Lemma 7 implies the following

THEOREM 8. We have
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(20) (RPf)(χ)= Σ Up)(f, Sm,k)LHSn,a)Sm>k(x),
(m,k)elp

and the null space N = [Smfk(x); (m, k) e Δp].

By applying (20) to the expression X(x) = V c (Rp W0)(x), we obtain

the Karhunen-Loeve expansion of X in terms of the i. i. d. sequence

ξ = {fm,fc : = lsn Sm,k(y)W0(dy); (m, h) e

of standard Gaussian random variables.

THEOREM 9. A Levy's Brownian motion X with parameter space (Sn, dp)

admits of a representation

(21) X(x) = VT Σ
(m,k)elp

Moreover, we have

(22) [X(x);xeS ] = [ζmy, {m,k)elμ

and

(23) d,(x, y) = 2c έ λl(p)h{m){l - d((x, y))IC'Jl)}.
m = l

We now focus our attention on the case p = c = π, i.e., X is a Levy's

Brownian motion with the geodesic distance da. In this case,

4, = {(2;, Λ); j = 1, 2, and 1 < k < h(2j)}

and

1/2, m = 0,

With the help of these values, one can compute the coefficients 2πλ2

m(π)h(m)

in (23), to find the formula of dG due to Gangoli [13] and Molcan [25]

(cf. also [27], p. 143) who proved it via an entirely different approach. In

view of the special form of Aπ, it is natural to assume that X(x) is odd,

i.e., X(x) + X{—x) = 0; the expression (21) then becomes

- 2)Π t V Ά
io (2;

X V
Λ = l
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In connection with the M(ί)-process ([20]), we need another transform

(Tpf)(x) (cf. [15]) which is given by the mean value of / over the small

(or great in case p — π) circle δCp(x), 0 < p < 2π.

DEFINITION 3. For fe C(Sn), the set of all continuous functions on

Sn, the integral transformation defined by

(24) (Tpf)(x): = f f(y)s(dy)ls(δCp(x)),
J δCp(x)

is called the mean value operator over δCp(x), where s denotes the (n — 1)-

dimensional surface measure on δCp(x). For each fixed x0 e Sn, the Gaussian

process

(25) M(t): - (T2tX)(x0) - X(x0), 0 < t < π ,

is called the M(t)-process.

By appealing, again, to the Funk-Hecke theorem, we get the decompo-

sition of Tp.

PROPOSITION 10. The mean value operator Tp on C(Sn) is extended to

be a self-adjoint, compact operator on D(Sn, σ), and it has the decomposition

(26) (Tpf)(x) =

where ϊp:= Δ\ΔP and 2P:= {{m, h) e Δ\ Ck

m(cos(pj2)) = 0}. Moreover, the null

space of Tp is [Sn,k(x); {m, k) e Δp}.

By the combination of (21) and (26), we write

M(t) = Σ { ^ r Λ
(m,k)elp I CλJl)

t)ICλJX)},

where we have put

ηm*= —rTT=T Σ fm)fcSmjfc(x0) for me Jp:= {m > 1; λm(p) Φ 0}.
V h(m) **i

It is shown that the ηm form an i.i.d. sequence of standard Gaussian

random variables.

PROPOSITION 11 (cf. [27] in case p = π). The M(t)-process of a Levy's

Brownian motion X with parameter space (Sn, dp) is expressed in the form
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(27) M(t) = V~ϊmΣ λm(pW~h(m)ηm{l - Ci (cos t)ld(l)}.
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