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FINITE GROUPS IN WHICH SOME PROPERTY OF
TWO-GENERATOR SUBGROUPS IS TRANSITIVE

COSTANTINO DELIZIA, PRIMOZ MORAVEC AND CHIARA NlCOTERA

Finite groups in which a given property of two-generator subgroups is a transitive
relation are investigated. We obtain a description of such groups and prove in par-
ticular that every finite soluble-transitive group is soluble. A classification of finite
nilpotent-transitive groups is also obtained.

1. INTRODUCTION

Let X be a group theoretical class. A group G is said to be X-transitive (or an XT-

group) if for all x,y,z € G\{1} the relations (x, y) € X and (y, z) e X imply (x, z) € X. In
graph theoretical terms, let FX(G) be the simple graph whose vertices are the nontrivial
elements of G, and o and 6 are connected by an edge if and only if (a, b) € X. Then
G is an XT-group precisely when all the connected components of Fx(G) are complete
graphs. Several authors have studied XT-groups for some special classes X. When X is
the class of all Abelian groups, these groups are also known as commutative-transitive
groups or CT-groups. Weisner [10] has shown that finite CT-groups are either soluble
or simple. Finite nonabelian simple CT-groups have been classified by Suzuki [6]. These
are precisely PSL(2,2'), where / > 1. A characterisation of finite soluble CT-groups has
been given by Wu [11] who has also obtained information on locally finite CT-groups
and polycyclic CT-groups. When X = 9tc, the class of all groups which are nilpotent of
class ^ c, similar results have been obtained in [1].

The purpose of this note is to obtain a description of finite XT-groups for the group
theoretical classes X having the following properties:

(*) X is subgroup closed, it contains all finite Abelian groups and is bigenetic
in the class of all finite groups.

Here a class X is said to be bigenetic (a terminology due to Lennox [4]) in the class of
all finite groups when a finite group G is in X if and only if all its two-generator subgroups
are. Examples of classes satisfying (*) are the class of all Abelian groups, all nilpotent
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groups, all supersoluble groups and all soluble groups. First we show that if X is a class
satisfying (*), then every finite 3ET-group which does not belong to X is either a Frobenius
group with kernel and complement belonging to X, or it has no normal 3E-subgroups, that
is, it is X-semisimple as defined in [5]. We also show that in several cases, for example, in
the soluble or supersoluble case, the second possibility does not occur. As a consequence
we obtain that a finite group is soluble if and only if it is soluble-transitive. In the case
when X = 9t, the class of all nilpotent groups, there exist simple OtT-groups. We obtain
a complete classification of finite 9TT-groups which generalises some results of [11].

2. RESULTS

Given a group theoretical class X, let Rx(G) be the product of all normal X-
subgroups of G (the X-radical of G). In general Rx{G) does not belong to X. Our first
result shows that this is however true within the class of all finite 3£-transitive groups
when X satisfies the properties (•).

LEMMA 2 . 1 . Let X be a class of groups satisfying (*) and let G be a finite XT-
group. Then Rx(G) is an X-group.

PROOF: Let M and N be normal JE-subgroups of G. It suffices to show that MN
also belongs to X. Suppose first that M n N ^ 1 and let x £ M n ./V\{1}. First note
that for any m € M\{1} and n € N\{1} we have that (m, x) and (x,n) belong to X.
As G is an XT-group, we conclude that (m,n) is an 3£-group. Now let mi, m2 € M\{1}
and n e N\{1}. We may suppose that m\n ^ 1. Then {min,mx) = (mi,n) is in X
and (mi,m2) is in X. Thus it follows that (min,m2) also belongs to X. Similarly we
can prove that (rnrii,n2) is in X for every m e M\{1} and ni,n2 € iV\{l}. Now take
mi,m2 € M\{1} and ni,n2 € ./V\{1} and suppose that mini ^ 1, m2ra2 ^ 1. Then
(m1ni,m2) € X, (m2)m2ra2) e X, hence (mjn!,™^) belongs to X. This shows that
every two-generator subgroup of MN belongs to X. Since X is bigenetic in the class of
all finite groups, we get that MN is an jC-group, as required.

Suppose now that M (~) N = 1. Then [M, N] = 1. As above it suffices to prove
that every two-generator subgroup of MN is in X. At first let mi,m2 € M\{1} and
n € iV\{l}. Then the groups (min,n) = {mi,n) and (n,rri2) are Abelian, hence they
belong to X. By the transitivity we have that (min, m2) belongs to X. Similar argument
shows that (mni, n2) € X for every m € M\{1} and ni,n2 G iV\{l}. From this it follows
that if mi,m2 € M\{1} and ni,n2 € ./V\{1}, then (mlni,m2) and {m2,m2n2) are in X,
hence (min1,m2n2) is also in X. This concludes the proof. D

THEOREM 2 . 2 . Let X be a class of groups satisfying (*). Let G be a finite

XT-group. Then one of the following holds.

(i) G belongs to X.

(ii) G is X-semisimple.
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(iii) G is a Frobenius group with kernel and complement both belonging to X.

PROOF: Let R be the 3t-radical of G. By Lemma 2.1, R belongs to X. If R = G,
then G belongs to X. If R = 1, then G is X-semisimple. So from now on we assume that

Let y 6 #\{1} and suppose that there exists a € Cc(y)\R- Then (a, y) is Abelian.
hence it belongs to X. As R is an £-group and G is an 3TT-group, we have that (a, h) is
in X for every h € R. By conjugation we get that (a1, h) e X for every x e G and h€ R.
Since G is an 3TT-group, we get that

(1) (a*, a*) eX

for every x, z € G. We claim that (u, t>) S X for every u, i; e aG. To prove this, we
first introduce some notation. For u € aG let r be the smallest integer such that u can
be written as a±91 • • • a±9r for some g\,- • -,gT € G. Then we say that u is of weight r
and denote wt(u) = r. The proof of our claim goes by induction on wt(u) + wt(u). If
wt(u)+v/t(v) < 2, then the claim follows from (1). Suppose that the claim holds true for
all u,v € aG with wt(u)+wt(v) ^ I. Let now u,v € aG be such that wt(u)+wt(w) = / + l.
Without loss of generality we may assume that wt(u) > 1 and v / 1. Then we can write
u = u'a±9 for some g & G and u' € a G \{ l} with wt(u') = wt(u) - 1. We have that
(u, a9} — (u1, a9} belongs to X by the induction assumption. For the same reason we have
that (a9, v) € X. As G is an 3TT-group, we conclude that (u, v) belongs to X. This proves
that every two-generator subgroup of aG belongs to X. As X is bigenetic in the class of
all finite groups, we get aG € X, hence a € R, a contradiction. By Satz 8.5 in [2] we
have that G is a Frobenius group and R is its kernel. In particular, it follows from here
that R is nilpotent. Let H be its complement. Then H is an 3£T-group with nontrivial
centre. It follows from here that every two-generator subgroup of H belongs to X, hence

Hex. D
A characterisation of 3E-semisimple 3TT-groups is usually not easy and depends heav-

ily on a choice of the class X; see [1, 6, 11]. In the case of Frobenius groups we provide
a general characterisation of XT-groups. At first we prove the following technical result.

LEMMA 2 . 3 . Let X satisfy (*). Let G be a finite XT-group and H an X-subgroup

ofG. Then
C%(H) = {xeG:(x,h)eX for some h e H\{1}}

is an X-subgroup ofG containing H.

P R O O F : Clearly Cg(H) contains H. Let x,y € Cg(H)\{l}. Then there exist
h,k e H\{1} such that (x,h) € X and (y,k) e X. Since (h,k) 6 X, we get that (x,y)

also belongs to X. If xy ± 1, then {xy, y) = (x,y) belongs to X, hence also (xy,k) £ X.

Thus xy e CQ(H). Note also that every two-generator subgroup of CQ(H) is in X, hence
C%{H) also belongs to X. 0
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PROPOSITION 2 . 4 . Let X be a group theoretical class satisfying (•). Let G
be a Frobenius group with kernel F and complement H. Then G is an XT-group if and
only ifC%(F) and C%(H) are X-groups.

PROOF: Let X and G be as above. If G is an XT-group, then it follows from
Theorem 2.2 that F and H belong to X. Consequently C%(F) and C%(H) are also X-
groups by Lemma 2.3. Conversely, suppose that C*(F) and CQ{H) are JC-groups. Let
x, y, z £ G\{1} and suppose that (x,y) £ X and (y, z) £ X. Assume first that y £ F.
Then x,z E C%{F) and consequently (x, z) £ X. If y £ F, then y £ H3 for some
g £ G. But then x,z £ C%(H3) = (Cg(H))9, thus (x,z) belongs to X. Thus G is an
XT-group. D

When X is the class of all Abelian groups, then all three possibilities of Theorem 2.2
can occur [6, 11]. In some cases, however, we can exclude the existence of 3t-semisimple

THEOREM 2 . 5 . Let X be a class of groups satisfying (*), and suppose that X
contains all finite dihedral groups and that every finite X-group is soluble. IfG is a finite
XT-group which is not in X, then G is a Frobenius group with complement belonging to
X. In particular, G is soluble.

Before proving this result we mention here the well known Thompson's classifica-
tion of minimal simple groups; that is, finite nonabelian simple groups all whose proper
subgroups are soluble. It turns out [9] that every such group is isomorphic to one of the
following groups.

(i) PSL(2,p), where p is a prime, p > 3 and p2 - 1 ̂  0 mod 5.
(ii) PSL(2,2/), where / is a prime.

(iii) PSL(2,3/), where / is an odd prime.
(iv) PSL(3,3).
(v) Sz(g), where q = 22n+1 and 2n+ 1 is a prime.

If G = PSL(2, F) where F is a Galois field of odd characteristic and |F | > 5, then G
can be generated by an involution and an element of even order. This can be easily seen
as follows. Let q = |F|. By Dickson's theorem [2], G contains elements a and 6 with
\a\ = (q - l)/2 and |6| — {q + l)/2. Note that precisely one of \a\, \b\ is even, without
loss of generality we may assume that this is true for \a\. Then ATG(a) = Dq-\ and this
is the only maximal subgroup of G containing a; this follows from the proof of Dickson's
theorem [2]. So if we choose any involution u from G\Nc{a), we have (a,u) = G, as
required. A similar result holds true for PSL(3,3) and Sz{q). In the first case note that
PSL(3,3) can be generated by the canonical projections of matrices

0
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0
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0
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which are of orders 2 and 8 in PSL(3,3), respectively. For the Suzuki groups Sz(g) it
follows from [8] that they can always be generated by an involution and an element of
order 4. We summarise this in the following lemma.

LEMMA 2 . 6 . Let G be one of the following groups: PSL(2, F) where F is a Galois
held of odd characteristic and \F\ > 5, PSL(3,3) or Sz(g). Then G can be generated by
an involution and an element of even order.

Note that for the groups PSL(2,2f) the conclusion of the above lemma does not
hold. In this case we have the following result that can be proved by straightforward
calculation.

LEMMA 2 . 7 . Let G = PSL(2,2/), / > 1. Denote by C a generator o/GF(2/) and
let a, b and c be the elements of G which are projections of

and

respectively. Then (a, b) and (b, c) are dihedral groups and (a, c) = G.

P R O O F OF THEOREM 2.5: We may suppose that G does not belong to X, hence
Rx{G) ¥" G. If we prove that G is soluble, then Rx(G) ^ 1 and our claim follows
from Theorem 2.2. So suppose that there exist finite insoluble 3TT-groups, and let G be
a counterexample of minimal order. Then every proper subgroup of G is soluble. By
Theorem 2.2 we have that RX(G) = 1. Let R be the soluble radical of G. Since X
contains all finite Abelian groups, we have that R = 1. It is now easy to see that G has
to be simple. By Thompson's classification of minimal simple groups [9], G is isomorphic
to one of the groups in the above mentioned list. By Lemma 2.7, G is not isomorphic
to any of PSL(2,2f), where / is a prime. If G is one of the groups of Lemma 2.6, then
G - (a,b), where \a\ = 2 and |6| = 2k, k > 1. We have that (a,bk) is a dihedral group
and (bk, b) is a cyclic group, hence G is in X by the 3CT-property, a contradiction. This
concludes the proof. D

Using Theorem 2.5, we obtain a rather surprising characterisation of finite soluble
groups.

COROLLARY 2 . 8 . Every finite soiubie-transitive group is soluble.

Note that the class of all supersoluble groups also satisfies all the assumptions of
Theorem 2.5. Thus we have the following.

COROLLARY 2 . 9 . Let G be a finite supersoluble-transitive group. If G is not

supersoluble, then G is a Frobenius group with supersoluble complement. In particular,

G is always soluble.

In view of Corollary 2.8 we may ask if every finite supersoluble-transitive group is
supersoluble. This is not true however, as the group A* shows. It is also not difficult
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to find an example of a Probenius group with supersoluble complement which is not
supersoluble-transitive. This example also shows that Proposition 2.4 is in a certain
sense best possible. Indeed, it is not possible to replace C^(F) and CQ{H) by F and H,
respectively.

Example 2.10. Let A = (x) © (y) be an elementary group of order 9 and let a be the
automorphism of A given by the matrix

Then (a) acts fixed-point-freely on A. Let G = A » (a). This is a group of order
36 which is not supersoluble-transitive. To see this, note that (a2, (ay)2) is a dihedral
group, ((ay)2, ay) is cyclic, whereas (a2, ay) = G is not supersoluble. Denoting by S
the class of all supersoluble groups, note that C® ({a)) has 20 elements and it is thus not
a subgroup of G. On the other hand, CQ(A) is a subgroup of index 2 in G.

Theorem 2.5 cannot be applied in the case of TOT-groups, where 9t denotes the class
of all nilpotent groups. Thus it is to be expected that there exist finite insoluble 9TT-
groups. This is confirmed by the following characterisation of finite 9TT-groups which is
essentially contained in [1]. We include a proof for the sake of completeness.

THEOREM 2 . 1 1 . Let G be a finite OCT-group. Then one of the following holds.

(i) G is nilpotent.

(ii) G is a Frobenius group with nilpotent complement.

(iii) G S* PSL(2, 2s) for some / > 1.

(iv) G a Szfo) with q = 22n+1 > 2.

Conversely, every Unite group under (i)-(iv) is an OTT-group.

PROOF: If G is soluble and not nilpotent, then the Fitting subgroup F of G is a
proper nontrivial subgroup of G. By Theorem 2.2, G is a Frobenius group with nilpotent
complement. So suppose that G is not soluble. It is easy to see that in every finite 5TT-
group G the centralisers of nontrivial elements are nilpotent, that is, G is an CN-group.
By a result of Suzuki [7, Part I, Theorem 4], the centraliser of any involution in G is a
2-group. Let P and Q be any Sylow p-subgroups of G and suppose that PnQ ^ 1. Since
P and Q are nilpotent and G is an OTT-group, we conclude that (P, Q) is nilpotent. This
shows that the Sylow subgroups of G are independent. Combining Theorem 1 in Part I
and Theorem 3 in Part II of [7], we conclude that G has to be simple. Additionally, it
follows from [8] that G is isomorphic either to PSL(2,2'), where / > 1, or to Sz(g) with
q = 22n+1 > 2.

Let G be a finite Frobenius group with the kernel N and a complement H and
suppose that H nilpotent. Let x, y, z € G\{1} and let the groups (x, y) and (y, z) be
nilpotent. Let c be the nilpotency class of (x,y). First suppose that x e N and y £ N.
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Then [x,cy] = 1, which implies [x, c_iy] = 1, since H acts fixed-point-freely on N. By
the same argument we get x — 1, which is not possible. This shows that if x E N then
y £ N and similarly also z € N. But in this case (x, z) is clearly nilpotent, since N is
nilpotent. Thus we may assume that x,y,z £ N. Let x € H9 and y € Hk for some
g,k E G and suppose H9 / Hk. We clearly have CG(a:) ^ H9 and CG(j/) ^ Hk. Let
w be any commutator of weight c with entries in {x,y}. Then w € Cc(x) n CG(y) = 1
implies that ( i , y) is nilpotent of class ^ c — 1, a contradiction. Hence we conclude that
(x,y) ^ H9 and similarly also {y, z) ^ H9. Therefore we have (x,z) < H9. But H9 is
nilpotent, hence the group (x, z) is also nilpotent. This shows that the groups under (ii)
are 9TT-groups.

It remains to prove that the groups under (iii) and (iv) are OTT-groups. If G
= PSL(2,2f), f > 1, then every centraliser of a nontrivial element of G is Abelian by [6].
It follows from here that G is an OTT-group. Now let G = Sz(q) where q = 2 2 n + 1 > 2.
By Theorem 3.10 (c) in [3], G has a nontrivial partition (Gi)i6/, where for every i € /
the group Gi is nilpotent and contains centralisers of each of its nontrivial elements. Let
x,y,z € G\{1} and suppose that the groups (x,y) and (y,z) are nilpotent. Let a and b
be nontrivial elements in Z[{x,y)) and Z((y, z)) , respectively, and suppose that a 6 Gi
and b € Gj for some i,j € I. Then y e Cc{a) n CG(6) < Gi n Gj, hence i = j . But now
we get x,z (=. Gi and since Gj is nilpotent, the same is true for the group (x, z). Hence G
is an OTT-group. D
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