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ABSTRACT

The approximation of the individual risk model by a compound Poisson model
plays an important role in computational risk theory. It is thus desirable to
have sharp lower and upper bounds for the error resulting from this approxi-
mation if the aggregate claims distribution, related probabilities or stop-loss
premiums are calculated.

The aim of this paper is to unify the ideas and to extend to a more general
setting the work done in this connection by BUHLMANN et al. (1977), GERBER
(1984) and others. The quality of the presented bounds is discussed and a
comparison with the results of HIPP (1985) and HIPP & MICHEL (1990) is
made.
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1. INTRODUCTION

In the individual risk model an exact calculation of the aggregate claims
distribution and of associated functions, such as stop-loss premiums, is very
time consuming. Therefore actuaries often prefer to use an approximative
computation method or to replace the individual model by a collective model
in which the aggregate claims distribution can easily be calculated for example
by Panjer's recursion formula.

Of course, only approximations that are close enough to the original model
will be of real interest. Theoretical error bounds are helpful in this regard since
they give a quantitative measure to asses the quality of an approximation.

This paper examines the error caused by approximating the individual model
by a compound Poisson model. Explicit lower and upper bounds are derived
for the error in calculating the distribution function of aggregate claims,
associated probabilities and net stop-loss premiums. The analysis applies to
approximations with different values of the Poisson parameter and generalizes
the results obtained by BUHLMANN et al. (1977) and GERBER (1984). It is
shown that the error bounds for the aggregate claims distribution and for the
stop-loss premiums are minimized for different values of the Poisson parame-
ter. As a special case, it also pointed out that the well-known upper bound of
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136 NELSON DE PRIL AND JAN DHAENE

GERBER (1984) for the stop-loss error in the classical compound Poisson
approximation, can be improved by a factor 1/2.

To conclude, the quality of the error bounds is discussed and a comparison
is made with the results at which HIPP (1985) and HIPP & MICHEL (1990) arrive
by applying concentration functions. It turns out that the presented bounds are
much easier to calculate, but are only useful for small and moderate portfolios.
This is inherent to the method used to derive these bounds.

2. COMPOUND POISSON APPROXIMATIONS OF THE INDIVIDUAL MODEL

Consider a portfolio containing n independent policies labelled from 1 to n. Let
ph with 0 < p, < 1, denote the probability that policy / produces no claim in a
given period and qt = 1 —/>,- the probability that the policy leads to at least one
claim. Further, define G, as the conditional distribution of the total claim
amount of policy i in the period, given that at least one claim occurs. As usual
only positive claims are considered, that is G,(0) = 0.

With this notation the distribution F, of the claim amount generated by an
individual policy i can be written as

(1)

where / is the atomic distribution concentrated at zero.
In the individual risk model, the distribution Fmd of the aggregate claims of

the portfolio is obtained by convoluting the n distributions (1)
n

(2) Fmd = * Ft.

Now, suppose that one wants to approximate the individual model by a
compound Poisson model. This can be done by replacing each distribution F,
by a compound Poisson distribution P,, say with Poisson parameter A,- > 0 and
amount distribution Q,

(3) P, =
k=o k\

where by convention Qf° = I.
The quality of the resulting approximation will depend on the choice of A,

and Qj. Several arguments can be used and in the literature different proposals
for A,- can be found, but Q, is always taken identical to G,. This assumption will
also be made in the remainder of the paper.

By taking the convolution of the compound Poisson distributions (3), one
obtains an approximation FcP for the distribution F""1 of the aggregate claims
of the portfolio

n co , /t

(4) FCP = * P,= Y, e~A —
/=i *=o k\
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ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 137

which is again a compound Poisson distribution with Poisson parameter
n

(5) X = £ X,
/ = i

and amount distribution

(6) G = - X A,G,.

In the following sections the individual model will be compared with
compound Poisson approximations having different specifications of the
parameters Xt. This will be done by deriving upper and lower bounds for the
error which emerges in calculating the distribution function of aggregate
claims, probabilities for arbitrary events and stop-loss premiums.

3. BOUNDS FOR THE AGGREGATE CLAIMS DISTRIBUTION

First some lemmas are given that will be useful in the proof of Theorem 1.

Lemma 1: Let F, G and H be distribution functions and assume that there exist
constants a and b such that for all s

(7) a<F(s)-G(s)<b.

Then, one has for all s

(8) a<F* H{s)-G*H{s)<b.

Proof: The proof of (8) follows immediately from (7) and

F*H(s)-G*H(s)= f [F(s-x)-G(s-x)]dH(x).
V — GO

Q.E.D.

Lemma 2: Let F , , F2, . . . , Fn and G,, G2, ..., Gn be distribution functions
satisfying for all s

zb,, i = l , 2 , . . . , / ! .(9)

Then,

(10)

one has

« i

for
n

yi=i

all

ai

s

<

r ) -

n

#

i = l 1=1 1=1

Proof: The lemma is proved by induction. By assumption (10) holds for n = 1.
Assume that it also holds for n = k — 1. Then, one has by using Lemma 1
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twice

and

k - 1 ,k-\

a, < * F,-
\ 1=1

< I *

k-\ , k-1

* G-\*Fk(s) <
/

/t-i

G,-

Taking the sum shows that the result holds for n = k, which proves the
lemma.

Q.E.D.

The following Theorem allows an assessment of the error in calculating the
distribution function of aggregate claims, which results if the individual model
is replaced by a compound Poisson model, as presented in Section 2.

According to common usage the positive and negative parts of a number c
are denoted respectively by (c)+ and — (c)~, that is (c)+ = max (c, o) and
(c)~ = min(c, o). It is clear that - ( c ) " = ( - c ) + , c = (c)+ +(c)~ and

+

Theorem 1: For all s one has
n

(11) J (p-e-"r <F'"d(s)-FcP(s)<
1=1

Proof: According to Lemma 2 it is sufficient to prove (11) for the special case
n = 1, so that the index i can be dropped in the remainder of the proof. Then,
one has

pind __

and

k\

with G(0) = 0.
If s < 0, then F'nd(s) = FcP (s) = 0 and (11) is satisfied since

The case of interest is s > 0. Then, one has

0.

e~x—G*k(s)
k\
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ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 139

Since G*k(s) < G(s), one has on the other hand

which proves the theorem.
Q.E.D.

Remark that FcP(s) < Find(s) for all s, if lt > -In/?,- for i = 1, 2, . . . , n.
Further note that if <?, > Xte~Xi for i= 1, 2 , . . . , n, the upper bound in (11)

can be simplified by using the inequality

(12) p-e-x>+(q-A,e-Y <tf/2,

which follows from

1 -(1 + *,) e~'- = / - e M i + A,)-A,. < j _e-m < X2j2_

Now the error bounds (11) will be specified for some choices of the A, used in
the literature; see e.g. GERBER (1979, Ch. 4) for a description of the first two
cases.

Case 1: The most common assumption is

(13) k,= qt i = l , 2 , . . . , n .

This means that the Poisson parameter is chosen such that the expected
number of claims is the same in the two models. Since e ~x>> 1 — Xt = pt and
qi > Aje~Xi one gets from (11) that for all s

. n n

(14) - - X <7,2< X (p-e-«')<Find(s)-FcF(s)

[\-{\+qde-q<]<- X £•
2 /=i

To show the magnitude of the error simpler bounds have been added to the
left and right side. The right bound follows from (12).

Case 2: An alternative is to put

(15) ki=-\npi i = l , 2 , . . . , « .

Under this assumption the probability of no claims is the same in the two
models.

Since q, = 1 -eXi > X{e~Xi one has from (11) and (12) that for all s

(16) 0<Fma(s)-Fcp(s) <
1= 1 2 ;= l

This error bound is given in HIPP (1985, formula (5)).

https://doi.org/10.2143/AST.22.2.2005111 Published online by Cambridge University Press

https://doi.org/10.2143/AST.22.2.2005111


140 NELSON DE PRIL AND JAN DHAENE

Case 3 : As noticed by HIPP (1986) the first order approximation for the
aggregate claims distribution suggested by KORNYA (1983) can also be seen as
a compound Poisson distribution with

(17) h = <li\Pi i=l,2,...,n.

Since e~Xi > 1 + X,•= l/pj one has e~x' < pt and qt = A,/?, > A,-e~A'. Hence, it
follows from (11) and (12) that for all s

n 1 "

(18) 0<FM(s)-FcP(s)< X (p-e-<""")/pl<-'£d (lilPd2-
i=i 2 /=i

To conclude this section it will be examined which choice of the A, is
preferable in the sense that the difference between the upper and lower bound
in (11) is minimized. To that end consider the magnitude of

and

(19)

for different values of X > 0.
Since/[/(A) is an ever increasing function of X and/L(A) = 0 for X > -In/?,

the function f ( l ) attains its minimum at a value 1* < -\np. In case
X < —Inp,f(X) takes the form q — Xe~k which is a decreasing function if X < 1
and an increasing function if X > 1. Hence,/(A) is minimized for

(20)
{ 1 if -lnp>l

The condition —Inp < 1 corresponds with q < l-e~l = 0,632121. Remark
that the commonly used compound Poisson approximation with A, = qt does
not give rise to the smallest difference between the upper and lower bound
in (11).

4. BOUNDS FOR PROBABILITIES OF ARBITRARY EVENTS

Let fi (F, A) denote the probability that a random variable with distribution
function F assumes a value in a set A. By convention the word set serves as
abbreviation for a Borel set on the real line.

Theorem 2 gives explicit bounds for the maximal difference of probabilities
calculated respectively in the original model and in an associated compound
Poisson model. The proof of the Lemmas 3 and 4 is similar to the proofs given
in Section 3 and is therefore omitted. Note that bounds which hold for every
set A must be symmetrical, since ju(F, Ac) = 1 —ju(F, A) where Ac denotes the
complement of A.
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ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 141

Lemma 3 : Let F, G and H be distribution functions and assume that there
exists a constant b such that for every set A

(21) \f,(F,A)-M(G,A)\<b.

Then, one has for any set A

(22) \n(F* H,A)-/i(G*H,A)\<b.

Lemma 4 : Let Fx, F2, ..., Fn a n d Gx, G2, •••, Gn be dis t r ibu t ion funct ions
satisfying for all sets A

(23) \M(Fi,A)-^(Gi,A)\<bi, i = 1,2, . . . , » .

Then, one has for all ,4

(24) n * F,,A\ -n

Theorem 2: For all sets A one has

(25)

* G,,A
1=1

< L K

Proof: According to Lemma 4 it is sufficient to prove (25) for n = 1.
Using the same notation as in the proof of Theorem 1 one has

k\

k, A).

From this it follows that

ind, A)-/i(FeP, A)

which proves the theorem.
Q.E.D.

Remark that for sets of the form A = ] — co,s] better bounds are given in
Theorem 1.

Now, (25) will be examined in detail for some special choices of the Xt.

Case 1: If A,• = q,:, i = 1, 2, . . . , « , one gets for all sets A

(26) \fi(Fi"d,A)-M(FcP,A)\ < X qi{\-e-"-)< £ qf.

This error bound was derived by GERBER (1984). In the special case of a
quasi homogeneous individual model, i.e. a portfolio consisting of n policies
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142 NELSON DE PRIL AND JAN DHAENE

with different claim probabilities qt but identical claim amount distributions
Gj, the above bound was improved by MICHEL (1987). He showed that in this
case

(27) \VL(FM,A)-H{FCP,A)\ < I qf I q,,

/ = 1 / i = l

n

which furnishes a smaller bound than (26) if A = ^ q,> 1.

Case 2: For A,- = - In p,•, / = 1, 2, ..., n, one has for all A
n , n

(28) \fi(F
ind,A)-lu(FcP,A)\ < £ (fli+Pitopd < - X On A)2-

/=i 2 ;=i

Case 3: If A,- = ,̂-/p,-, f = 1, 2, . . . ,« , one obtains as bound
n , n

(29) \^(F""i,A)-ft(FcP,A)\ < X {Pi-e-qilp')IPi<- I to,-//'/)2.
/=i 2 /=i

This bound has been derived by HIPP (1986, formula (3)).
Finally, remark that the magnitude of the error bound (25) is determined by

terms of the form

(30)

Hence, it follows from Section 3 that /(A) is minimized for the value A*
given by (20).

5. BOUNDS FOR STOP-LOSS PREMIUMS

Let X be a random variable with distribution function F and finite mean /u. The
stop-loss transform of F is defined by

(31) I7(F,t) = E[(X-t) + ]= f (x-t)dF(x).f
Remark that in particular IJ(F, 0) = /a.
If F is the aggregate claims distribution of a portfolio during a certain

period, then 77(F, t) is the net stop-loss premium with retention limit t for that
period.

In the following lemmas some basic stop-loss inequalities are derived. They
are inspired by the pioneer work by BUHLMANN et al. (1977). See also the
textbooks of GERBER (1979, Section 7.3) and SUNDT (1991, Section 10.3).

Lemma 5: Let F, G and 77 be distribution functions and assume that there exist
constants a and b such that for all t
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(32) a<n(F,t)-I7(G,t)<b.

Then, one has for all t

(33) a<n(F*H,t)-n(G*H,t)<b.

143

Proof: Let X, Y and Z be random variables with distribution functions F, G
and H respectively and assume that Z is independent of X and Y. Taking the
conditional expectation on Z yields

77(F* 77, t)-n(G *H,t) = E[E[(X+Z-t) + \Z]]-E[E[(Y+Z-t)+\Z]]
= E[n(F, t-Z)]-E[II(G, t-Z)].

Q.E.D.
Now, (33) follows immediately from the assumption (32).

Lemma 6: Let F{, F2, . . . , Fn and G,, G2, . . . , Gn be distribution functions
satisfying for all t

(34)

Then, one has for all t

(35) * F,,t

,, t)-n(G,, t)<bt.

G,,t bt.

Proof: The inequalities (35) hold by assumption for « = 1 and are proved in
general by induction. The proof is based on Lemma 5 and is similar to the
proof of Lemma 2.

Q.E.D.

Lemma 7: Let F and G be distribution functions on the non-negative reals.
Then one has for all t

(36) < n(F* G, t) < n(F, t)+n(G,o).

Proof: It is easily to verify that for arbitrary t and non-negative x and y the
following inequalities hold

(x-t)++(y-t)++(ty <

This implies the assertion.

t)+ <(x-

Q.E.D.

Lemma 8: Let Fbe a distribution function on the non-negative reals. Then, one
has for n = 1, 2, . . . , and all t

(37) n-\) (t)~ < II(F*n, t) < ( « - ! ) 77(F, 0) + 77(7% / ) .
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144 NELSON DE PRIL AND JAN DHAENE

Proof: The lemma is proved by induction. Clearly (37) holds for n = 1. Now,
assume that it holds for n = k -1. Then, the proof for n = k follows by
applying Lemma 7 to F*(k~l) and F.

Q.E.D.

Remark that under the assumption of the lemma only stop-loss premiums
with a non-negative retention / are of real interest. It follows that for t > 0, (37)
reduces to

(38) nII(F, t) < n(F*n, t) < ( « - 1) 77(F , 0)4-77(F, t ) .

The following theorem yields bounds for the error which results if a
compound Poisson model is used for approximate computation of stop-loss
premiums in the individual model.

Theorem 3: For all retentions t one has
n

(39) X fii[l-*.,-e-x<+(e-x<-pd-] < Tl{Find, t)-II{FcP, t) <

where //, denotes the mean of the conditional claim amount distribution G,.

Proof: In view of Lemma 6 it is sufficient to give the proof for the special case
n = 1, where

Find = pI+qG

is approximated by

k=o k\

Since G(0) = 0, one has for t < 0

77{Find, t)-n(FcP, t) = 77(Find, 0)~n(FcP, 0) = n{q~X)

where fj, denotes the mean of G. It is easy to verify that (39) is satisfied.
The case of interest is t > 0. Then IJ(I,t) = O, so that

n(Find, t)-n(FcF, t) = qn{G, t) - £ e~
x— n(G*k, t ) .

k=i k\

From (38) it follows that for any t > 0

Y, p ) ( , 0) + 77(G, t)]<Il {Find, t)-Il(FcP,t)
k=\ k\

CO , / t

<qn(G,t)- X ek—kIl(G,t).
k=\ k\
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ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 145

Since FI{G, 0) = fi, this can be rewritten as

(q-l+e'x)n(G,t)~(l-\+e~x)fi<n(Find,t)-n(FcP,t)<(q-X)n(G,t)

Taking into account that 0 < IJ(G, t) < ju for / > 0, this implies

[(e~'-p)~ + 1 -X-e~l\n < n{Find, t)-II(FcP, t) < (q-X)+ fi

which proves the theorem.
Q.E.D.

Remark that if A, < q,for i = 1,2,. . . , «, the compound Poisson approxima-
tion is always on the safe side, in the sense that II(Find, t) < IJ(FcP, t) for all /.

As in the previous sections, the error bounds (39) will be further analysed for
some special choices of the Xt.

Case 1: If Xj = qt, i = \,2, ..., n, one has for all retentions t
. n n

(40) - - V fi,qf < y iii(pi-e~q') < n(Find, t)-Il{FcP, t) < 0.
2 Pi pi

The upper bound is given in BUHLMANN et al. (1977). The lower bound was
derived by GERBER (1984) in the special case of deterministic claim amounts.

n

For the general case of stochastic claim amounts he proved that — 2_, Mi1?
i = l

is a lower bound, but believed that this result could be improved. This is indeed
the case, as shown here.

Case 2 : For the choice 1, = - In pi,, i = 1, 2, . . . , « , one gets for all t

(41) - - ) ^-(ln/?,-)2 < V Hiiqi+lnp,) < n{Fmd, t)-II{FcP, t)<0.
2 P i P i

Case 3 : Kornya's first order approximation is obtained by setting A,- = qt /pt,
i = 1, 2, . . . , n. Then, one has for all /

(42) - l f, Mi qflPi < n{Find, t) -n(FcP, t) < 0.
2 P i

To round off the analysis of the bounds (39), consider

and

(43)
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146 NELSON DE PRIL AND JAN DHAENE

Since gL(X) is an ever decreasing function of X and gv{X) = 0 for X > q, the
function g(X) takes on its minimum at a value X* < q. In case X < q, g(X)
becomes equal to e~l—p which is a decreasing function of X. Hence, g(X) is
minimized for

(44) X* = q.

Comparison with (20) shows that the Poisson parameters which minimize the
error bounds depend on the measure used to define the difference between the
exact and the approximate model.

6. COMPARISON WITH HlPP'S BOUNDS

The lower and upper bounds given in the Theorems 1, 2 and 3 increase linearly
with the number of policies and so it is to be expected that they will be too
pessimistic for large portfolios. This is inherent to the way in which these
bounds are derived, i.e. the use of the Lemmas 2, 4 and 6.

Alternative bounds for the error in calculating the distribution function and
stop-loss premiums were derived by HIPP (1985) in case of the classical
compound Poisson approximation with X,• = qt., i = 1, 2, . . . , n. His method
consists in applying concentration functions. The concentration function
C(F, r) of a distribution function F on an interval of length r > 0 is defined
by

(45) C(F,r) = sup [F(x + r)-F(x)].
X

An updated version of Hipp's results is given in the risk theory book by HIPP

and MICHEL (1990), where the following bounds are derived.

Theorem 4 (Hipp): Consider the compound Poisson approximation with
Xj = qt, i = 1, 2, . . . , « . Denote, for each i, by /z, and /i/2> respectively the first
and second moment about the origin of the conditional claim amount
distribution G,. Then, one has for all s

(46) \Find{s)-FcP{s)\ < — £ SL
4 ,=i pt

and for all t

(47)
2 « 2

4 ,-=i

(2)

/*, + — } C(F, Mi) < n{Find,t)-n{FcP,t) < 0
2 j

where F is the compound Poisson distribution with Poisson parameter

1 "
I = - E PiK

2 1=1
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ERROR BOUNDS FOR COMPOUND POISSON APPROXIMATIONS 147

and claim amount distribution

G = —- Y, Pi4iG>-
21 /=i

To apply these bounds the concentration functions C (F, //,) must be
evaluated. In case the (7, are arithmetic distributions the numbers C(F, /x,) can
be computed numerically, but for this another application of Panjers's recur-
sive algorithm is needed. However, from a practical point of view, it seems
unreasonable to spend much effort in calculating the theoretical bounds
exactly. After all, the main advantage of a compound Poisson approximation is
that the necessary calculations can be done in a minimal time. When the
computing time is not a major constraint preference should be given to other,
more accurate, approximation methods, as proposed in the recent literature.

The demand for making the bounds (46) and (47) easy to handle, necessitates
to dispose of a quickly computable estimate for the C(F,fi,). Hipp has
mentioned several upper bounds for concentration functions, but most of them
are hard to compute. Further, Hipp's work contains no indication which of
these bounds should be used in a given application. This is indeed a difficult
problem, since the best choice depends on the form of the claim amount
distribution G.

In order to get an idea of the magnitude of Hipp's error bounds the
following general and simple bound for C(F,fi,) can be used

(48) C (F, fid < fi\ C (F, 1) < ,i\ (2 e I)"1 / 2

where n\ denotes the smallest integer greater than or equal to //,.
Since C(F,fi,) is of order X~1/2, Hipp's method leads to error bounds of

order <Jn, whereas the Theorems 1, 2 and 3 yield only bounds of order n. This
indicates that (46) and (47) are asymptotically better than the corresponding
formulas (14) and (40). A further discussion of asymptotic results can be found
in KUON, RADTKE and REICH (1991).

The preceeding considerations show that the error bounds resulting from
both methods complement each other. The bounds given in the Theorem 1, 2
and 3 are easy to calculate and of practical interest for small and moderate
portfolios. For large portfolios Hipp's bounds are sharper, but they are much
more complicated to compute.
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