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ABSTRACT. Changing Arctic sea-ice extent and melt season duration, and increasing economic interest
in the Arctic have prompted the need for enhanced marine ecosystem studies and improvements to
dynamical and forecast models. Sea-ice melt pond fraction fp has been shown to be correlated with
the September minimum ice extent due to its impact on ice albedo and heat uptake. Ice forecasts
should benefit from knowledge of fp as melt ponds form several months in advance of ice retreat. This
study goes further back by examining the potential to predict fp during winter using backscatter data
from the commonly available Sentinel-1 synthetic aperture radar. An object-based image analysis
links the winter and spring thermodynamic states of first-year and multiyear sea-ice types. Strong corre-
lations between winter backscatter and spring fp, detected from high-resolution visible to near infrared
imagery, are observed, and models for the retrieval of fp from Sentinel-1 data are provided (r2≥ 0.72).
The models utilize HH polarization channel backscatter that is routinely acquired over the Arctic from
the two-satellite Sentinel-1 constellation mission, as well as other past, current and future SAR missions
operating in the same C-band frequency. Predicted fp is generally representative of major ice types first-
year ice and multiyear ice during the stage in seasonal melt pond evolution where fp is closely related to
spatial variations in ice topography.
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INTRODUCTION
Recent changes in Arctic sea-ice conditions are well docu-
mented. There is a new Arctic sea-ice regime, characterized
over the last 35 years by a rapidly declining summer ice
extent and, since 2007, a shift from predominantly thicker
multiyear sea ice (MYI) to thinner, seasonally decaying,
first-year sea ice (FYI) (Giles and others, 2008; Kwok and
others, 2009; Kwok and Rothrock, 2009; Laxon and others,
2013). When compared to paleo-environmental records,
this shrinking and thinning of Arctic sea ice is unprecedented
in the past several thousand years (Polyak and others, 2010;
Kinnard and others, 2011; Meier and others, 2014). As sea
ice normally acts as a barrier between the atmosphere and
ocean, less ice during summer is linked to increased radiative
forcing, upper ocean warming and longer melt seasons
(Laxon and others, 2003; Perovich and others, 2007;
Markus and others, 2009; Pistone and others, 2014). How
these changes affect the Arctic marine ecosystem, impact
weather and climate at regional and global scales, threaten
the livelihood of indigenous communities, and raise geopol-
itical and economic issues, remains to be determined.

In spring, the melting Arctic sea-ice cover is characterized
by the formation of surface melt ponds. Melt ponds are
shallow, meter-scale, pools of melt water that act to decrease
the area-averaged albedo of sea ice, thereby enhancing
shortwave radiation absorption, and accelerating the rate of
seasonal ice decay (Maykut, 1985; Hanesiak and others,
2001; Perovich and others, 2003). Light transmittance is an
order of magnitude greater through melt pond covered sea
ice (Inoue and others, 2008; Ehn and others, 2011), so that

the upper ocean layer is warmed prior to the ice breaking
up and primary productivity is possible (Mundy and others,
2009; Arrigo and others, 2012). Melt ponds also provide a
mechanism for gas transfer and chemical deposition rates
that are otherwise impeded by the impermeable ice cover
(Golden and others, 1998; Pucko and others, 2012;
Vancoppenolle and others, 2013). It is well understood that
melt ponds cover a greater portion of seasonal or FYI than
older, MYI, as FYI is less weathered and lacks topographic
controls on melt water flooding (Eicken and others, 2004).
In the context of the relatively new reality of a FYI dominated
pan-Arctic sea-ice regime, there is considerable need to
improve our understanding of the impacts of surface melt
ponds on coupled processes at regional and greater scales,
and to improve the physics of spring-summer sea ice in
dynamical and forecast models based on the findings at crit-
ical scales. A recent modelling study linked pan-Arctic pond
fraction to ice extent, suggesting the impact of higher pond
fractions on precipitous sea-ice decline (Schröder and
others, 2014).

A key parameter describing melt pond coverage on sea ice
and providing a proxy for the surface albedo is the areal pond
fraction (fp). Mechanisms governing the spatio-temporal evo-
lution of fp at the in situ scale have been documented (e.g.
see Eicken and others, 2002; Polashenski and others, 2012;
Landy and others, 2014). To understand emergent patterns
and processes related to sea-ice melt pond formation and
evolution, relationships at regional and larger scales must
be better understood. Spatio-temporal patterns of fp must
be examined and scales of action determined, where linkages
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between pattern and process are strongest. Satellite earth
observation (EO) techniques aid the study of pattern and pro-
cesses, particularly in remote regions such as the Arctic.

EO-based observations of fp are possible using images
obtained in the visible to near infrared (VIS-NIR) portions
on the electromagnetic spectrum by estimating the fp from
spectral mixtures (Markus and others, 2003; Tschudi and
others, 2008; Rösel and others, 2012; Istomina and others,
2015). However, the temporal resolution of these
approaches is impeded by the pervasive Arctic cloud cover
which, during spring-summer, is predominantly low-level
stratus. A fp estimation approach from satellite synthetic aper-
ture radar (SAR) image data acquired at C-band frequency
has been outlined (Scharien and others, 2014). SAR transmits
and receives microwave energy, meaning that imagery can
be acquired regardless of cloud cover. SAR systems provide
much higher spatial resolutions (1–1000 m) compared with
satellite passive microwave radiometers and radar scatterom-
eters (several km), so that individual ice floes are resolved.
The radar backscatter coefficient (sigma-nought or σ°) mea-
sured by a SAR is sensitive to wind-wave roughness on
water bodies, such that imaging melt pond covered sea ice
introduces ambiguities depending on the wind speed at the
time of acquisition. The VV/HH approach outlined by
Scharien and others (2014) is independent of wind-wave
roughness below a roughness threshold. However, in this
case, the temporal resolution is limited by the need for simul-
taneous linear horizontal (H) and vertical (V) transmit–
receive polarizations (i.e. VV and HH together in one acqui-
sition), in order to compute the polarization ratio (VV/HH)
required by the SAR-based fp approach. Future missions
like the RADARSAT Constellation Mission in 2018 will
offer the wide-area coverage and parameters needed for
robust SAR-based fp mapping based on the same radar scat-
tering mechanisms as the VV/HH ratio approach.

The European Space Agency (ESA) launched the first of
two Sentinel-1 SAR satellites in 2014 as part of the
Copernicus initiative. The second Sentinel-1 SAR was
launched in 2016, leading to the formation of a constellation
of two near-polar orbiting, medium to high resolution,
imaging radars capable of providing imagery regardless of
cloud cover or daylight. The near-polar constellation orbit
is advantageous for Arctic sea-ice monitoring, as a revisit fre-
quency of <1 d is possible at high latitudes. Under ESA’s
current observation scenario, Arctic sea-ice imagery is pro-
vided at least every 6 d, depending on the latitude and
region. Moreover, newly acquired scenes are open access
and free to the scientific community, a delivery format
which represents a fundamental shift in SAR imaging, since
newly acquired SAR mission data have been traditionally
constrained and/or costly. One limitation of Sentinel-1 for
mapping sea ice during spring-summer is that it is limited
to either a single polarization mode (HH or VV) or dual-
polarization mode (HH +HV or VV + VH) during acquisition.

In this study, we consider the potential of Sentinel-1 and
other dual-polarization C-band frequency SARs for providing
estimates of the spring fp during late winter period preceding
melt. Relationships between late winter HH and HV back-
scatter, the two most commonly acquired polarizations of
C-band SARs operating over Arctic waters, and spring fp
are examined. Relationships between grey-level co-occur-
rence matrix (GLCM) derived texture parameters, calculated
from HH and HV channels, and fp are also examined. We
chose previously acquired datasets based on the availability

of late winter (pre-melt) dual-polarization (HH and HV),
C-band frequency, SAR images of landfast sea ice spatially
coincident to high-resolution optical satellite images captur-
ing melt ponds on the same ice during spring. The fp predic-
tion models are intended to provide a single indicator of the
expected fp susceptibility related to ice topography, i.e. when
rapid variations due to early snow melt inflows, and late
drainage outflows, are absent. The study sites are detailed
in the Study sites section, followed by a description of the
data collected and the research methods used in this study
in Data and methods section. Results are documented in
Results and discussion section and discussed and concluded
in Conclusions section.

STUDY SITES
Data for this study were collected from four areas of landfast
sea ice in the central Canadian Arctic Archipelago (Fig. 1).
There are two sites in the northern and southern margins of
Victoria Strait, a shallow strait which comprises part of the
southern arm of the Northwest Passage and lies ∼150–250
km east and northeast of Cambridge Bay, Nunavut. These
sites are referred to as Victoria North (VN) and Victoria
South (VS), respectively. The area was targeted for the collec-
tion of high-resolution, cloud-free, VIS-NIR, scenes of melt
ponds from GeoEye-1 sensors in 2015 and 2016 since it con-
tains a mixture of ice types including thermodynamically
grown FYI, deformed FYI (DFYI), and MYI floes that
become fasted to the shore and remain in place until the
ice breaks up in July. The third site is a sea-ice field data col-
lection program on the smooth FYI in Dease Strait (DS),
immediately adjacent to Cambridge Bay and 150 km west
of VS, which also took place in 2016. The Sentinel-1
mission was operational during this period, enabling the col-
lection of SAR scenes from the free and open access Sentinels
Scientific Data Hub made available by ESA.

A fourth site in Allen Bay (AB), a small, sheltered, bay
adjacent to the community of Resolute Bay, Nunavut was
chosen due to the availability of archived satellite image
and field observation data spanning the winter (pre-melt)
through advanced melt periods, dating 15 April to 12 July,
in 2006. Three SAR scenes from the Envisat-ASAR mission
were acquired spatially coincident to a high-resolution,
cloud-free, VIS-NIR, scene of melt ponds from the
QuickBird satellite. Satellite imagery and ice conditions are
further detailed in Data and methods section.

DATA AND METHODS

SAR data and processing
Details of the SAR scenes used in this study are provided in
Table 1. It is important to note that the portions of the
Sentinel-1 SAR scenes that are spatially coincident to high-
resolution VIS-NIR scenes from which fp data cover a
narrow range of radar incidence angles (θ). The archived
ASAR data from AB were selected to enable us to further
investigate the role of θ on backscatter and fp relationships.

Three Sentinel-1 Extra Wide Swath Mode (EW) scenes,
S1–S3, were acquired for sites VN and VS. The EW mode
was designed for maritime use, and particularly for imaging
sea ice, by employing a wide swath. In EW mode, Sentinel-
1 acquires data over a 400 km swath at 20 m by 40 m
spatial resolution (ESA, 2013). Data are acquired in one of
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four independent polarization configurations using one H or
V polarization transmit chain, and one or two parallel receive
chains for H and V polarizations. This produces either a
single polarization VV or HH, or a dual-polarization HH +
HV or VH + VV, scene comprised of five sub-swaths and
spanning a θ range of 19–47°. Scenes S1–S3 were processed
to medium resolution level-1 ground range detected format
with 40 m by 40 m pixel spacing, prior to downloading
from the Data Hub (ESA, 2013). Sentinel-1 is an ongoing con-
stellation mission with two satellites, Sentinel-1A and
Sentinel-1B, sharing the same near-polar orbital plane with
a 180° orbital phasing difference (ESA, 2013). Sentinel-1A
was launched in early 2014 and Sentinel-1B in early 2016.

Three ASAR Alternating Polarization Mode Precision
image (APP) products of site AB, named AB1–AB3, were
acquired from the ESA Earth Observation Link. In APP
mode, ASAR interleaved looks along-track in H and V
polarizations within the synthetic aperture, resulting in the
production of two ground range detected image channels
(i.e. dual polarization images) out of three possible

transmit–receive polarization combinations (HH + VV or
HH +HV or VV + VH) at a nominal resolution of 30 m. The
sensor was capable of acquiring one of seven different
image swaths spanning a total θ range of 15–45°. Swath
widths ranged from 56.5 to 104.8 km, depending on which
of the seven swaths was chosen. The Envisat satellite was
launched in early 2002 and ceased operating in early 2012.

SAR scenes were processed according to the flowchart in
Figure 2. The thermal noise removal was done by subtracting
the noise estimate values, retrieved from the annotation
dataset of each SAR image product, from the corresponding
image channel. Image bands were calibrated to the
common sigma-nought backscatter σhh

° or σhv
° and speckle fil-

tered using the Lee Filter and a 5 by 5 sliding window. A
cross-polarization ratio Rhv/hh (σhh

° /σhv
° ) band was then

derived. Image bands were map projected to the WGS
1984/UTM projection using the Bilinear resampling
method and clipped to the appropriate site extent, as deter-
mined by the coverage of the corresponding high-resolution
VIS-NIR scenes at sites AB, VN and VS. Envisat-ASAR scenes

Fig. 1. Study area in the central Canadian Arctic Archipelago. Locations where satellite data used in the study were collected which include
Allen Bay (AB), adjacent to Cornwallis Island, and the northern and southern portions of Victoria Strait (VN and VS) in 2015 and 2016,
respectively; also shown is a field study site in Dease Strait (DS), adjacent to Victoria Island, where in 2016 sea-ice geophysical
measurements were made at the same time as satellite data were captured in VS.

Table 1. Basic image characteristics of the SAR scenes acquired for this study

Site ID Product Date Time (UTC) Pass Swath θ-range (entire scene, °) θ-range (subset, °)

AB AB1 ASA_APP_1P 2006–04–27 03:39:19 Asc IS6 39.1–42.8 39.1–42.8
AB AB2 ASA_APP_1P 2006–05–02 17:55:26 Des IS2 19.2–26.7 19.2–26.7
AB AB3 ASA_APP_1P 2006–05–04 03:19:19 Asc IS4 31.0–36.3 31.0–36.3
VN VN1 S1A_EW_GRD 2015–04–05 13:16:19 Des EW1-EW5 19.3–46.7 38.8–39.7
VN VN2 S1A_EW_GRD 2015–04–05 13:18:08 Des EW1-EW5 19.3–46.7 36.5–37.8
VS VS1 S1A_EW_GRD 2016–04–09 13:34:03 Des EW1-EW5 19.3–46.7 30.2–30.9

Pass refers to ascending (Asc) and descending (Des) orbits; Swath to the available swaths of Envisat-ASAR APP mode products (IS1–IS7) and Sentinel-1 products;
and incidence angle (θ) ranges of the overall swath and for the portion examined.
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were projected with 12.5 m pixel spacing, whereas Sentinel-
1 scenes were project with 40 m pixel spacing. After clip-
ping, an 8-bit scaled version of the σhh

° band from each
SAR scene was exported for segmenting each site into dis-
crete image objects for the object-based image analysis
(described below).

Second-order texture parameters were derived from each
of the three clipped image bands from the six SAR scenes,
σhh
° , σhv

° , and Rhv/hh, using the GLCM method developed by
Haralick and others (1973). The co-occurrence parameters
are based on computing the joint probabilities of all pair-
wise combinations of brightness values in a spatial window
(kernel) according to two parameters: a displacement (inter-
pixel distance) and, an orientation (0, 45, 90 and 135°)
(Clausi, 2002). From Clausi (2002), this is defined as:

PrðxÞ ¼ Cij
�

δ; θoð Þj �
; ð1Þ

where Cij is the co-occurrence probability between grey
levels i and j, δ is the inter-pixel distance, and θo the orienta-
tion. Cij is defined as:

Cij ¼
Pij

PG
i;j¼1

Pij

; ð2Þ

where Pij represents the number of occurrences of grey levels

i and j within the kernel, given a δ and θo pair, and G is the
quantization level. The texture parameters are then derived
from statistics applied to the co-occurrence probabilities.
The comprehensive review of the use of co-occurrence
texture parameters for the separability of sea-ice types and
sea-ice classification by Clausi (2002) was used to guide
the selection and calculation of texture parameters. Co-
occurrence probabilities were computed for a 5 by 5
sliding window, using G= 64, and values derived from all
θo (0, 45, 90 and 135°) were averaged. For δ, a value of 2
was chosen to negate the effect of correlated neighboring
pixel values on texture calculations. As with SAR images in
general, the scenes used here were oversampled, so that
pixel spacing is approximately one-half the resolution in
range and azimuth (ESA, 2013). SAR texture features contrast
(CON), homogeneity (HOM), energy (ENE), entropy (ENT)
and GLCM variance (GLV) were calculated (Table 2).

VIS-NIR data and processing
A Quickbird image product with four channels spanning
450–900 nm and 2.4 m ground sample distance (GSD) and
a panchromatic channel with 0.61 m GSD covered a 64
km2 area of smooth FYI at site AB on 26 June 2006 at
18:44 UTC. Approximately 15% of the scene area that was
cloud and land contaminated was manually masked out.
Two GeoEye-1 image products containing four channels
spanning the VIS-NIR range (450–920 nm) with a 1.7 m
GSD, and a panchromatic channel with 0.41 m GSD
covered 72 and 118 km2 areas of mainly FYI, and mainly
MYI, respectively, at site VN on 25 June 2015 at 18:20
UTC. A GeoEye-1 image product with the same bands
covered a 100 km2 area containing FYI and DFYI at site VS
on 21 June 2016 at 18:45 UTC.

The high-resolution images were map projected to the
WGS 1984/UTM projection. The Gram Schmidt pan-shar-
pening algorithm was used to fuse VIS-NIR bands from
each product with its panchromatic pair, producing an
output three-band (RGB) pan-sharpened image with a cell
size of 0.5 m. The supervised maximum likelihood approach
was used to partition the pan-sharpened scenes at AB and VN
into binary classified images composed of snow/ice (0) and
melt pond (1). A third class, drained melt pond (3) was
added to the classification of the pan-sharpened scene at
VS. By adding this class, we found that we could improve
overall classification accuracy while still merging the two
melt pond-related classes into one fp class that is more repre-
sentative of conditions prior to pond drainage. We found this
was necessary since the VS scene was captured almost 20 d
after pond formation, so drainage from FYI was evident in the

Fig. 2. Flow chart depicting the SAR image processing chain. The
final GeoTIFF image product contains calibrated backscatter
sigma-nought (σ°), backscatter ratio and texture bands.

Table 2. Co-occurrence based texture statistics

Parameter Derivation Description

Contrast (CON) P
Cijði � jÞ2 Contrast group

Homogeneity (HOM) P Cij

1þ ði � jÞ2
Contrast group. Increases
with less contrast

Energy (ENE)
ffiffiffiffiffiffiffiffiffiffiffiffiP

C2
ij

q
Uniformity

Entropy (ENT)
P

CijlogCij Orderliness measure
GLCM variance (GLV) P

Cijði � μiÞ2 Dispersion around the
mean of co-occurrences
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scene. Training data for the supervised classification of each
image were derived from 100 randomly chosen pixel loca-
tions. An accuracy assessment was also performed on each
image, using 100 randomly chosen pixel locations for com-
parisons between the classification output and the input
image. The spectral differences between light snow/ice
patches and dark melt ponds made for relatively straightfor-
ward classifications, and overall accuracies were >97%.
Examples are shown in Figure 3.

Object-based image analysis
One drawback of using EO data is that it contains an arbitrar-
ily defined, uniform sampling grid which is usually not
appropriate for representing the entities of interest. In add-
ition, the chosen scale for representing phenomena will
affect results and interpretations derived from analyses. This
is commonly referred to as the scale problem (Marceau,
1999). An object-based image analysis aims to mitigate the
scale problem by segmenting the EO image into objects or
segments that represent real-world entities in a manner con-
sistent with patches in the landscape ecology literature
(Turner and others, 2001; Benz and others, 2004). Here the
regions of interest are constrained by the extents of the
high-resolution VIS-NIR image products obtained for sites
AB, VN and VS. The objects within each region of interest
are individual pans or floes of sea ice which have unique
dynamic and thermodynamic histories and, in a spatial
context, have internally coherent and externally heteroge-
neous geophysical properties such as roughness which
means they are: (a) likely to be unique areas in terms of
thermodynamic evolution, hence winter state to spring melt

pond formation; and (b) distinguishable in winter C-band
SAR images.

The 8-bit scaled σhh
° image bands produced during SAR

processing (see Fig. 2 and Table 1) were segmented into
image objects using the bottom–up, region-merging tech-
nique detailed in Benz and others (2004) and implemented
in the eCognition® software. This algorithm was chosen
since it allows the user to specify weightings that are used
as homogeneity criteria for growing and segmenting coher-
ent objects during the segmentation process. A color versus
shape criterion, where color= 1− shape, enables weighting
toward color (i.e. backscatter intensity scaled to 8-bit) versus
shape (i.e. spatial) information. The algorithm also allows the
user to vary the sizes, and therefore the number of objects,
created during the segmentation by specifying a scale param-
eter. User specified intensity and shape criteria are input into
a heuristic, region growing algorithm which grows regions
until the criteria are met. This results in a set of image
objects of heterogeneous intensity and spatial characteristics.
Additionally, a scale parameter can be used to create a multi-
resolution segmentation with multiple layers of image objects
with successively larger (or smaller) scale.

A hierarchical segmentation approach was used to
address the fact that sea-ice zones are not necessarily dis-
tinctly bounded, and no segmentation represents a perfect
representation of distinct real-world entities. Three levels of
segmentation were created by varying the scale parameter
of the segmentation algorithm. The hierarchical approach
also enabled us to assess the impact of object scale and
resultant data aggregations on the strengths of correlation
coefficients and coefficients of determination. The three seg-
mentation levels created image object sets composed of

Fig. 3. Subsets of 300 by 300 m size showing true-color representations of surface conditions corresponding to the three main ice classes
investigated in this study (top) and classification results with ice colored white, melt pond colored dark blue and drained melt pond
colored light blue (bottom). (a) FYI in VN; (b) MYI in VN; (c) DFYI in VS.
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progressively larger and fewer image objects for overlaying
on spatially coincident SAR and optical scenes. We named
the object sets fine, sharp and coarse and calculated the
areas of the objects making up each of those sets (Fig. 4).

From fine to coarse scales, the object sets ranged from
nobj= 237 to nobj= 37 (e.g. see Fig. 4). Average object
sizes at the fine scale ranged according to the object set
(AB, VN, VS) from 0.21 to 0.57 km2. At the sharp scale, the
range was 0.56–1.1 km2, and at the coarse scale 1.3–2.8
km2. Each object sampled on average 210–355 Sentinel-1
pixels at the fine scale, 493–817 at the sharp scale, and
1057–1392 at the coarse scale (VN and VS). The smaller
12.5 m pixel spacing of the ASAR images meant that on
average 1344–8685 pixels were sampled by objects at fine
to coarse scales.

Data analysis
Objects from each site were labeled according to the domin-
ant ice type contained within their bounds by using the
winter SAR and spring VIS-NIR imagery, as well as ancillary
information such as ice charts, to guide the analysis. Objects
from AB all contained FYI. Objects from VN were labeled
either FYI or MYI, since the two VN scenes comprised
either smooth, thermodynamically grown FYI or MYI floes.
The MYI-dominant scene from VN is shown in Figure 5,
which also illustrates the segmentation and labeling
process. Objects from VS were labeled FYI or DFYI, with
the latter evident as predominantly linear and brightly back-
scattering features in SAR imagery (Fig. 6).

Each of the three object sets fine, sharp and coarse was
overlaid on the SAR scenes of calibrated backscatter and
texture. Object metrics were computed from individual
objects as the mean of pixel values within an object. Each
of the three objects sets pertaining to a VIS-NIR derived
snow/ice and pond binary classification output was used to
calculate the fp for each image object. This enabled an
output database of winter backscatter and texture para-
meters, and spring fp, for each of the scenes in Table 1 for
statistical comparisons.

An exploratory data analysis was used to characterize the
backscatter and fp behavior of the sea-ice cover, and to assess
backscatter levels relative to SAR sensor noise levels. A cor-
relation analysis of object metrics enabled the examination of
inter-relations between SAR backscatter, SAR texture and fp.
The correlation analysis focused on the linear association
between backscatter and fp values at fine, sharp and coarse

scales. Assessment of the three ASAR scenes AB1–AB3
allowed us to examine the combined roles of object size
(scale of aggregation) and θ on backscatter relationships
with fp. Linear associations between texture and fp were cal-
culated for the intermediate scale sharp image object set
only. The Pearson’s product–moment correlation coefficient
(r) was used as a measure of linear association. The conven-
tional deciBel (dB) transformation was applied to backscatter
data (10*log10(σ°)) and, in some instances, the natural log
transformation was applied to texture (log10) to achieve
linear association between variables and fp.

Linear regression models for predicting fp from winter
Sentinel-1 backscatter were constructed using data from the
intermediate scale sharp image object set. Only backscatter
and GLCM texture parameters derived from the HH polariza-
tion channel were used, and input data from only one site
were used in order to control for temporal fluctuations in
pond fraction (see Melt pond prediction model section). All
texture parameters were used as potential explanatory vari-
ables, with log-transformed texture parameters used where
appropriate.

The backward elimination method was used to develop
regression models. Backward elimination is a stepwise
method where all possible predictor variables that pass a
multicollinearity tolerance criterion are entered into the
model, and highly multicollinear variables are removed.
Following entry, independent variables with the smallest
partial correlation with the dependent variable are sequen-
tially passed through stepping method criteria. If the variable
does not contribute a significant increase in r2 (α> 0.1) it is
removed. This process is continued until the model with
the smallest number of independent variables remains.

RESULTS AND DISCUSSION

Site conditions
Field data were collected as part of a dedicated sea-ice geo-
physical and remote-sensing study at the AB site from 5 May
to 15 July 2006. In 2016, a multidisciplinary sea-ice cam-
paign was conducted on smooth FYI at DS near Cambridge
Bay from 15 April to 22 June, though this location was
∼150 km west of site VS. We chose site VS for some
remote-sensing studies during the 2016 campaign since it
provided a diversity of ice conditions lacking at the field
site. No field data were collected in 2015.

Fig. 4. Image object sets for zone of predominantly multiyear sea ice in Victoria Strait north (VN) collected in 2015. Relatively smooth first-
year sea ice is evident in the lower portion of the scene. (a) Eight-bit scaled HH polarization band of Sentinel-1 image VN1 (see Table 1) used
for segmentation into three image object sets comprising progressively smaller and fewer image objects from (b)–(d). The coarse segmentation
produced n= 42 objects (b). The sharp segmentation produced n= 87 objects (c). The fine segmentation produced n= 220 objects (d).
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Air temperature data were used to guide the selection of
ASAR and Sentinel-1 scenes originally acquired during
winter (pre-melt) conditions. In the seasonal period leading
up to the ASAR acquisitions at AB, the maximum hourly
10 m air temperature was −9.6°C. The ASAR images of AB
were collected at hourly air temperatures of −14.6°C or
lower. The maximum hourly 10 m air temperature at the
Environment Canada Cambridge Bay airport station
(69.11N, −105.14W) in the period leading up to the
Sentinel-1 acquisitions of VN in 2015 was −13.2°C. The
Senitnel-1 images of VN were collected at an hourly tem-
perature of −26.9°C. In 2016, air temperatures recorded at
the same station showed a maximum temperature of
−15.2°C in the lead up period and −27.2°C at acquisition.

Figure 7 shows time series fp measurements made at site
AB, within the same area covered by the acquired VIS-NIR
scene from that campaign, and at site DS, 150 km east of
the VIS-NIR scene acquired at VS during that campaign.
Field measurements of fp came from manual transects,
where a surface class and depth (not shown) was recorded
every 0.5 m along a 200 m line perpendicular to the major
axes of melt ponds and snow/ice patches. Recorded classes
were: snow, bare ice, melt pond, frozen melt pond/ice lid
and slush/mixture; 400 points were logged during each
transect. This approach is reliable for recording an areally rep-
resentative fp on smooth FYI only, i.e. when there is a quasi-
uniform distribution of ponds and ice patches determined

by the pre-melt alignment of snow dunes (Grenfell and
Perovich, 2004; Istomina and others, 2015). It is a useful
approach for recording the time series evolution of fp and
other surface features, though consideration must be given
to estimation error due to mis-alignment. We tested for mis-
alignment error by plotting the location of the in situ transect
line on the classified VIS-NIR scene fromAB, and determining
the fp for that line and lines at 10° intervals to ±20°. The fp
range across all angles was 0.06. Figure 7 also shows the
timings of VIS-NIR acquisitions at AB and VS, along with
means and SDs of fp derived from classified scenes.

From Figure 7, it is apparent that the VIS-NIR scene at AB
was acquired 3.8 d after melt ponds formed, when fp was
rapidly increasing but still <0.5. This timing is just prior to
the seasonal fp peak for smooth FYI, when fp is growing to
its seasonal maximum due to a rapid flux of melt water
from the decaying meteoric snow cover (Eicken and others,
2002). When the VIS-NIR scene at VS was acquired, our
observations on smooth FYI at DS indicated that ponds
formed 19.8 d earlier. The fp at DS was high at ≥0.7,
though the snow cover had ablated and fluctuations in fp
linked to diurnal melt rates were evident. There is a good
agreement between field and satellite-derived fp at AB,
whereas an inconsistency between field-derived fp from
DS, and satellite-derived fp from VS, is apparent. Note that
the offset in fp between DS and VS is due to the inclusion
of DFYI and FYI at VS, whereas at DS only FYI is captured

Fig. 5. (a) A 20 by 20 km subset of a Sentinel-1 SAR scene of VN containing FYI andMYI; (b) The same scene with the object set overlaid on it;
(c) The spring VIS-NIR scene of the same area; and (d) Result of the labelling of objects as FYI (black) or MYI (white).
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(see Fig. 6). Since we did not have field data linked to the VN
acquisitions, an examination of cloud-free MODIS reflect-
ance images indicated that the VIS-NIR images were
acquired 14 d after pond onset.

Figure 8 shows fp distributions according to major ice
types FYI and MYI derived from all acquired VIS-NIR
scenes. From Figure 8, it is evident that a wide range of fp
on FYI and on MYI is presented by the VIS-NIR image data.
As such, a wide range of ice conditions are included in the
comparison to backscatter and texture statistics. The
average fp for FYI image objects ranged from 0.07 at AB to
0.91 at VS. The lowest mean fp of 0.39 recorded at AB was
measured shortly after pond formation began and fp was
still increasing. The FYI fp distributions for VN and VS are
very similar and representative of conditions after melt
ponds have fully developed. Overall, the fp statistics are
similar to other observations of FYI and MYI made at a
similar scale, e.g. from aircraft observations (Perovich and
others, 2002; Eicken and others, 2004).

Relationship between winter backscatter and spring
melt pond fraction

Incidence angle and scale: Allen Bay (AB) site
Correlations between backscatter parameters σhh

° , σhv
° , and

Rhv/hh, and spring fp for all three ASAR scenes at AB and all
three aggregation scales, are given in Table 3. This enables
a detailed examination of the combined roles of θ and
scale (object size) on backscatter-fp relationships. The corre-
lations in Table 3 are all significant at α= 0.01 (P-value

Fig. 6. (a) A 20 by 20 km subset of a Sentinel-1 SAR scene of VS containing FYI and DFYI; (b) The same scene with the object set overlaid on it;
(c) The spring VIS-NIR scene of the same area; and (d) Result of the labelling of objects as FYI (black) or DFYI (white).

Fig. 7. Time series melt pond fraction recorded at the Allen Bay (AB)
site in 2006, and at the Dease Strait (DS) site in 2016, from the date
of pond onset. Orange and blue markers denote the acquisition
times of high-resolution VIS-NIR scenes capture at AB in 2006,
and Victoria South (150 km east of DS), respectively. The markers
also indicate the means and SDs of melt pond fraction derived
from the VIS-NIR scenes after classification.
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<0.01), apart from Rhv/hh and fp from AB2 derived using the
coarse segmentation (r= 0.362). The polarization ratio Rhv/hh

and fp from scene AB1 are strongly positively correlated at
coarse (r= 0.846) and sharp (r= 0.838) scales. This relation-
ship points to a strong sensitivity of Rhv/hh to the winter ice
structure that leads to fp formation on the relatively smooth
FYI forming in the sheltered bay at AB. This relationship is
strongest for AB1, where backscatter was measured at
shallow θ, here 39.1–42°. Relationships between Rhv/hh and
fp are much weaker at steeper θ.

In Table 3 σhh
° and σhv

° are negatively associated with fp and
the strongest correlations are found using the sharp object set.
Generally strong correlations between σhh

° and fp are found in
data obtained from all scenes spanning the near to far θ range
examined. Focusing on results in Table 3 derived using the
sharp object set only, the strongest relationship between
σhh
° and fp comes from the shallow θ. The strongest relation-

ship between σhh
° and fp is found from scene AB2 (r=−

0.792), acquired at the steepest θ of the three AB scenes.
As near-range σhv

° is more strongly correlated with fp than it
is at mid- to far ranges, this implies that near-range σhv

° is
more closely related to variations in surface structure on rela-
tively smooth FYI that also lead to variations in fp shortly after
pond onset. Given the low levels of σhv

° intensity from smooth
FYI, caution is needed when interpreting σhv

° or Rhv/hh. We
found the overall σhv

° range from the three ASAR scenes
to be −18.9 to −23.6 dB. Scenes AB1 and AB2 (ASAR
swaths IS6 and IS2, respectively) had σhv

° consistently above
the noise-equivalent sigma-zero (NESZ) of those swaths.
Scene AB3 (ASAR swath IS4) σhv

° measurements were

below the NESZ of that swath (ESA, 2006). The relatively con-
sistent behavior of the σhh

° across the θ range investigated,
combined with high σhh

° intensity levels relative to the
system NESZ (here−9.2 to−20.4 dB) suggests the parameter
can be used for the development of fp retrieval techniques
spanning a large portion of the wide 400 km swath employed
by Sentinel-1 operating in EW mode.

Correlations between GLCM texture parameters and
spring fp for all three AB scenes, aggregated using the sharp
scale, is shown in Table 4. All variables in Table 4 are signifi-
cantly correlated with fp at α= 0.01 (P-value <0.01), though
the log transformation is required in the case of CON. As
before it must be stated that GLCM parameters derived
from σhv

° or Rhv/hh from AB3 may be contaminated by
system noise. The potential utility of GLCM parameters
derived from the σhh

° to be used along with σhh
° in the devel-

opment of a fp estimation approach is apparent. All GLCM
parameters derived from σhh

° at all examined θ, i.e. from
AB1 to AB3, are strongly correlated with fp provided the
log transformation is used where appropriate (see Table 4).
GLCM parameters from σhh

° are generally most strongly asso-
ciated with spring fp when measured at the shallow θ, here
39.1–42°.

Sentinel-1 backscatter and FYI, DFYI and MYI pond
fractions
Correlations between winter Sentinel-1 backscatter para-
meters σhh

° , σhv
° and Rhv/hh, and spring fp for FYI, DFYI and

MYI are shown in Figure 9. Data in Figure 9 were produced

Fig. 8. Melt pond fraction statistics derived from classified high-resolution VIS-NIR images, using the sharp image object set at each site to
calculate melt pond fractions.

Table 3. Correlations r between Envisat-ASAR derived σhh
° , σhv

° and Rhv/hh, and melt pond fraction for FYI samples taken from all three AB
scenes AB1–AB3, and by using all three scales of aggregation coarse, sharp and fine

Backscatter parameters and melt pond fraction

AB1 2006 (FYI) AB2 2006 (FYI) AB3 2006 (FYI)

σhh
° σhv

° Rhv/hh σhh
° σhv

° Rhv/hh σhh
° σhv

° Rhv/hh

Coarse r −0.821 −0.686 0.846 −0.590 −0.714 0.362 −0.810 −0.753 0.783
n 38 38 38 38 38 38 38 38 38

Sharp r −0.840 −0.698 0.838 −0.824 −0.792 0.693 −0.759 −0.755 0.657
n 89 89 89 89 89 89 89 89 89

Fine r −0.737 −0.535 0.718 −0.692 −0.647 0.508 −0.695 −0.585 0.634
n 238 238 238 238 238 238 238 238 238
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from datasets collected at VN and VS, with backscatter and fp
aggregated at the intermediate (sharp) scale. Table 5 provides
additional information on significance testing as well as cor-
relation results obtained by using the two other scales for
aggregating data. The two-tailed significance of each correl-
ation was tested at α= 0.01 and all correlations are signifi-
cant (P-value= 0.00). The scatterplots in Figure 9 aid the
interpretation of the winter backscatter behavior as it
relates to spring fp, as well as intensity levels relative to the
Sentinel-1 NESZ. FYI and MYI are compared separately
from FYI and DFYI, given that those datasets were collected
at different locations and in different conditions.

FYI and MYI are easily distinguishable during winter due to
the higher bulk salinity of FYI compared with MYI, which acts
to prevent the penetration of C-band microwaves into its
volume. Typical ice salinities for FYI are 5–8 ppt at 1–2 m
thickness and 0.1–3 ppt for MYI (Weeks, 1981). MYI has
much lower salinity due to desalination from a previous
summer, thereby promoting the penetration of C-band micro-
waves and significant volume scattering from air bubbles and
other constituents in the desalinated upper ice layer
(Hallikainen and Winebrenner, 1992). This volume scattering
mechanism enhances the backscatter of energy to the SAR and
increases intensity levels relative to FYI. As well, thermo-
dynamically grown FYI is relatively smooth compared with
MYI which has meter-scale variations in topography due to
the ablation and refreezing of melt ponds and hummocks
from a previous year (or years’) melt. The large-scale variations
in topography also enhance backscatter by increasing the
occurrence of features titled toward the SAR, which enhance
microwave backscatter. The σhh

° and σhv
° plots that combine

FYI andMYI in Figure9 showacontinuumof backscatter inten-
sity related to those ice types that is also connected to the ice
topography,which controls the formationof springmelt ponds.

Comparing FYI and DFYI in Figure 9, there also appears to
be a continuum of σhh

° and σhv
° intensity levels which are also

connected to ice topography and spring fp. As winter σhh
° and

σhv
° increases due to enhanced backscatter from the ridges

and ice blocks that make up DFYI, the spring fp decreases
due to topographical controls on melt water distribution
from the same ridges and ice blocks (Eicken and others,
2002). The σhh

° channel is more sensitive to this relationship;
the σhv

° to fp relationship is much weaker.

As with the Envisat-ASAR examined above, consideration
must be given to low σhv

° measured by Sentinel-1 relative to
the NESZ for the sensor and image mode. The ground
range detected EW product used here has a maximum
NESZ of−22 dB, though the σhv

° data in Figure 9 suggest sen-
sitivity to sea-ice backscatter mechanisms down to −30 dB
or less. Nonetheless, uncertainty regarding the utility of σhv

° ,
and by extension Rhv/hh, is exemplified by looking at the
general behavior of those parameters in Figure 9. In the
right panel of Figure 9, FYI and DFYI σhh

° decreases with
increasing fp, whereas σhv

° is almost static at ∼−30 dB. The
association between Rhv/hh and fp switches from negative to
positive in the left and right panels of Figure 9, despite the
consistent behavior of σhh

° . Given that σhv
° levels are so low,

combined with the fact that the HV polarization channel of
Sentinel-1 is subject to variable swath-dependent noise
levels across the sub-swaths which make up the EW and
IW modes, backscatter and texture information from the
HH polarization channel from Sentinel-1 should only be
used.

Table 5 reveals generalizations to larger aggregation units
that are matched by increases in the magnitudes of r. This is
expected based on common geographic theory concerning
modifiable areal units, where an increase in the magnitude
of r between two variables occurs when those two variables
are aggregated by larger units such as grid cells
(Fotheringham and Wong, 1991). However, aggregating by
larger units does not reveal the concomitant loss of variability
in the dataset. Should a regression model be developed from
the data created at the coarse resolution, with fewest aggre-
gation units (n= 37 or n= 91), the explanatory power of
the model would be expected to be weaker than would a
model derived from a greater number of smaller aggregation
units, in this case image segments.

Scatterplots showing relationships between winter GLCM
texture parameters derived from σhh

° and spring fp are given in
Figure 10. Data were aggregated at the sharp scale, and log
transformed texture parameters were shown in cases where
the strength of association was stronger. All GLCM para-
meters in Figure 10 are significantly correlated with fp α=
0.01 (P-value= 0.00). The texture variable logENE is not
shown in Figure 10 since it is co-linear with HOM.
Relationships between winter GLCM texture parameters

Table 4. Correlation r between Envisat-ASAR derived GLCM texture parameters contrast (CON), homogeneity (HOM), energy (ENE), entropy
(ENT) and GLCM variance (GLV), and melt pond fraction for FYI samples taken from all three AB scenes AB1–AB3

GLCM texture parameters and melt pond fraction

CON logCON HOM logHOM ENE logENE ENT logENT GLV logGLV

AB1 σhh
° −0.676 −0.839 0.845 0.807 0.853 0.835 −0.848 −0.861 −0.674 −0.855

σhv
° −0.507 −0.552 0.610 0.584 0.622 0.607 −0.604 −0.617 −0.639 −0.719

Rhv/hh 0.775 0.759 −0.733 −0.755 −0.701 −0.738 0.728 0.682 0.845 0.825
AB2 σhh

° −0.608 −0.766 0.781 0.764 0.777 0.786 −0.786 −0.771 −0.679 −0.824
σhv
° −0.361 −0.654 0.767 0.747 0.801 0.786 −0.771 −0.780 −0.631 −0.779

Rhv/hh 0.522 0.663 −0.688 −0.682 −0.680 −0.687 0.681 0.658 0.570 0.683
AB3 σhh

° −0.249* −0.638 0.721 0.653 0.748 0.725 −0.731 −0.744 −0.600 −0.761
σhv
° −0.614 −0.660 0.700 0.684 0.715 0.705 −0.708 −0.713 −0.691 −0.756

Rhv/hh 0.663 0.732 −0.738 −0.741 −0.704 −0.728 0.723 0.706 0.680 0.713

*Significant at the α= 0.05 level.
The prefix log is used to denote instances where the texture parameters were log scaled after they were derived from HH, HV and HV/HH bands. All correlations
are significant at α= 0.01 unless otherwise noted. Bolded text is used to highlight situations where the log transformation of a parameter improved the strength of
correlation with fp.
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Fig. 9. Correlations between pre-melt σhh
° and spring melt pond fraction (top), σhv

° and spring melt pond fraction (middle) and the cross-
polarization ratio Rhv/hh and spring melt pond fraction (bottom) for FYI and MYI sampled at site VN (left panel). Correlations between pre-
melt σhh

° and spring melt pond fraction (top), σhv
° and spring melt pond fraction (middle), and the cross-polarization ratio Rhv/hh and spring

melt pond fraction (bottom) for FYI and DFYI sampled at site VS (right panel). All backscatter parameters are expressed in deciBel (dB)
format. The Pearson’s product moment correlation coefficient r is shown in each plot.

Table 5. Correlations r between winter Sentinel-1 derived σhh
° , σhv

° and Rhv/hh, and melt pond fraction for all FYI and MYI samples from site
VN, and all FYI and DFYI samples from site VS. Testing was done using object sets coarse, sharp and fine in each case. P-values from two-
tailed significance tests (t-tests) of each correlation are all 0. The number of sampled objects (n) from each object set are also given

FYI and MYI at site VN FYI and DFYI at site VS

σhh
° σhv

° Rhv/hh σhh
° σhv

° Rhv/hh

Coarse r −0.864 −0.866 −0.421 −0.870 −0.680 0.838
n 91 91 91 37 37 37

Sharp r −0.848 −0.856 −0.480 −0.825 −0.668 0.784
n 200 200 200 108 108 108

Fine r −0.837 −0.835 −0.371 −0.801 −0.536 0.704
n 440 440 440 179 179 179
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and spring fp are intuitive when considered in the context of
the heterogeneity of spatial patterns of single-polarization
backscatter intensity in SAR images as they relate to ice
type. Relatively smooth FYI, which evolves to have high
spring fp, is also characterized by spatially homogeneous
zones of backscatter intensity. MYI, which has a more
complex topography and evolves to have lower fp compared
with FYI, is characterized by heterogeneous distributions of
scattering mechanisms and pixel intensity values (see
Fig. 5a). DFYI, which can have similar σhh

° intensity levels
as MYI, also have more complex textures when compared
with FYI. As such the texture parameters which are respon-
sive to spatial heterogeneity or disorder, being logCON,
ENT and GLV, are highest for winter MYI and DFYI and
evolve to lower fp. Texture parameters which are responsive

to orderliness or uniformity, such as HOM and logENE (not
shown), are highest for winter FYI evolve to higher fp. This
behavior of GLCM texture parameters of winter sea ice is
not unfounded, as the inclusion of GLCM texture parameters
has been shown to improve the classifications of sea-ice
types in winter SAR images (Clausi and Deng, 2003).
However, the further connection of textural features of ice
types to spring fp has not yet been made.

Melt pond prediction model
As a first step in the development of a fp prediction model, we
considered the importance of evaluating data collected in
different conditions separately in this study. A robust fp
prediction model, i.e. one that includes a wide range of FYI

Fig. 10. Scatterplots of winter GLCM texture parameters and spring melt pond fraction for sites VN (FYI and MYI) and VS (FYI and DFYI). The
Pearson’s product moment correlation coefficient r is shown in each plot.
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and MYI features, would include input data of all features
captured in the same controlled conditions. Unfortunately
the limiting factor in this study is the scarcity of high-
resolution optical scenes from which to derive spring fp
data coincident to winter C-band SAR imagery. Moreover,
C-band σhh

° and σhv
° are affected by θ; both parameters gener-

ally decrease with increasing θ, with the rate of decrease
greater for FYI compared with MYI (Geldsetzer and others,
2007). This effect would mask backscatter to fp relationship
if not controlled.

Based on the above, we fit linear regression models to the
Sentinel-1 backscatter and texture data, and fp data from the
VN site only. Our rationale for choosing data from VN only is
based on the ideal timing of those VIS-NIR acquisitions rela-
tive to the sub-stage of melt pond evolution. Based on in situ
studies (Eicken and others, 2002; Polashenski and others,
2012 and Landy and others, 2014), rapid changes in fp
linked to melt rates and significant meltwater inputs from
snow are known to occur. After the snow cover has
ablated, fp is comparatively stable in time and varies in
space according to topographic relief (macroscopic flaws
such as seal holes and leads excepted). Eventually perme-
ability thresholds are crossed and rapid vertical drainage of
melt ponds occur in a spatially heterogeneous manner.
Based on the timing of acquisition after the onset of ponds
(14 d), visual inspection of the pan-sharpened VIS-NIR
imagery, and statistics derived from classified VIS-NIR
scenes (Fig. 8), we are confident that site VN is most repre-
sentative of this sub-stage of melt pond evolution, when fp
is linked to ice topography, hence closely related to ice
type. On the other hand, VIS-NIR data at AB and VS were
acquired during the initial snow melt and drainage sub-
stages, respectively. The VN data capture winter FYI and
MYI that evolves into a wide range of fp, from 0.07 to 0.73
(see Fig. 8). Regression model fitting was done using two
approaches: (i) using σhh

° only; and (ii) using σhh
° and candi-

date texture parameters from Figure 10. A table of the
output regression model parameters is given in Table 6 and
the derived regression equations are shown below.

fp ¼ �0:317� 0:039X1; ð1Þ

fp ¼ �0:533þ 0:853X1 � 1:157X2 � 0:069X3: ð2Þ

The Sentinel-1 data used for regression model develop-
ment was collected over a θ-range of 36.5–39.7°, a portion
of the studied angles within which strong σhh

° and texture
relationships with fp were observed. We expect the models
would be applicable to a wider range of θ, as the change
in σhh

° from FYI and MYI is not significant from ∼35 to 45°

(testing is required). Furthermore, the models may prove
capable of predicting fp of DFYI to within an acceptable
error, as both MYI and DFYI display similar σhh

° and texture
characteristics, and evolve to overlapping fp in spring.
Fortunately, with Sentinel-1 operating as a two satellite con-
stellation with near-polar orbits 180° apart, the θ limitation of
the models presented here can be overcome by the regular
collection of scenes during the winter period.

CONCLUSIONS
In this study, we matched winter C-band SAR scenes with
spring high-resolution VIS-NIR scenes in order to examine
linkages between SAR backscatter, texture and melt pond
fraction. As a key first step to the development of a melt
pond fraction prediction model, we examined the roles of
incidence angle and scale on correlations between backscat-
ter parameters and pond fraction. An object-based image
analysis, with objects (or segments) representing zones of
ice with unique characteristics, provided a logical basis for
comparing the winter and spring thermodynamic sea-ice
states. First-year ice, deformed first-year ice and multiyear
ice types were included in the analysis.

Backscatter parameters σhh
° and σhv

° , and GLCM texture
parameters derived from σhh

° and σhv
° , and spring melt pond

fraction on all ice types are strongly correlated. Backscatter
parameters derived from σhv

° were found to be of limited
utility due to the intensity levels approaching or within the
NESZ; this is particularly true in the case of Sentinel-1. The
exclusion of σhv

° is not critical. We found that σhh
° , and

GLCM texture parameters homogeneity, energy and GLCM
variance derived from σhh

° , are most closely linked to spring
melt pond fraction on the basis of correlation and regression
testing. Two simple linear models for estimating melt pond
fraction of FYI and MYI from the HH polarization channel
of Sentinel-1 were proposed, one utilizing only σhh

° as the
explanatory variable and one utilizing σhh

° and texture para-
meters derived from σhh

° as explanatory variables. The
model was created using input data obtained during the
sub-stage of melt pond evolution when pond fraction is
related to ice topography and ice type, and not influenced
by rapid fluctuations due to snow melt (early ponding) or
drainage processes (late ponding). The model r2 were 0.72
and 0.77, with standard errors of 0.09 and 0.08, respectively.

The models developed here apply to σhh
° collected over a

narrow θ range (37–40°). This is partially a consequence of
relying on sporadic high-resolution VIS-NIR scenes to
derive spatially coincident fp information for model develop-
ment. However, with regular C-band frequency SAR cover-
age of the Arctic, especially by Sentinel-1 operating in its
full two satellite constellation now, coverage of ice covered
regions at some point during winter within a small θ range
is achievable. As Sentinel-1 data are free and open access,
its implementation is relatively straightforward. A legacy of
C-band SARs providing wide-swath HH polarization data,
as well as anticipated continuity including new missions
such as RADARSAT Constellation Mission (RCM) in 2018,
provides alternatives to Sentinel-1.

A first attempt at predicting sea-ice melt pond fraction
from winter SAR data has been presented in this study. A
method for estimating a single pond fraction value describing
the relative susceptibility of the sea-ice surface to flooding
according to its topography has been presented. A frame-
work has been established for the development of more

Table 6. Summary of regression model outputs. Shown for each
model are the coefficient of determination (r2), standard error of
the estimate (S), the F-value, the P-value, and the input predictor
variables

Multiple regression model

Model r2 S F-value P-value Predictors (X1, X2, …, Xn)

1 0.72 0.09 505.833 0.000 σhh
°

2 0.77 0.08 222.767 0.000 HOM, logENE, logGLV

160 Scharien and others: Linking winter and spring sea-ice states using Sentinel-1 backscatter

https://doi.org/10.1017/aog.2017.43 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2017.43


robust and widely applicable melt pond prediction algo-
rithms, i.e. ones that are extendable to a wider range of ice
conditions and applicable to a wider range of radar para-
meters such as incidence or frequency. The ability to
predict the spring melt pond fraction during the preceding
winter months will assist seasonal ice forecasts and outlooks
by providing key parameter that is linked to the sea-ice
thermodynamic state during the critical melting period.
Application of this approach on a local to regional scales,
made possible given the high spatial resolution of Sentinel-
1 (40 m pixel spacing in EW mode), will assist process
studies by providing an indication of how preconditioned
the ice cover is for mass and energy exchanges that are
linked to melt pond fraction, such as carbon uptake and
light transmittance to the upper ocean layer.
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