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GLOBAL ATTRACTOR FOR THE CAHN-HILLIARD SYSTEM

JAN W. CHOLEWA AND TOMASZ DLOTKO

The Cahn-Hilliard system, a natural extension of the single Cahn-Hilliard equa-
tion in the case of multicomponent alloys, will be shown to generate a dissipative
semigroup on the phase space H = [.ffa(Q)]m. Following Hale's ideas and based
on the existence and form of the Lyapunov functional, our main result will be the
existence of a global attractor on a subset of H. New difficulties specific to the
system case make our problem interesting.

1. INTRODUCTION AND NOTATION

This paper justifies the existence of a global attractor for the system of Cahn-
Hilliard equations

(1) wt = A[-rA™ + Vw$(w)] (t, x) e R+ x ft,

where w : R+ x ft -» Rm, T = [I\j] G R m x m is a symmetric and positive definite
matrix, ft is a bounded domain in Rn (n ^ 3) having C* regular boundary Sft and
$: Rm —> R has locally Lipscbitz continuous partial derivatives up to the third order.
The system (1) is considered with homogeneous boundary conditions

(2) V.wJV | ,e«i= Vx(Aw)N Uefln= 0,

(here Vxii; = [(dv)i)/(dxj)] is a gradient TO x n matrix, while N denotes an outward
normal vector to dO) and with an initial condition

(3) ™(0, x) = wo(x),

for a vector function WQ from the product space [/T2(n)]m, satisfying the compatibility
condition VxwoN = 0 on 5ft.

For T7i = 1, the problem (l)-(3) reduces to the original Cahn-Hilliard model,
studied by many authors (for example [1, 10, 2]), describing decomposition of a binary
alloy. In general the system (l)-(3) is proposed as a phase separation model in the
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case where the alloy consists of m + 1 components (decomposition of a multicomponent
alloy). The derivation of (l)-(3), as well as many theoretical results concerning this
problem, can be found for example in [3] or [4]. However, based on the single Cahn-
Hilliard equation considerations of [10] and [2] it is possible to investigate the dynamics
of (l)-(3) from the point of view of dissipative systems presented in [5] and general
theory given in [6].

Since we are dealing with a system we use mostly matrix (vector) notation and
calculus, writing the components directly only when it is needed for the clarity of
local calculations. The components of a vector s £ Rd are written as s;, whereas
partial derivatives are denoted in the standard way, with explicitly given variable with
respect to which differentiation is taken; for example the components of the nonlinear
term Vtl,$(u)) are written simply as -^(w). The differential operators A, V are
understood to be taken with respect to spatial variable x; otherwise we always indicate
the variable explicitly in the index, as in the case of Vu,$(iw). For a matrix B, tr(B)
is the sum of the diagonal elements of B and BT is the transposed matrix of B; also
by the integral (or derivative) of a matrix we understand the matrix of the integrals
(derivatives) of its elements. Notation of Sobolev spaces is standard [10, 11]. Product
spaces [Hk(fl)]m and [£p(f2)]m are written as 7ik and Cp respectively and we generally
omit dependence on fi in notation of these spaces. |fi| denotes the Lebesgue measure
of fi. Because of the semigroup approach only the time argument of the solution w
is explicitly distinguished. On the other hand, the integration is usually taken with
respect to x £ fi, hence throughout the paper all integrals left unspecified should be
understood to be taken over fi, also all constants mentioned are positive numbers.

Let us specify the additional conditions that are required of the function $ staying
under the gradient on the right side of (1). We claim (besides the (73+Lipschitz reg_
ularity mentioned at the beginning of this paper) that $ fulfills the following growth
conditions:

(4) BMgKVjgir1 $(s) ^ M,

(6)

-00 k3 (l + |s |2 p"3), 1 ^ i, j , I < m, s£

(8) I v ^ o o i ^ M ^ + fc;, seRm,

and additionally, everywhere in (4)-(8) we require p = 2 if n = 3.

REMARK 1. As a simple application of the Main Value Theorem it may be seen that the
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assumption (6) is a consequence of (7) and, in order, (8) is a consequence of (6). There-
fore (7) is the only necessary assumption among (6)-(8), and we decided to formulate
(6) and (8) explicitly only for simplicity of further references.

REMARK 2. Although conditions (4)-(8) seem to be complicated, there are many func-
tions satisfying all of them. As a "model function" which satisfies (4)—(8), we can
take the real polynomial of order 2p, having all leading coefficients positive; that is a
function of the variable s = (si, ..., sm) of the form:

m

$(s) = \ J a\s2p + (a polynomial of order ^ 2p — 1).

However, our $ need not to be a polynomial function as are those considered in [10]
or [2]. Moreover, the lower bound (5) will be used in our paper only in the proof of
Lemma 5 which offers the possibility of further generalisations. For example, condition
(5) can be omitted in the case when $ is convex, that is, the Hessian $" is nonnegative
definite (compare Remark 4 below).

2. SYSTEM (l)-(3) AS A CAUCHY PROBLEM IN A BANACH SPACE.

EXISTENCE OF A GLOBAL SOLUTION

Let us write (l)-(3) as an evolution problem

{ w + Aw = F(w), t>0,

w(0) = w0,

where F(w) = AVw$(w) and the operator A = FA2 is considered on the Hilbert space

£2 with dense domain

(10) D(A) = {0 g n*; Vx<f>N = Vx(A<t>)N = 0 on 80.}.

In order to use the existence theory developed in [6] with the improvements mentioned
in [5, p. 73], we shall show that A is sectorial, whereas the nonlinear term F is locally
Lipschitz continuous as the operation between the spaces D^A1!2} = {<f> £ Ti2; Vz^iV =
0 on dSl} and £ 2 .

Denoting by {•, •) the scalar product in C2 and defining

A := A + S0T,
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where So > 0 is taken so large that (A2 + So) is an isomorphism between D(A) and
£ 2 (see [11, Theorem 5.5.1]), we find for any cj>, ip E D(A), that

(11) (A<f>, i>)= I i>TTA2(t>dx + S0 I i{,TT<j>dx

= - f tr(Vxr/>TTS74A<t>))dx + So

= I Ai>TTA<f>dx + So [ 4>Tr<t>dx.

Since F is symmetric we have analogously from (11) that

(12) / Atl>TTA<f>dx + S0 f <j>rYil>dx - / A2tPTr</>dx + So f

which proves the symmetry of A. Next, since F is positive definite, the operator A is
bounded below, that is, for each </> £ D(A)

(13) (At, 4>)= I <t>TYA2<t>dx + S0 I <t>Tr<f>dx

= f A<t>TTA<t>dx + S0 f 4>TT<t>dx > 60(4, 4).

Moreover, thanks to the choice of £o > we have

D{A)
 AI±f" £2 _r^ £2)

isomorphism isomorphism

so that the range of A is the whole space £ 2 . From these observations it is clear that

A is self-adjoint and bounded below and hence, in particular, sectorial. Then using [6,

Exercise 6 or Theorem 1.3.2] we obtain finally that A is itself sectorial.

The second property we should investigate is the local Lipschitz continuity of the

nonlinear function F standing on the right side in (9), that is, we need to check the

following condition

U bounded

We find by differentiation that

fc,!=l
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Transforming the right side of (15) and taking L2 norms of both sides we obtain further

(16)

-as-
|Lcc —

E

E
fc.l=l

+ max
*,/=!

Remember that $, V1 are taken from a bounded set 17 C ~H2 and also that Sobolev em-
beddings H1 C £4, H2 C X00 hold for space dimensions n ^ 3. Hence since the partial
derivatives of $ are locally Lipschitz continuous and locally bounded (Lipschitz con-
stants and upper bounds are denoted by common symbols Lu and Mu, respectively),
inequality (16) gives:

— A-—(V>) ^ Mr/ >

1=1 Jb, i= l

+LuU-i,\\
k, 1=1

where the constant fcy depends only on the set U. Condition (14) is thus justified.
The general theory of [6, p.54] now guarantees the existence of a local solution for

the problem (9), that is, there are a positive time r = T(V>O) and a function w : [0, r) —>
C2 which satisfies (9) for t < r. Moreover, w(t) belongs to D(A) for t € (0, T) and
also

(17) w € C([O, r ) ; D(A1!2)) , AS7w$(w) e C({0, r); C2).

In fact, as will be shown in Section 3.D, the Ti.2 norm of the solution is o priori bounded
uniformly for t £ [0, oo). This property of the solution implies, in particular, global
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boundedness in time of the quotient

so that in consequence, according to [6, Exercise 1, p.58], the solution w exists on

the whole half-line [0, +oo). Moreover, the family of operators {T(t)}t^o defined by

T(t)wo := w(t, wo) forms a strongly continuous semigroup on the space D^A1/2) (com-

pare [5, p.73]).

3. SOME PROPERTIES OF THE SYSTEM (l)-(3)

A. PRESERVATION OF SPATIAL AVERAGE OF THE SOLUTION.

In the physical model described by (l)-(3), preservation of spatial average of the

solution corresponds to mass conservation. This property follows immediately by in-

tegration of (1) over i 6 fl and by parts. Because of boundary conditions (2) the

integrals over d£l disappear and we obtain

or equivalently

(18) w(t) = w0, t^Q.

B. EXISTENCE OF THE LYAPUNOV FUNCTIONAL.

Multiplying (1) by [-FAw + Vw$(w)]T we find by integration that

/

m f IV I - dx,

that is, for all t > 0 the left side of (19) is non-positive, moreover

(20) 0 > f[-TAw + Vw^{w)\Twtdx = jj[ ^*r(V,ioTrV,w)dx + f ${w)

Thus we may define the Lyapunov functional £ for (l)-(3) as

(21) £(">(*)) = / \tr(Vxw
TTVxw)dx + f $(w)dx.

It is dear from (19), (20) that C decreases along each trajectory. Furthermore:
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LEMMA 1 . If for a solution w of the system (l)-(3)

(22) £(™M) = constant, t > 0,

then w is a stationary (time independent) solution of (l)-(3).

PROOF: Because for each positive t, w(t) belongs to D{A), conditions (22) and
(19), (20) ensure that
(23)

K5<-<*»

2

= 0 almost everywhere in U.

Next, from the well known property of distributional derivatives (see [9, p.92]), the
function under the gradient in (23) is independent of x. Thus, since C2(fj) C D(A)

for n ^ 3 , condition (23) gives:

(24) Vt>03c( t)6 t tm - TAw(t) + Vw${w(t)) = c(t) for every x £ ft.

Further, taking the Laplacian of both sides in (24) we obtain that

(25) A [-rAto(t) + Vw*(w(t))] = 0, i € ( 0 , +oo).

As w(t) is a solution of ( l)-(3), equality (25) implies that

-^(0=0 forOO,

therefore tv(t) is time independent for t > 0. Finally, because of (17), w(t) = WQ for

all t ^ 0. Lemma 1 is proved. u

We use the above considerations in the proof of the following:

LEMMA 2 . An element w £ D(A) is a stationary solution of (l)-(3) if and on7y
if w is a ti2 solution of the Neumann type elliptic boundary value problem:

{ -TAv + VD$(v) = a in 0 ,

Vst»JV = 0 on dSl.

PROOF: Based on the considerations leading to (24), it is clear that if to is a
stationary solution of ( l)-(3) then, in particular, w is a solution of the elliptic problem
(26) with some a 6 R m . Moreover, by integrating (26) over x G Q, it is possible to
determine explicitly the constant vector a as:

(27) a = V**(t>).
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For the converse, if v G D^A1?2) solves

(28) -rAv + Vv$(v) = a,

then from elliptic regularity theory [8], v g Ji4 and also:

Vx{Av)N = Vj :(r-1(-VB*(«) + a)) = 0 on dQ..

Thus v £ D{A), whereas taking Laplician of both sides in (28)

(29) A(-TAv + Vv$(v)) = 0,

so that w(t) = v for all t ^ 0 is a time independent solution of (l)-(3) starting from
w(Q) = v . The proof is completed. D

C. GLOBAL H1 ESTIMATE OF THE SOLUTION.

Existence of the Lyapunov functional C, guarantees a global in time estimate of
the norm ||wi||jfi for each component Wi of the solution w. Since $ is bounded below
(condition (4)) and £ decreases along each trajectory, we have from (21):

(30) I ]-tr (Vxw
TTVxw)dx < £{w0) - f <&{w)dx ^ C{w0) - M |fi|.

Next, since F is positive definite, then

/

I m

-tr(Vxw
TTVxw)dx > 7 o ^ ||V^||2L, .

Finally, as the expression

(32)

defines on D^A1/2) the norm equivalent to the natural H1 norm, then collecting esti-

mates (18), (30), (31) we reach the required property

(33) IM*)ll«i ^ constant,

with constant independent of t £ [0, +oo).

D. GLOBAL H2 ESTIMATE OF THE SOLUTION.

To obtain global in time boundedness of HwH ĵ it is necessary to find first a

suitable estimate for the nonlinear term AVm$(i«). Hence, we start with the following

auxiliary inequality, which is valid (with some k > 0) only on a solution iv(t) of the

system (l)-(3);
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LEMMA 3 . There exists a positive constant k = &(||wo||?(i , fi) such that for a
solution w(t) of the system (l)-(3):

(34) \A2w (t)\\%3), t > 0.

PROOF: Condition (34) stated above is similar to inequality (4.105) developed in
[10, p.156], thus to derive (34) we shall follow the concept of [10].

Estimating the i-th component A J^r(io) of the nonlinear term AVm$(w) we have

(35)

A®*(»)
m n

E E
i,i=i fc=i

max

(w)
dxkdxk 4^

j—1

-M

max -(«)
7=1

Taking now L2 norms of both sides of inequality (35) and using assumptions (6), (7)
we obtain

(36)
9$

1,3=1

£H V K)II L<
3=1 3=1

3=1 3=1

We are now in the position fully analogous to [10, condition (4.109), p.157]. If for each
particular component Wj we follow the considerations of [10, between (4.110)-(4.116)],
we find similarly as in [10] that:

(37)
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and further, depending on the space dimension n ,

{ \wi ~ ™o;||L°o ^ h \\VWJ\\L2 for n = 1,

\\wi ~ ™oj\\L<=o < kB HVwjIl^r0 | |A2Wj||^, for n = 2 and any e > 0,

I K - woillz,- < h \\VWJ\\%' I I A ^ H ^ ' for n = 3.

Inserting (37) and (38) into (36), using the global H1 boundedness of w(t) (shown in
Section 3.C) and applying an obvious inequality

we come finally to (34) with the constant k dependent on the Ti1 norm of the initial
function WQ . Condition (34) is justified. u

We are now able to prove the following:

LEMMA 4 . If w is a solution of (l)-(3), then for all t ^ 0 :

(39) l|Ato(*)||£« ^ mai{*8«1>

wAere constants kg, z\ are given in (45), (46) respectively. Moreover, since the norm

(40)

on D^A1/2) is equivalent to the natural Ti.2 norm, then because of the mass conservation

property shown in Section 3.A:

(41) IMOIIwa ^constant (\\w01|«» , 0), O 0.

PROOF: By multiplying (1) by A2wT and integrating over $7 we obtain:

(42) / A2wTwtdx = - f A2wTTA2wdx + j A2wTA{Vw$(w))dx.

Next, since T is positive definite, the Holder and Cauchy inequalities give:

(43) \jt \\Aw\\2
c> ^ - T O ||A2™||2£2 + | | A 2 | |

^ - ^ IIA^II2, + ±-

Inserting (34) into (43) we have

( 4 4 ) | | | A » ( t ) | £ . < - T o H A l £
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Let us note further, that as a consequence of the boundary conditions (2), J Aw(t)dx =

0 and hence, according to the Smoller inequality ([7, p.112]), we have

We define the constant Z\ as the unique positive solution of the algebraic equation:

(46) -7o z + —
7o

As a consequence of (45), whenever ||Au>(t)||£2 > fcgZi then, by the definition of Z\,

the right side of the differential inequality (44) is negative, hence | |AID(<) | | £ 2 needs to
decrease. This shows (compare [2, Lemma 5] for detailed proof), that (39) is satisfied.
The proof of Lemma 4 is completed. D

REMARK 3. To justify the correctness of the calculations in Lemma 4 we need additional
smoothness of the solution to. As a result of [6, Theorem 3.5.2], the function (0,oo) 3
t —» u>(t) € D^A1?2) is continuous. Then, as a consequence of (17) and (9), also the
function (0, oo) 3 t —> Aw(t) £ C? is continuous and one can check that for t > 0:

0 as h -> 0H

or

h'1 ( f \Aw{t + h)\2 dx- f \Aw{t)\2 dx) - 2 I A2wTwtdx

-— [\Aw(t)\2dx= f A2wTwtdx f o r t > 0 .
2 dt J J

E . BOUNDEDNESS OF THE SET OF STATIONARY SOLUTIONS.

Let us denote by V the subset of the space D^A1/2) consisting of all fixed points
of the semigroup {T(t)}t-^o, that is, of all stationary solutions of the system (l)-(3)
(the symbols D^A1^2) and {T(t)}t^o were introduced in Section 2). According to the
considerations of Section 3.B (Lemma 2), the following characterisation holds (remem-
bering that <f> is the spatial average of <j) over fi):

(47) V={v£

Then for fixed a > 0, let T>a be the subset of T> consisting of all elements with |v|
not exceeding a . In the next section boundedness of the set of stationary solutions will
play a crucial role in the construction of the global attractor. Thus we shall prove:

LEMMA 5 . For eacii a > 0, Va is a bounded subset of D(Al>2) .

PROOF: Since an element TJ of 2? is characterised in (47) as a solution of a Neu-
mann type elliptic boundary value problem, then we have

(48) / vT[-rAt; + Vv$(v)]dx = f vTa dx.
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Further, in the presence of the definition of a (stated in (47)), since F is positive definite
(48) gives

(49) 70 JT ( \Vvi\2 dx ^ jvTVv${v)dx - fvTVv${v)dx.

Next, it follows from (8) and the Young inequality that

/rn\ W ^ W IV7 rFt / n M «< , * I « I ^ P I r^t,.\
^OUJ " f > 0 - J C ( i > ) > 0 vs^W1 \*t™\3)\ ^z ^ 1 ^ 1 ' ^ V / '

Hence, applying to the right side of (49) the Schwarz inequality and growth conditions

(5), (50), we obtain:

(51) 70 ] £ f\Vvi\2dx^ f \Vv$(v)\\v\dx-k0 f Ivfdx + ktinl

(v \v\ - k0) j \v\2p dx + (C(u) \v\2p

By substituting in (51) v = vo = (fco)/(|i>| + 1) in order to obtain a negative coefficient
before J \v\ p dx, we reach the estimate

(52) 70 f; / | Vvtf dx < {C{u0) \v\ + k,) |fi|,

where the right side depends only on given quantities. Moreover, for the equivalent
norm (32) on H.1, condition (52) ensures that

/ c o \ 11 it 11 <* ]p M«rl IOI^

The inequality (53) is crucial for the rest of the proof. Using once again the
characterisation of the elements of T> (see (47)) we find:

(54) J A-i;T[-rAi; + Vv$(v)]dx = I AvTadx = 0.

Since the matrix F is positive definite, equality (54) gives

(55) -y0f\Av\2dx+([\Vv$(v)\2dx) (f \Avf dx\ > 0,

and further (from the Cauchy inequality),

(56) f \Av\2 dx ^-2 f
J 7o J

2 f \ v ( ) \ dx.
7o
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Now, based on the growth condition (8), we can increase the right side of (56) coming
to

9JL. 2 |(-) |

ax +(57) / |A*|2 dx^\ f (Jb* \v\2p-' + k'Xdx ^ ^ / \v
J To J To J

•V2

7o

In the presence of the Sobolev embeddings (remembering that p = 2 i f n = 3) the

right side of (57) is estimated by (constant i \\v\\i£^~ + constant2j . Moreover, since

inequality (53) assures boundedness of Hvll-^i only in terms of |TJ| and |fi | , formula
(57) gives immediately:

(58) \\Av\\c2^klo(\v\,n).

Then considering the equivalent norm (40) on D^A1/2), we obtain finally that every
element v from T>a satisfies:

(59) |M|wl < h^a, n).

Lemma 5 is thus proved. U

4. DlSSIPATIVENESS AND GLOBAL ATTRACTOR

Since the set T> introduced in (47) contains all constant vector functions, that is
{v(x) = v\ v £ R m } C 2?, it is impossible to construct the global attractor on the whole
space D^A1/2) . To overcome this difficulty, for fixed a > 0 we introduce the complete
metric space Ti.a:

(60) « a : = { t i €

According to the mass conservation property (18) the set 7ia is positively invariant,
hence we shall consider further {T(t)yt^Q restricted to the semigroup on Ha. With
the use of our previous results we shall justify that:

LEMMA 6 . There exists a bounded subset B of Ha Attracting each point of 7ia

(that is, the semigroup {T(t)}t^o on 7ia is point dissipative [5, p.38],).

PROOF: Let us define the set B as

(61) B:= | J w(»),
u6Wa

where w(u) denotes the w-limit set of u. Because of the estimates (18), (41) {T(t)}f£o

takes bounded sets into bounded sets. Moreover, since the operator A (defined below
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formula (9)) is sectorial and, according to [11, Theorem 5.5.1.b] its resolvent is compact,
then [5, Theorem 4.2.2] ensures that {T(i)}t^o is compact. Hence B attracts each point
of TLa , and to be able to use [5, Theorem 4.2.4] we only need to show that B is bounded
in Ti.a •

For every UQ E B there is wo £ Wa such that Ko belongs to w(wo). Then by
substituting w := T(t)wo as an argument of the Lyapunov functional C (21), it is
obvious that:

(62) 30e* Urn C(T(t)wo)=0,
t>f oo

since C(T(t)wo) is decreasing and bounded below. Moreover, from a characterisation
of u>-limit sets the Lyapunov functional C is identically equal to /3 along the trajectory
of every element from w(too). Thus we have in particular:

(63) £{T{t)u0) =0 for all t > 0,

so that, according to Lemma 1 (Section 3.B), uo must be a stationary solution of the

system (1)—(3) belonging to T>a. Hence, due to Lemma 5, B is bounded in DyA1'2) .

The proof of Lemma 6 is finished. D

The results we have obtained so far justify the validity of all the required assump-
tions of [5, Theorem 4.2.4]. As a direct consequence of this theorem we obtain the
existence of the global attractor for the system (l)-(3); so we are able to formulate:

THEOREM 1 . Semigroup {T(t)}t^0 generated by the Cahn-Hilliard system (1)-
(3) on a metric space 7ia possesses a connected global attractor.

5. ASYMPTOTIC BEHAVIOUR OF THE TRAJECTORIES

We have already mentioned in Lemma 6 that each element wo of the phase space
D(A1/'2) is attracted by its w-limit set u>(wo). It has also been shown explicitly that
w-limit sets contain only stationary solutions of the system (1)—(3). However, if the
gradient V3> is a monotone operator, then any w-limit set consists of a single element,
and in consequence T(t)wo must tend to a stationary solution. Thus let us introduce
the set WCR" 1 :

(64) W := {a' e Km; V,eKm (3' - 5)T(V.,$(s') - V.$(«)) ^ 0}.

We shall prove the following:

THEOREM 2 . For each element WQ from D^A1/2) with the average WQ belonging

to W, T(t)wo —> wo in 7i2 as t goes to infinity.

PROOF: It suffices to show that for arbitrary w0 G D(AXI2) with w0 £ W, the

set W(WQ) consists of a single element WQ . If v 6 W(WQ), then v has the same spatial
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average as wo • Moreover, since v and Wo are time independent solutions of (1)—(3),

then with the use of Lemma 2 we find that

(65) - rA(W 0 -v) + V^0$(Wo) - V,*(») = V^ 0 $(w 0 ) - V,*(t>).

Multiplying (65) in £ 2 by WQ — v, we obtain (F is positive definite):

(66) 7n £ / IV(^° - ")|2 dx^- (w0- vf(V^(w0) - Vv$(v))
i=l J "'

+ J (Wo - vf (v^0$(W0) - Vv*{v))dx

= -J{w0- vfiVjs, $(WO) - V,,*^))^.

Since Wo 6 W, condition (66) gives:

m

(67) ] T / |V(W0 - w)|2 dx = 0.

Then because the spatial average of v is equal to WQ and v € . D ^ 1 / 2 ) C C°(TT) , the

function w must be identically equal to Wo. The proof is completed. u

REMARK 4. In order to ensure that W is a nontrivial set, further assumptions on the
term $ are needed, for example it is clear that W = R m if we assume that the function
$ is convex (that is, its Hessian matrix $ " is nonnegative definite). However, the set
W can be "large" in M.m also in the case when some special forms of nonlinearities in
(1) are considered. For example, let us take

where W{; i = 1, . . . , m are real polynomials of order 2p with positive leading co-
efficients (compare the conditions (4)-(8)). For such W, the derivatives W[(r) are
monotone for \r\ sufficiently large, i = 1, . . . , m , so we shall denote by a,- (b{) the
value of largest local maximum (smallest local minimum) of W[. Thus the set W con-
sists of all s' £ M.m those components sj are outside the intervals (z\, zj) for each
i = 1, . . . , m, where constants z\, z\ are defined as

f z\ = sup{z; W!(r) ^ bi for all r ^ z},

\ z\ = inf{z; W!(r) ^ a; for all r ^ z}, i = 1, . . . , m.
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6. BACKWARD UNIQUENESS RESULT

At the end of the paper let us summarise some of the results we have obtained
so far and consider the semiflow {T(t)}t-^o restricted to the global attractor in the
phase space "Ha. Since for two solutions Wi, v)2 of the problem (l)-(3) the Lipschitz
condition (14) holds, then based on the abstract backward uniqueness result stated in
[10, Lemma 6.2, p.170] it follows immediately that the restricted T(t) is a one-to-one
map for each t ^ 0. Then using the general semigroup property given in [5, Theorem
3.10, p.56] we obtain finally:

LEMMA 7 . Semigroup {T(t)}f^o restricted to the global attractor in the phase
space Ha can be extended to a group.
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