BULL. AUSTRAL. MATH. SOC. Vol. 53 (1996) [131-134]

ON THE DUNFORD-PETTIS PROPERTY IN SPACES OF VECTOR-VALUED BOUNDED FUNCTIONS

MANUEL D. CONTRERAS AND SANTIAGO DÍAZ

We show that $L^{\infty}(\mu, X)$ has the Dunford-Pettis property for some classical Banach spaces including $L^{1}(\mu)$, C(K), the disc algebra A and H^{∞} .

A Banach space X is said to have the Dunford-Pettis property if every weakly compact operator from X into an arbitrary Banach space is completely continuous, or equivalently, if given sequences (x_n) in X and (x_n^*) in X^{*}, both weakly convergent to zero, then $\langle x_n^*, x_n \rangle$ tends to zero. A detailed exposition about this property can be found in [6]. In this reference, the following problem is posed [6, p.55]: assume that $L^{\infty}(\mu, X)$ denotes the Banach space of (equivalence classes of) essentially bounded, measurable and X-valued functions defined over a finite measure space (Ω, Σ, μ) . When does $L^{\infty}(\mu, X)$ have the Dunford-Pettis property? In general, this property does not lift from X to $L^{\infty}(\mu, X)$ [6, p.56]. On the other hand, the only non-trivial positive result, as far as we know, is that $L^{\infty}(\mu, L^1(\nu))$ has the property when μ is purely atomic [3, Theorem 1]. The aim of this note is to provide some new positive examples. Namely, we show that $L^{\infty}(\mu, X)$ has the Dunford-Pettis property for every arbitrary finite measure μ , whenever X is either any \mathcal{L}^1 -space or any \mathcal{L}^{∞} -space or the disc algebra or the space H^{∞} of bounded analytic functions on the disc.

To avoid trivial situations, we always assume that there exists a pairwise disjoint sequence (C_m) in Σ such that $\mu(C_m) > 0$. The notation is standard except, perhaps, the following one: if (A_m) is a sequence of pairwise disjoint Σ -measurable subsets of non-zero measure, we write

$$[A_m] := \left\{ \sum_{m=1}^{\infty} \chi_{A_m}(\cdot) \boldsymbol{x}_m, \quad (\boldsymbol{x}_m) \in \ell^{\infty}(X) \right\}.$$

It is well-known that $[A_m]$ is a complemented subspace of $L^{\infty}(\mu, X)$ isometrically isomorphic to $\ell^{\infty}(X)$. In particular, if $L^{\infty}(\mu, X)$ has the Dunford-Pettis property,

Received 28th March, 1995

This research has been partially supported by La Consejería de Educación y Ciencia de la Junta de Andalucía.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

then $\ell^{\infty}(X)$ has it and our main aim (Theorem 1 below) is to prove that the converse holds. Similar ideas have been used in [4].

We refer the reader for the terminology used here to the monographs of Diestel and Uhl [7], Lindenstrauss and Tzafriri [8] and Wojtaszczyk [10].

THEOREM 1. $L^{\infty}(\mu, X)$ has the Dunford-Pettis property if (and only if) $\ell^{\infty}(X)$ has it.

PROOF: Suppose that (f_n) and (f_n^*) are sequences in $L^{\infty}(\mu, X)$ and $L^{\infty}(\mu, X)^*$ respectively, both weakly convergent to zero. We have to prove that $\langle f_n^*, f_n \rangle$ tends to zero.

The proof of Pettis's Measurability Theorem, as can be seen in [7, Chapter 2, Theorem 2], shows that, for each $n \in \mathbb{N}$, there are a bounded sequence $(x_m(n))_m$ in X and a sequence $(A_m(n))_m$ of pairwise disjoint Σ -measurable subsets with positive measure covering Ω , such that if

$$g_n(\cdot) := \sum_{m=1}^{\infty} x_m(n) \chi_{A_m(n)}(\cdot) \in L^{\infty}(\mu, X),$$

we have $||f_n - g_n|| \leq 1/n$. Hence, it is enough to prove that $\langle f_n^*, g_n \rangle$ tends to zero.

Denote by X_n the finite-dimensional subspace of $L^{\infty}(\mu, X)$ spanned by g_1, \ldots, g_n . Furthermore, for every $n \in \mathbb{N}$, consider the following family of pairwise disjoint Σ -measurable subsets of Ω :

$$\mathcal{A}^{n} := \{A_{m_{1}}(1) \cap A_{m_{2}}(2) \cap \ldots \cap A_{m_{n}}(n) : m_{1}, m_{2}, \ldots, m_{n} \in \mathbb{N}\}.$$

Arrange \mathcal{A}^n in a sequence $(B_m^n)_m$. It is easy to see that X_n is included in $Y_n = [B_m^n]$. Since (Y_n) is increasing, the closure Y of $\bigcup_n Y_n$ is a closed subspace of $L^{\infty}(\mu, \dot{X})$ and g_n is a weakly null sequence in Y. On the other hand, the restrictions $f_{n|Y}^*$ also form a weakly null sequence in Y^* . To finish the proof, we only have to show that Y has the Dunford-Petis property. According to a result due to Bourgain [3, Proposition 2], it is enough to prove that $(\bigoplus_n Y_n)_{\infty}$ has the Dunford-Petis property. But, this follows by combining the hypothesis that $\ell^{\infty}(X)$ has the Dunford-Petis property with the following topological isomorphisms:

$$(\oplus_n Y_n)_{\infty} \cong (\oplus_n \ell^{\infty}(X))_{\infty} \cong \ell^{\infty}(X).$$

We need later the following variant of Theorem 1 which is of independent interest.

THEOREM 2. Assume that given a sequence of finite-dimensional subspaces (X_n) in $\ell^{\infty}(X)$, we can find, for each n, another sequence of subspaces $(X_{n,m})_m$ in X, such

[3]

that $X_{n,m} \subset X_{n+1,m}$, $X_n \subset Y_n = (\bigoplus_m X_{n,m})_{\infty}$ and $(\bigoplus_n Y_n)_{\infty}$ has the Dunford-Pettis property. Then, $L^{\infty}(\mu, X)$ has it.

PROOF: Arguing, as in the proof above, one shows that $\ell^{\infty}(X)$ has the Dunford-Pettis property. Then, applying Theorem 1, we obtain that $L^{\infty}(\mu, X)$ has this property.

REMARK. Theorem 1 shows that the measure μ does not play a significant role. This is in contrast to other vector-valued situations. Indeed, the behaviour of purely atomic and atomless measures with respect to the Dunford-Pettis property is quite different in $L^1(\mu, X)$ (see [2, Corollary 2.4(c)] and [9, Théorème 3]). Something similar happens with perfect and dispersed compacts in C(K, X) (see [1, Theorem 2] and [9, Théorème 3]). It is worth mentioning that, in general, $\ell^{\infty}(X)$ and $L^{\infty}(\mu, X)$ are not isomorphic [5, Corollary 1].

We recall that a Banach space X is said to be an \mathcal{L}^p -space $(1 \leq p \leq \infty)$, in the sense of Lindenstrauss-Pelczyński, if there is $\lambda \geq 1$ such that, for every finitedimensional subspace Y of X, there is another finite-dimensional subspace Z of X such that Y is contained in Z and $d(Z, \ell_k^p) \leq \lambda$, for some $k \in \mathbb{N}$.

COROLLARY 1. Denote by X either any \mathcal{L}^1 -space or any \mathcal{L}^∞ -space. Then, $L^\infty(\mu, X)$ has the Dunford-Pettis property.

PROOF: Bearing in mind the definition of \mathcal{L}^p -space and Theorem 2, it is not difficult to see that we only need to show that $(\bigoplus_n \ell_{r_n}^p)_{\infty}$ $(r_n \in \mathbb{N}; p = 1, \infty)$ has the Dunford-Pettis property. The case p = 1 follows from Bourgain's result [3, Theorem 1] and, for the case $p = \infty$, we note that $(\bigoplus_n \ell_{r_n}^\infty)_{\infty} \cong \ell^\infty$.

COROLLARY 2. Denote by X either the disc algebra A, or the space of bounded analytic functions on the disc H^{∞} . Then, $L^{\infty}(\mu, X)$ has the Dunford-Pettis property.

PROOF: This follows directly from Theorem 1 and [4, proof of Theorem 2].

References

- F. Bombal, 'On weakly compact operators on spaces of vector valued continuous functions', Proc. Amer. Math. Soc. 97 (1986), 93-96.
- [2] F. Bombal, 'Distinguished subsets in vector sequence spaces', in Progress in Functional Analysis, (K.D. Bierstedt, J. Bonet, J. Horváth and M. Maestre, Editors) (North-Holland /Elsevier Science Publishers B.V., Amsterdam, New York, Oxford, 1992), pp. 293-306.
- [3] J. Bourgain, 'On the Dunford-Pettis property', Proc. Amer. Math. Soc. 81 (1981), 265-272.
- [4] M.D. Contreras and S.Díaz, C(K, A) and $C(K, H^{\infty})$ have the Dunford-Pettis property', *Proc. Amer. Math. Soc.* (to appear).
- [5] S. Díaz, 'Complemented copies of c_0 in $L^{\infty}(\mu, X)$ ', Proc. Amer. Math. Soc. 120 (1994), 1167-1172.

- [6] J. Diestel, 'A survey of results related to the Dunford-Pettis property', in Contemporary Math., 2, Proc. of the Conf. on Integration, Topology and Geometry in Linear Spaces (Amer. Math. Soc., Providence, RI, 1980), pp. 15-60.
- [7] J. Diestel and J.J. Uhl, Jr., Vector measures, Math. Surveys, 15 (Amer. Math. Soc., Providence, RI, 1977).
- [8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, 338 (Springer-Verlag, Berlin, Heidelberg, New York, 1973).
- [9] M. Talagrand, 'La propriété de Dunford-Pettis dans C(K, E) et $L_1(E)$ ', Israel J. Math. 44 (1983), 317-321.
- [10] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25 (Cambridge University Press, Cambridge, 1991).

Departamento de Matemática Aplicada II Universidad de Sevilla E.S. Ingenieros Industriales 41012 Sevilla Spain e-mail: contreras@cica.es madrigal@cica.es