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Abstract

It is shown that a weakly compact convex set in a locally convex space is a zonoform if and only if it is
the order continuous image of an order interval in a Dedekind complete Riesz space. While this result
implies the Kluvanek characterization of the range of a vector measure, the techniques of the present
paper are purely order theoretic.
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05.

0. Introduction

Let A be a linear map from an Archimedean Riesz space L to a locally convex
space X which maps order intervals of L to bounded subsets of X. In this note, it
is shown that A maps each order interval of L to a subset of X whose closure in
the weak completion of A' is a zonoform. It follows, in particular, that if A maps
order intervals of L to relatively weakly compact subsets of X, then A maps each
order interval to a subset of X whose closure is a zonoform in X. This result
contains as a special case (and, indeed, is strongly motivated by) the characteriza-
tion of the range of a vector measure given by Kluvanek [6], [7]. The methods of
Kluvanek are based on his theory of closed vector measures and integral represen-
tation. The present approach is, however, based entirely on the duality theory of
Riesz spaces and not only places the results of Kluvanek in quite general setting
but shows quite transparently that certain geometric properties of the range of a
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392 P. G. Dodds [2]

vector measure are direct consequences of the order structure of the domain of
the map and its relation to the order structure in the space of conical measures on
the range.

It is convenient to refer to the monograph [11] for basic information concerning
the theory of Riesz spaces. As our motivation is drawn from the theory of vector
measures, we refer to the monographs [3], [8] for general information concerning
the basic elements of the theory of vector measures, although we remark that no
explicit use of this theory will be made. For information concerning zonoforms,
we refer to [2].

1. Preliminary results

A real linear functional on an Archimedean Riesz space L is called order
bounded if and only if it maps order intervals to bounded sets. The collection of
all order bounded linear functional on L is denoted L and with respect to the
order induced by the positive cone of L, it is well known that £ is a Dedekind
complete Riesz space. If <f> e L , then </> is called a normal integral on L if and
only if whenever {/T} c L and fT I T0 in L it follows that infT|<J>(/T)| = 0. The
collection of normal integrals on L will be denoted Ln ; the normal integrals on L
form a band in L. For these results, the reader is referred to [10].

We use the following notation: if 0 < / e L , then [0,/] denotes the order
interval { g e L : 0 < g < / } . The element 0 ^ e e L is said to be a strong unit
for L, if for every/ e L, there exists a natural number n such that/ e [0, ne\.

Let L be an Archimedean Riesz space and F a sublattice of the order dual L .
Let j : L ~* T be the natural mapping defined by setting./'(/)(<£) = </>(/) for
/ G L and <t> e T.

PROPOSITION 1. Suppose that the Riesz space L has a strong unit e and T is a
separating Riesz subspace ofL . The following statements are equivalent.

(i) The order interval [0, e] is a(L, T) compact.
Gi)[0,Ke)]=j([0,eJ).

(iii) L is Dedekind complete and T consists of normal integrals.

Before proceeding to the proof of the Proposition we state separately a Lemma
which shall be needed subsequently.

LEMMA 1. / / / is the ideal generated by L in T , thenj([0, e]) is a(I, T) dense in
[0, j(e)].

PROOF. Suppose there exists u e [0, j(e)] c / such that « does not belong to
the a (I, T) closure of j([0, e]). By the separation theorem, there exists an element
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<J> e F such tha t «(</>) > s u p { < H / ) : / e L , 0 s £ / < < ? } = <t>+(e). However , «(</>)<
(<J>+) = </>+(e) and this is clearly a cont radic t ion .

PROOF OF THE PROPOSITION. The implication (i) => (ii) is clear from the
preceding Lemma 1 and the a(L, F) to a(I, F) continuity of the mapy.

(ii) => (iii). Suppose that 0 < fT t T < / with fT, f e L. For each 0 < i|/ e F,
define 4>(ip) — supT»p(/T). It is not difficult to see that IT extends to a positive
element of F which is majorized by some multiple of j(e). From (ii), it follows
that there exists an element 0 < g £ i such that 4>(g) = supTi//(/T) for all
0 < if e F. Since F is a separating sublattice, it follows that g = supT/T holds in
L. An exactly similar argument shows that F consists of normal integrals on L.

To see that (iii) => (i), suppose that L is Dedekind complete and that F consists
of normal integrals. It is a well known theorem of H. Nakano that order intervals
in L are a(L, Ln ) compact; consequently [0, e\ is compact for the weaker
o(L, F) topology.

We remark that Proposition 1 contains Lemma 1 of [5] as a special case. See
also [8], Theorem 5.2. The importance of Proposition 1 lies in that it can be
viewed as an abstract basis for several well known characterizations of localizable
measure spaces due to Segal [12, Theorems 3.4 and 5.1].

PROPOSITION 2. (i) Let L be a Riesz space and K c L a linear subspace. If T is
the Riesz subspace generated by K in L, then f e F if and only if there exist elements
/i> • • • »/*> /*+1. • • •.// of K such that

/= V / ,- V /,

(ii) Let K, Ko be linear subspaces of the Riesz spaces L, Lo and let F, Fo be the
corresponding Riesz subspaces generated by K, Ko. If <p: K —» Ko is a linear map,
then <p extends to a (necessarily unique) Riesz homomorphism $ o / F into Fo if and
only if whenever fx,... ,fk, gv... ,gtare elements of K such that

V / , - V gj

holds in L, it follows that

V *(/,)= V

holds in Lo. Iftp is surjective, then so is $ .

The proof of the preceding proposition involves only routine manipulations of
standard vector lattice identities and the details are accordingly omitted.

The proof of the following proposition was suggested by A. R. Schep.
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PROPOSITION 3. Let L be a Riesz space. Let <£„ \j/j, 1 < / < /, 1 < jr < k, be

elements of the order dual L and suppose that

V (</>,(/))= V (*,(/))

for every 0 < / £ L . Then

y *, - v *j

holds in L .

PROOF. Let <f> = V ^ , - ^ <J>, and let *p = V1<y-<t ^y. If 0 < / e L, then <>(/) >
V K « < / (*.•(/)) = V1<y-</fc (ij(f))>ij(f) for l < y < f c . Consequently <J> >
V1<y-<t i/'y = «//. By symmetry, it follows that <f> = i/> and the proof is complete.

2. A Riesz homomorphism and its dual

In this section, we show that a linear map from a Riesz space L to a locally
convex space X induces a Riesz homomorphism which, together with its dual,
relates the order structure of L to the order structure of the space of conical
measures on X. Some preliminary remarks follow.

In the sequel, L always denotes an Archimedean Riesz space with strong unit
e, X a locally convex topological vector space and A: L -* X a linear mapping
which maps order intervals in L to bounded subsets of X. By T will be denoted
the Riesz subspace in the order dual L generated by the order bounded
functionals {x'° A, x' e X'}. Here X' denotes the topological dual space of X. If
N = { / e i : |<J»K/|/ I) = 0 for all </> e T}, then AT is an order ideal in I\ Observe
that iV is a band in L if each element of T is a normal integral on L. By passing to
the Riesz quotient space L/N, it may, and will, be assumed that T separates the
points of L. We remark that if L is Dedekind complete and T consists of normal
integrals, then L/N is again Dedekind complete and the functionals induced on
L/N by the elements of T are again normal integrals.

The Riesz subspace of R x generated by the elements of X' with respect to the
pointwise order on X will be denoted by h(X). The order structure of h(X) is
related to that of L as follows.

THEOREM 1. There exists a unique surjective Riesz homomorphism $: h(X) -* T
such that $(*') = x' ° A for each x' e X'.
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PROOF. Consider X' as a linear subspace of the Riesz space IR x and let <p be the
linear mapping x' -* x'° A, x' G X'. The range of <p generates the Riesz subspace
F. To show that <p extends to a Riesz homomorphism of h{X) onto T, it suffices,
by Proposition 2, to show that whenever x[,... ,x'k, y{,... ,y\ are elements of X'
such that

a) v *;= v yj
1 < / < k 1 «Sy < /

it follows that V1<1<A. x,'° A = V l s y < / yj ° A. However, (1) asserts that
Vi*t*k(x'ioA(f))=*Vi*j*k(yj° A(f)) for each/GL. The assertion of the
Theorem now follows from Proposition 3.

We mention several immediate consequences of Theorem 1. If £f is a o-algebra
of subsets of some point set, denote by c.a.(^) the band of (real) countably-addi-
tive measures onSf. If m: «$"-» X is a vector measure, then it is shown in Theorem
1 of [6], via the Radon-Nikodym theorem, that the vector measure m induces a
unique Riesz homomorphism <&m: h(X) -> c.a.(^) such that $m(x') = x' ° m, for
each x' G X'. That this result is an immediate consequence of Theorem 1 above
may be seen by taking L to be the Riesz space of all step-functions based on y , A
to be the integration map on L induced by m and T to be the band c.a.(«5 )̂.

In a similar manner, Lemma 7 of [7] also follows directly from Theorem 1
above. We leave the details to the interested reader.

Let / be the order ideal in T~ generated by L and let $: h{X) -» T be the Riesz
homomorphism whose existence is shown by the preceding theorem. Denote by
M(X) the order dual of the Riesz space h(X). Elements of the positive cone of
M(X) are called conical measures on X and these are denoted by M+( X). For
basic facts concerning conical measures, we refer to [2, Sections 30, 38, 40].

Define now the linear map A: I -* M(X) by setting A(4>) = <j> ° 0 for each
<t> G /. Lety: L -» / be the natural map defined by setting j(f)(^) = i^(/) for
each \p G F and/ G L. The map j is linear and order preserving. Of interest is the
order interval in M+(X) generated by the conical measure A(j(e)). For the case
that A is the integration map induced by a vector measure m, A{j(e)) is precisely
the conical measure A(m) introduced in [6].

THEOREM 2. A([0, j(e)]) = [0, A(j(e))].

We observe that the map A is the restriction to / of the Riesz space adjoint 3>~
of $ where $~: T~ -> h(X) = M(X). Thus Theorem 2 is an immediate
consequence of the well known result that if L and M are Archimedean Riesz
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spaces with separating order duals, then a positive linear map T from L to M is a
Riesz homomorphism if and only if the Riesz space adjoint of T is order interval
preserving. See for example [9, Theorem 5.15].

3. Weakly normal mappings

We continue with the notation and assumptions of the preceding section. The
linear map A: L -» X will be called weakly normal if and only if { fT} c L and
fT I T0 imply that AfT -» 0 weakly in X. If 0 < u e M+(X), then an element
x e ^ i s called the resultant of u if u(x') = x'(x) for all x' e A". The resultant of
u, if it exists, is unique and is denoted /"(«). If 0 < M e M+(X) and if r(v) exists
for every v e M+(A") with 0 < v < M, then the set r([0, «]) is called a zonoform.
A zonoform in X is convex and weakly compact.

THEOREM 3. Let L be Dedekind complete and let A: L -» X be weakly normal. If
0 < » e M+(X) and 0 < v < A(j(e)), then v has a resultant in X and A([0, e]) =
r([0, i

PROOF. By the implication (iii) => (ii) of Proposition 1 and by Theorem 2, it
suffices to show that if / 6 L and 0 < / < e, then r(A(j(f))) = Af. Let x' e X'
and observe that i(./(/))(*') =y ( / ) ° $(* ')( / ) = ^'° ^ ( / ) = ^ ' (^/)- By This,
the theorem is proved.

The notion of closed vector measure was introduced in [5]. It is shown in [8]
that the integration map induced by a closed vector measure is a weakly normal
map defined on a Dedekind complete Riesz space.

The above theorem therefore implies that the closed convex hull of the range of
a closed vector measure m: Sf-* X is a zonoform, is weakly compact and is
precisely the range of the induced integration map restricted to the set of
^measurable functions/with values in the closed interval [0,1]. These results for
vector measures were first established in [5, Theorem 2] and in [6, Theorem 2 and
Theorem 4]. We now show that each zonoform in X is the image of an order
interval in a Dedekind complete Riesz space under a weakly normal mapping. It
is then not difficult to see directly, by passing to an appropriate Stone space, that
each zonoform in X is the closed convex hull of a closed vector measure, so that
our methods yield [5, Theorem 5].
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THEOREM 4. Let X be a locally convex topological space. Let u e M\X) and
suppose that each element of the order interval [0, w] c M +(X) has resultant in X.
There exists a Dedekind complete Riesz space L with strong order unit e and a
weakly normal linear mapping A: L —> X such thatAQO, e]) = r([0, u]).

PROOF. The Riesz space M(X), being the order dual of the Riesz space h(X), is
Dedekind complete. Let L be the order ideal generated by u in M( X) and let A
be the restriction of the resultant map to L. Suppose that { uT} c L and uT IT0 in
L. Then also uT I T0 in M+(X). Since each element of h(X) defines a normal
integral on M(X), it follows that uT(x') -» 0 for each x' e X'. Thus x'(r(uT)) =
uT(x') -> 0 for each x' e X'. This says that AuT -* 0 weakly in X and the proof is
complete.

The weakly normal mappings have a number of strong properties which are
indicated in Proposition 4 below.

The map A: L -* X is called normal if and only if { /T} c L and fT I T0 imply
AfT -> 0 in X. The Riesz semi-norm p on L is called normal if and only if
{/T} c L and fT IT0 imply p ( / T ) | T0. If H c X' is equicontinuous, let pH be the
Riesz semi-norm on L defined via pH(f) = sup{|x'° v4|(|/|): x' e H} for each
/ e L. Denote by T the locally solid Hausdorff topology on L defined by the
collection of Riesz semi-norms {pH}.

PROPOSITION 4. / / L is Dedekind complete and if A: L -» X is weakly normal,
then

(i) A([0, e]) is a(X, X') compact,
(ii) whenever H c X' is equicontinuous, the Riesz semi-norm pH is normal,
(in) A is normal,
(iv) the order interval [0, e] is T-Complete.

PROOF, (i) is an immediate consequence of Theorem 4 above.
(ii) It is a consequence of the weak normality of A, the well-known Orlicz-

Pettis lemma and part (i) above that, if {/„} c L is a sequence and if
0 < / J / e L , then Afn -* 0 in X. If H c X' is equicontinuous, then the normal-
ity of the Riesz semi-norm pH is a consequence of [4, Theorem A].

Statement (iii) is a simple consequence of (ii) and the T-completeness of the
order interval [0, e] follows immediately from (ii) and the Nakano completeness
theorem [1, Theorem 13.1].

It is to be remarked that statement (i) of the preceding proposition may be
deduced directly from the weak normality of A and the fact that order intervals in
L are a(L, L~) compact.
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We now show that if A: L -* X is arbitrary, then A always has a range-preserv-
ing extension to a weakly normal map on some Dedekind complete Riesz space
containing L, with values in the weak completion of X. This is the principal result
of the paper and can be viewed as the abstract core of the notion of closure of a
vector measure introduced in [5]. For the special case that A is the integration
map induced by an arbitrary vector measure m, we obtain that the closed convex
hull of the range of m is a zonoform, which is [6, Theorem 4]. It is worth
remarking however, that Theorem 5 below also applies directly to bounded,
additive (rather than countably additive) mappings defined on an algebra of sets.
Moreover, our method shows clearly that the purely geometric properties of the
range of such mappings do not depend on the representation theory developed in
[7], which is, of course, of independent interest.

Our notation in the following is that established in earlier sections. If E is a
subset of X, we denote by E the closure of E in X.

THEOREM 5. Let X be the weak completion of X. The map A = r ° A is a weakly
normal linear mapping of the Dedekind complete Riesz space I into X such that
A° j = A. Moreover, A([0, j(e)]) is precisely the o(X, X') closure ofA([0, e]) in X.
Consequently, if A([0, e]) is relatively weakly compact in X, then A([0, e]) is a
zonoform.

PROOF. By [2, Proposition 30.7] the map A = r ° A is defined on / and takes
values in X. Suppose that {/T} c / and that fT IT0 in /. This means that
4>Sfr) ~» ° f o r e v e r v <> G r - Hence $(/i)(/T) -> 0 for every h <= h(X) and so
^(/rX*) = /r " .* (*) -»° f o r e v e r v heh(X). It follows that x\AfT) =
x'° A (/T)) = J4(/T)(JC') -» 0 and so A is weakly normal. From the definition of
A, it is clear that A° j = A° j , that A([0, j(e)]) is o(X, X') compact and that
A([0, e]) c AQO, j(e)]). That A([0, e]) = A([0, j(e)] is now a consequence of
Lemma 1.

In conclusion, we mention the following consequence.

COROLLARY. If X is weakly complete, then AQO, e]) is relatively weakly compact.
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