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Abstract. The possibilities and problems of using calculated spectra from model atmospheres
when analysing stellar populations in galaxies are reviewed. Various types of consistency tests
for stellar models are discussed, as well as comparisons with observational data. It is argued
that major improvements in the model spectra are possible and worthwhile.
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1. Introduction
When modelling the stellar populations of a galaxy on the basis of integrated spectra

and colours different approaches may be taken. One may try to infer the properties of the
stellar population directly from the observed spectrum, which in the ideal case will lead
to the Hess diagram of the population, with additional information about the distribution
of stars over different metallicities for each region in that diagram. Generally, however,
it is necessary to add more constraints to this inversion process, which are obtained from
constructing an evolutionary model of the stellar population, on the basis of evolutionary
tracks for the individual stars. The basic free parameters of such a model will then be the
star-formation rate as a function of time, the infall-rate of gas into the system, and the
slope of the Initial Mass Function of the stars. More implicit but important parameters
may describe the mixing efficiency of the ISM in the galaxy, and the yields of heavy
elements from various types of stars.

Whether the most direct inversion of the spectrum to the Hess diagram is attempted,
or a more or less elaborate chemical evolution model is made first, the calculation of
the spectrum and spectral-energy distribution (SED) of the galaxy, to be compared
with the observed one, requires knowledge of the spectra of the stars that the galaxy
is supposed to consist of. Early population syntheses of galaxies (e.g. Spinrad & Taylor
1971) were usually based on observations of galactic template stars which were assumed
to be representative of the populations in external galaxies. Although it was realized from
the beginning that these stars may not fully match those of, e.g. the centres of galaxies
like M31, there was no real alternative since the theoretical spectra calculated from model
atmospheres were not of high enough accuracy to replace the observed template spectra.

The art of calculating theoretical stellar spectra was however gradually developed.
Early pioneers were Nishimura (1958) who calculated TiO bands in M giants and Fay
& Morgan (1967) who computed near-IR spectra of carbon stars. For less complicated
spectra, continua and Balmer lines, considerable work was done by several people during
the 1960’s, for a summary see Cayrel (1969). Synthetic stellar colours, with statistical
consideration of metal-line blocking, were calculated early by Baschek (1960) and later by
Böhm-Vitense (1970) and Kurucz (1975). The great pioneer, in systematically developing
the calculation of synthetic spectra to a high degree of realism for late-type stars was,
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however, Roger A. Bell. After his first work on synthetic colour for F, G and K stars (e.g.
Bell & Rodgers (1969), Bell (1970), Bell & Gottlieb (1971), Bell (1971)), he continued
systematically improving the synthetic spectra and the model atmospheres (partly in
collaboration with one of the present authors), and also provided theoretical calibrations
of Lick indices for population synthesis (Tripicco & Bell 1995). Somehat later, Bob Kurucz
was the only colleague who matched the contribution of Bell in this field of research.

Being aware of the impressive advances made during the last four decades in this
field of calculating theoretical stellar spectra one might hope that existing libraries of
such spectra could be successfully applied in modelling galaxies. Sometimes, theoretical
spectra are the only rescue, like for populations containing stars that are not present
in the solar neigbourhood, such as massive metal-poor stars or stars with very high
metallicities. In this review we shall explore whether such an expectation is well founded.
A basic reason to scrutinize the adequacy of the theoretical spectra is, as was indicated
above, the fact that the evolutionary models for the galaxies are loaded with so many free
parameters, or even ad-hoc assumptions, that all measures must be taken to ascertain
that further errors are not introduced in the analysis due to bad basic stellar data.

2. The physical failures of standard model atmospheres
A model stellar atmosphere is, as any theoretical model, built on a number of simplif-

ing assumptions. For more than 3 decades these usually were: plane-parallel stratification
in homogeneous layers (1D), hydrostatic equilibrium (HE), local thermodynamic equilib-
rium (LTE) and convective fluxes calculated from the local conditions according to the
so-called mixing-length theory (MLT). More recently, model grids for extended stars with
spherically symmetric stratification have been made, a minor but significant modification
as will be illustrated below. The LTE assumption has also been relaxed, in particular for
early-type stars, and in a few cases 3D models, with much more realistic convection, have
been constructed. A second very significant ingredient in the models is a wealth of basic
physics data, in particular transition probabilities and other data for the many millions
of atomic and molecular spectral lines that contribute significantly to the spectrum of
the star and to the energy transfer in its atmosphere.

The key question is now: How good are these models? How well do the model spectra
reproduce those of stars with fundamental parameters (effective temperatures, radii,
masses and chemical compositions) equal to those adopted for the models?

One way to explore this issue is to investigate the consequences of the inconsistency
introduced by the basic assumptions. Another way is to compare the structures and spec-
tra of models from various computer programs which may depart as regards numerical
methods, the physical data used or even the basic assumptions made. A third way is to
compare the model spectra with corresponding observed stellar spectra. In the present
section we shall concentrate on the degree of physical consistency of the standard models
and defer the other aspects to the following sections.

A major achievement in the modelling of stellar atmospheres has been made during
the last decades in that 3D hydrodynamical and magneto-hydrodynamical models (re-
laxing both HE and MLT above) have been developed for solar-type stars (Nordlund
1982, Nordlund & Dravins 1990, Stein & Nordlund 2000, Asplund et al. 1999). Simi-
lar models for red giants have been constructed by Collet et al. (2006) and Kúcinskas,
Ludwig & Hauschildt (2006). With a somewhat different approach, where the full star
is represented in a computational spatial grid (“a star in a box”) Freytag (2003) has
modeled supergiants. The mean structures of the models show considerable departures
from standard 1D models. E.g., the cool metal-poor models of Asplund et al. (1999) and
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in particular the very-metal-poor models of Collet et al. (2006) have considerably cooler
surface layers than corresponding 1D models, which leads to severe effects on abundance
determinations from the temperature-sensitive molecular lines. For the M giant models of
Kúcinskas, Ludwig & Hauschildt, there are also considerable effects on the temperature
structure, leading to typical differences of e.g. the V-K colour of 0.2 mag. Until now,
however, no extensive grids of 3D models exist. In fact, although it has been shown that
these models produce line profiles in much better agreement with observations, no full
spectra have as yet been calculated for any of them. It may well take some years before
such grids are available to the completeness needed for e.g. population synthesis.

Grids of line-blanketed model atmospheres of O- and B-type stars with the LTE as-
sumption relaxed (i.e. in Statistical Equilibrium) were recently computed by Lanz &
Hubeny (2003, 2006). Their B star spectra show somewhat larger Lyman and smaller
Balmer continuum fluxes when compared to LTE models, which might be of some sig-
nificance when models are used for reconstructing the star-formation history of young
stellar populations. For B-type stars, the bolometric corrections presented by Lanz &
Hubeny (2003) are systematically different by 0.1 mag from the LTE values by Castelli
and Kurucz (2003). Model atmospheres for late type stars relaxing the assumption of LTE
for various species have been explored by Short & Hauschildt (2003, 2005), Schweitzer,
Hauschildt, and Baron (2000), Hauschildt et al. (1997) – but the results do not yet allow
any conclusions as to their importance for galaxy spectra. The NLTE effects on models
were either found to be negligible or difficult to judge due to the fact that other aspects
of the models were incomplete (e.g. missing UV opacity).

Models for pulsating atmospheres of red giants, driven by a piston in the bottom of
the models, have recently been produced by Höfner et al. (2005), see also Gautschy-Loidl
et al. (2004). The models are fundamentally different from classical static models, in
particular since the outer layers are far more extended by the pulsation shocks into an
expanding atmosphere, forming a dust-driven wind. Also the spectrum energy distribu-
tions are severely affected, by this extension as well as by dust opacities which are quite
uncertain.The latter authors show that these models have spectrum variations that agree
at least qualitatively with the observed spectra of AGB stars. The models predict mass-
loss rates that are, however, significantly dependent on the piston amplitude which at
present cannot be calculated consistently. As an example of recent progress in this area,
which also includes the calculation of extensive grids of models, see Wahlin, Höfner and
Mattsson (2007, present volume). A major uncertainty in such attempts is our lack of a
good theory for dust formation, in particular for oxygen-rich gases. This certainly limits
our chances to properly model galaxy IR fluxes if AGB stars contribute significantly. We
note in passing that Barmby et al. (2006) conclude that the 3.6 µm flux of M31, which
represents old disk stars, is not dominated by AGB stars.

For very low-mass stars (Teff � 2800 K), Chabrier et al. (2000) calculated model atmo-
spheres, including the formation of dust grains. Colour-magnitude diagrams calculated
from these models are significantly different from those neglecting dust formation, in par-
ticular for near-IR colours. This might affect population synthesis studies in the near-IR
of galaxies, if low-mass stars are important contributors. If the latter can be the case is at
the moment not clear. Simulations of simple stellar populations by Maraston (2005) show
that even for old ages, the contribution of main-sequence stars to the total bolometric,
V- and K-band luminosities approaches that of RGB stars.

For stars in different regions of the HR diagram, the effects of magnetic fields on
atmospheric structures have been explored. Kochukhov, Kahn & Shulyak (2005) calcu-
lated models for A-type stars with enhanced line blanketing due to the intensification of
spectral lines by a magnetic field. They found that magnetic models have lower fluxes
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Figure 1. Relative flux difference between α-poor models ([α/Fe]=0.0) and α-normal models
([α/Fe]=+0.4) for [Fe/H]=−1.0 and logg = 4.5. The spectra are binned in wavelength to ≈20Å
and the stepsize in Teff is 250 K. The features in the “difference-landscape” are (from right to
left) due to CaH/TiO (peaks at 6200–6500Å and 6700–7000Å, 4000 – 4500 K), MgH (peaks at
4950–5200Å and 4775Å, 4000 – 5000 K), Mg I at 5175Å (4000 – 6500 K), Ca I at 4226Å (4000 –
5000 K), Ca II, Ca I and Mg I at 3920–4000Å (from 5500 to 8000 K mainly Ca II), Mg I at
3830–3840Å (4000 – 5000 K). The difference in the continuum is due to the greater significance
in the α-rich models of the H− opacity as compared with Rayleigh scattering by H I, reflecting
the increased abundance of the electron donors Mg, Si and Ca.

in the UV and higher in the visual spectral region. Thus, a magnetic star mimics a
non-magnetic star with a temperature lower by maximally 500 K. With a percentage of
magnetic and chemically peculiar stars of 5–10%, which is characteristic of the Milky
Way (North 1993), effects of magnetic fields could be important for fluxes from galaxies
dominated by B and A-type stars. Dorch (2004) has calculated MHD models of Betel-
geuse, using a “star in a box” approach similar to that used by Freytag (2003). Dorch
finds that “local dynamos” generate large-scale effects due to the large scales of convec-
tive patterns in this supergiant. He finds magnetic fields that are strong enough to effect
the surface structures as well as the winds. The direct effects on the photospheric spectra
and spectrum energy distributions remain to be explored.

Summing up, we see that the classical models are seriously questioned when the basic
assumptions are scrutinized. I.e., their spectra may be systematically off as compared
with corresponding stars, and this may have important effects on the interpretation of
galaxy spectra. However, due to the very incomplete coverage of the HR diagram by
these more advanced models, it is still not possible to replace the classical grids. In fact,
the more realistic models are still so scant that more precise statements cannot yet be
made on what errors are caused by using them.
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Table 1. Recently published grids of synthetic spectra. The value-pairs in parentheses give
lowest and highest value of a range of grid values. s: spherical models, n: non-LTE models. The
MARCS models are available at http://marcs.astro.uu.se/.

Reference, Code Teff [K] log g [cgs] [M/H] [α/Fe] λ [µm]

Coelho et al. (2005),

ATLAS9

(3500, 7000) (+0.0, +5.0) (−2.5, +0.5) +0.0, +0.4 (0.300, 1.80)

Rodŕıguez-Merino
et al. (2005), AT-
LAS9

(3000, 50000) (+0.0, +5.0) (−2.0, +0.5) (0.085, 0.47)

Munari et al. (2005),
ATLAS9

(3500, 47500) (+0.0, +5.0) (−2.5, +0.5) +0.0, +0.4 (0.250, 1.05)

Brott & Hauschild
(2005), PHOENIX

(2700, 5000) (−0.5s, +5.5) (−3.5, +0.5) (−0.2, +0.8) (0.001, 50.0)

Martins et al. (2005), (3000, 55000n) (−0.5s, +5.5) (−1.0, +0.3) (0.300, 0.70)
TLUSTY, ATLAS, PHOENIX
Gustafsson et al.
(2003), MARCS

(4000, 8000) (−1.0s, +5.0) (−5.0, +1.0) (+0.0, +0.4) (0.130, 20.0)

3. Some recent spectrum grids
Grids of synthetic flux spectra for stars within relatively wide parameter ranges have

recently been published and are listed in Table 1. The spectra are based on model at-
mospheres from four different and independent codes, Kurucz’s ATLAS program (e.g.
Castelli & Kurucz (2003)), the PHOENIX program of Hauschildt et al. (1996), TLUSTY
(Lanz & Hubeny (2003) and references therein), and the MARCS program (Gustafsson
et al. 2003). ATLAS models are in LTE and (predominantly) plane parallel, MARCS pro-
duces spherically symmetric LTE models while PHOENIX and TLUSTY may be used
for calculating spherical or plane-parallel models in non-LTE, the first code mostly for
late-type stars (although most of the published PHOENIX models are still based on the
LTE assumption) and the latter code for hot stars. The spectra are calculated with input
data fully consistent with those of the model atmospheres or in some cases (e.g. Coelho
et al. 2005) with semiempirically modified line lists.

The grids of model spectra offer excellent possibilities to explore the variation of the
spectrum properties with stellar fundamental parameters. An example is given in Fig.1
where ratios of spectra of models with different [α/Fe], i.e. logarithmic abundance ratios
of the alpha elements (elements with even atomic numbers from O to Ti) relative to Fe,
are shown as a function of wavelength and effective temperature.

Detailed comparisons of model spectra from different grids and calculated with different
synthetic-spectrum programs have been made by Martins et al. (2005). In general, good
agreement was found. When comparing spectra of MARCS models with those from the
Coelho et al. (2005) grid a very satisfactory agreement is found for Teff above 4000 K,
while some clear discrepancies are seen for models for M-type stars, essentially reflecting
differences in TiO line data. Even more severe discrepancies, however, are displayed in
Fig. 2, reflecting the fact that the effects of sphericity for M-giants are not included in
the Coelho et al. (2005) grid. Corresponding effects were corrected for empirically for
plane-parallel Kurucz models by Lejeune, Cuisinier & Buser (1997), using broad-band
colours. We have found, however, that such simple correction factors, assumed to be
smoothly varying with wavelength, are not adequate for this purpose; the flux-ratio for
spherical models vs plane-parallel ones changes rapidly with wavelength, e.g. across the
various TiO bands, as may be seen from Fig. 2. Effects on sphericity on spectra were
recently explored for F and K giants by Heiter & Eriksson (2006).
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Figure 2. Comparison between calculated spectra from Coelho et al. (2005, dotted line) and the
MARCS library (thin line: plane-parallel model, thick line: spherical model).(Teff , log g, [M/H],
ξt) = (3500 K,0.0,0.0,5.0 km/s).

4. Do models match stars?
As a first test comparison of the standard models with stars we explore the agreement

of a calculated solar flux spectrum with observations in Fig. 3. We find that the model
matches the observations quite well – but there seems to be a tendency for an excess
in the calculated flux in the interval 4400–4900Å. The reason for this excess is still not
known.

There are several libraries of absolutely calibrated stellar flux distribtutions or low-
resolution spectra which may be compared with calculated spectra. Coelho et al. (2005)
show several such comparisons with spectra in the STELIB library (Le Borgne et al. 2003)
and demonstrate a generally good agreement. In Fig. 4 we show a comparison of MILES
empirical spectra (Sánchez-Blázquez et al. 2006, Cenarro et al. 2007) with MARCS fluxes.
We find again a good agreement, provided that the effective temperatures of the models
are taken 100-200 K hotter than those ascribed to the stars in the MILES library. We
note, as do Sánchez-Blázquez et al. (2006), that the MILES spectra tend to be bluer than
corresponding STELIB spectra, as well as spectra in the ELODIE archive (Moultaka et al.
2004), although these two latter sets of data occasionally show considerable departures
from each other. When comparing MARCS spectra with spectra from the HST-STIS
low/medium resolution mode (helpfully provided by Michael Gregg) we find generally
very good agreement. In these comparisons we have been anxious to limit them to stars
with fundamental parameters well determined from independent data.

The overall good agreement in the near ultraviolet-visual-near IR wavelength region
found for stars in the spectral interval B-K becomes somewhat less satisfactory for M
stars and C stars, although examples of very good spectral fits, e.g. by MARCS models,
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Figure 3. The MARCS solar model flux compared with absolute-calibrated observations. The
Neckel & Labs (1984) and the Burlov-Vasiljev et al. (1995) data were obtained from the ground,
while the Thuillier et al. (2004) data is a critical compilation of space-based observations with
different instruments. The model fluxes generally agree well with observations, and there is no
longer any indication of a so-called missing UV opacity. Note, however, the systematically higher
model fluxes at the flux peak in the 4400-4900 Å region.

have also been presented for such stars (see, e.g. Garcia-Hernandéz et al. 2006). At longer
wavelengths the predicted medium-resolution spectra of stars earlier than M0 are judged
to be accurate to 3% in the middle IR and 5% in the far IR (Decin 2007).

For colours a generally satisfactory agreement between calculations and observations
is obtained, see e.g. Munari et al. (2005), with some problems for the coolest stars. A
detailed study of the situation for infrared colours beyond the K band remains to be
made. Narrow-band indices are, however, not fully reproduced. E.g., for MARCS models
Önehag et al. (2007) have been able to recover the effective-temperature scale of the
Strömgren (b− y) and Hβ indices very well, while the metallicity dependence of the m1

index for F-type stars comes out wrong. This may be connected with a mismatch of the
MARCS models with STIS spectra for subdwarfs, where we trace a flux deficiency of the
models in the v band (cf. Fig. 5). We tentatively suggest that this may be due to the
effects of convective temperature inhomogeneities in the stellar photospheres.

5. Should we build houses on sand? Recommendations
We have seen that the standard model atmospheres are not only physically inconsis-

tent – attempts with more advanced modelling where the standard basic assumptions
are partly relaxed indicate that the predicted fluxes from standard models may well be
severely in error. When standard models from different grids are intercompared they tend
to agree satisfactorily in most cases – the remaining differences are mainly due to differ-
ences in physical (atomic and molecular) input data. When testing the standard models
relative to observed SEDs or spectra of stars with well-known fundamental parameters,
a relatively good agreement is also often found. This may reduce our worries caused
by the physical inconsistencies, but one should then note that a main use of the model
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Figure 4. Comparion of observed MILES spectra (solid) to MARCS model fluxes (dotted).The
fluxes have been binned to 50 Å wide bins, and are normalized in the 5000-6000 Å region. The
stellar parameters according to MILES are shown in the figure. Model effective temperatures
straddle the MILES values: 6000 and 6250K for BD+362165, 5750 and 6000K for HD10307,
and 4750 and 5000K for HD2796.

atmospheres is in extrapolating to stellar populations that are not represented in the
solar neigbourhood, stars for which the model adequacy cannot be tested in any detail.
Extrapolations to stars, such as very metal-rich ones, may therefore be quite dangerous.
What may then be done to minimize the risks?

A first recommendation, which is comparatively cheap from an observational cosmol-
ogist’s point of view is: support those who work ambitiously on making the model atmo-
spheres physically more self-consistent. One should not only calculate single models (that
illustrate the phenomena in principle) but small grids of models and fluxes, so that the
effects on e.g. integrated spectra can be tested. Another important recommendation is:
develop criteria for the analysis of integrated spectra of stellar populations, that are sen-
sitive to the parameters of this population but simultaneously minimally sensitive to the
uncertainties in the model atmospheres. One should calculate complementary grids of ar-
tificially modified model atmospheres with the surface temperature and the temperature
gradient varied, and then select criteria that vary only a little with these perturbations.
To succeed in this one must probably explore a broader spectral region, not the least
out into the infrared. Another recommendation is: when empirically correcting grids of
theoretical spectra to force them to agree better with template stars, do this only after
a detailed analysis of the situation. The mis-match may be due to a complex interplay
between several circumstances (observational calibration, fundamental parameter errors,
physical inconsistencies in the models and errors in input physics data) and it may be
quite inadequate to try to remedy it by, say, simple zero-point shifts.
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Figure 5. Comparion of the observed STIS flux of HD19445 with a spectrum of a MARCS
model with Teff = 5191K, logg = 4.29 (cgs), [M/H]=-2.0, ξt = 1.0 km/s (Önehag et al. 20007).
The lower panel shows the ratio of model flux/observed flux.

Google has pointed us towards Kyle M Rollins, winner of the Arthur Wellington Prize
from the American Society of Civil Engineers in 1996. He won the prize for his “dynamic
compactation” of sand. In order to make it possible to build houses in a sandy field, one
has used methods of watering the sand, or injecting it with salts. Professor Rollins instead
tried to stabilize it by dropping a heavy weight of 30 tons from a height of 30 meters, re-
peatedly, and found that a satisfactory ground resulted. In the Brigham Young University
Magazine from 1997 this story appears under the heading: “Wise professor seeks to build
houses on sand.” Although we appreciate that this invention may be prize-worthy, we
do not wish to project such a method into the problem of matching galaxy spectra with
theoretical stellar spectra. The question is if brute force helps in this latter endeavour.
Our firm belief is that this is not so. Instead we suggest that we should try to be clever.
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Discussion

Thomas: How does the new metallicity of the Sun (factor 2 lower than previously mea-
sured) affect the calibration of model atmospheres?.

Gustafsson: Except for features like CH, NH, OH, CO and CN bands the effects are
very small on model spectra for solar-type stars. If, however, the new CNO abundances

https://doi.org/10.1017/S1743921307007429 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307007429


Libraries of synthetic stellar spectra 57

by Asplund et al. are adopted for models of cooler stars like K, M and C stars (in the lat-
ter case with additional increase of C) the effects are considerable due to the significance
of molecular-like blanketing. This includes direct effects – due to residual molecular ab-
sorption with the new abundances – but also indirect effects via the decreased cooling by
CO of the surface layers or decreasing heating by TiO of the same layers, and decreased
backwarming by several molecules. The resulting changed (often diminished) tempera-
ture gradients may then change the line-strengths (often weaken them). The effects are,
however, probably not much greater than those of, e.g., neglecting the changes in C and
N abundances by the first dredge-up.

The speaker (left) together with Rurik Wahlin and Bacham Reddy.
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