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Abstract

It is a well-known procedure for constructing a torus knot or link that first we prepare an unknotted
torus and meridian disks in its complementary solid tori, and second we smooth the intersections of the
boundaries of the meridian disks uniformly. Then we obtain a torus knot or link on the unknotted torus
and its Seifert surface made of meridian disks. In the present paper, we generalize this procedure by
using a closed fake surface and show that the two resulting surfaces obtained by smoothing triple points
uniformly are essential. We also show that a knot obtained by this procedure satisfies the Neuwirth
conjecture and that the distance of two boundary slopes for the knot is equal to the number of triple points
of the closed fake surface.
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1. Introduction

1.1. The Neuwirth conjecture. There are not so many geometrical properties
satisfied by all nontrivial knots. Any knot bounds a minimal (and hence incompress-
ible) Seifert surface [3, 12], and for any nontrivial knot there exists a properly
embedded separating, orientable, incompressible, boundary incompressible and not
boundary parallel surface in the exterior of the knot [2]. The following conjecture
asserts that any nontrivial knot can be embedded in a closed surface, similarly to the
way a torus knot can be embedded in an unknotted torus.

Conjecture 1.1 (Neuwirth conjecture, [6], cf. [11, Problem 1.1]). For any nontrivial
knot K in the 3-sphere, there exists a closed surface F containing K as a nonseparating
loop such that F is essential in the exterior of K.

The author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540105,
No. 26400097), The Ministry of Education, Culture, Sports, Science and Technology, Japan.
c© 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 $16.00

250

https://doi.org/10.1017/S1446788715000166 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000166


[2] Coexistence of coiled surfaces and spanning surfaces for knots and links 251

Recent results on the Neuwirth conjecture can be seen in [9]. Here we summarize
all knot classes that are known to satisfy the Neuwirth conjecture:

• alternating knots [1];
• knots satisfying gI(K) < 2g(K), where gI(K) is the interpolating genus of a knot

K [6];
• generalized alternating knots [7];
• σ-adequate and σ-homogeneous knots for a state σ other than the Seifert state ~σ

[8];
• knots with nonorientable spanning surfaces obtained by Murasugi sums of

essential spanning surfaces [8];
• Montesinos knots [9];
• all knots with 11 crossings or fewer except for K11n118 and K11n126 [9];
• knots with a degree one map to a knot satisfying the Neuwirth conjecture [9].

Since the Neuwirth conjecture originated in torus knots, we go back to the
construction of torus knots in the next subsection.

1.2. A procedure for constructing torus knots and links. The following is a well-
known procedure for constructing a torus knot or link [5]. Let T be an unknotted
torus in the 3-sphere S 3 which decomposes S 3 into two solid tori, V1 and V2. Take p
mutually disjoint meridian disks D1 of V1 and q mutually disjoint meridian disks D2 of
V2. If we smooth the intersections of ∂D1 and ∂D2 uniformly in T , then we can obtain
a torus knot or link K of type (p, q). For each point of ∂D1 ∩ ∂D2 we add two triangle
regions along this smoothing to D1 ∪ D2, and then we obtain a Seifert surface Fv for K.
We remark that, by the construction, χ(Fv) = |D1| + |D2| − |∂D1 ∩ ∂D2| = p + q − pq,
and when K is a knot, g(Fv) = (p − 1)(q − 1)/2 = g(K). We also have cabling annuli
Fh = T ∩ E(K), where E(K) denotes the exterior of K in S 3. Moreover, when K is
a knot, we have ∆(∂Fv, ∂Fh) = |∂D1 ∩ ∂D2| = pq, where ∆(∗, ∗) denotes the distance
between two boundary slopes. We note that Fv is orientable and when K is a knot, Fh
is connected.

1.3. From closed fake surfaces to dual surfaces. We define three subsets of R3:

(1) Σ1 = {(x, y, z) ∈ R3 | z = 0};
(2) Σ2 = {(x, y, z) ∈ R3 | y = 0, z ≥ 0};
(3) Σ3 = {(x, y, z) ∈ R3 | x = 0, z ≤ 0}.

A finite 2-polyhedron P is called a closed fake surface [4] if each of its points has a
neighborhood homeomorphic to one of the following types (Figure 1):

• Type 1: Σ1;
• Type 2: Σ1 ∪ Σ2;
• Type 3: Σ1 ∪ Σ2 ∪ Σ3.

We will refer to points in closed fake surfaces as points of Type 1, 2 and 3 depending
on which of the above three neighborhoods they have. By P′ we shall denote the set
of points of Type 2 or 3. By P′′, we denote the set of points of Type 3.Thus, P′ can be
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Type 1 Type 2 Type 3

Figure 1. Local neighborhoods of a closed fake surface.

Figure 2. +-smoothing of a closed fake surface P.

regarded as a 4-valent graph with vertex set P′′. A closed fake surface is orientable if
each component of P − P′ is orientable.

We say that a closed fake surface P embedded in S 3 has a vertical–horizontal
decomposition P = Pv ∪ Ph if Ph is a union of closed subsurfaces of P which
corresponds to (Σ1,R

3) at each neighborhood of points of Type 2 or 3 and Pv is a union
of subsurfaces of P which corresponds to (Σ2,R

3) or (Σ3,R
3) at each neighborhood of

points of Type 2 or 3. When P′ = ∅, we define Ph = P and Pv = ∅.
As in the procedure for constructing torus knots and links, for a closed fake surface

P with the vertical–horizontal decomposition P = Pv ∪ Ph, we obtain a knot or link
K from P′ and the vertical surfaces Fv and horizontal surfaces Fh from Pv and Ph,
respectively, by smoothing P uniformly as follows. For each neighborhood of a point
of Type 3, we add two triangle regions {(x, y, z) ∈ R3 | xy ≥ 0, |x + y| ≤ 1} to Pv. Then
we obtain surfaces from Pv, call them the vertical surfaces and denote them by Fv. We
note that χ(Fv) = χ(Pv) − |P′′|. The boundary of Fv consists of disjoint simple closed
curves in Ph, namely, a knot or link, and we denote it by K. The horizontal surfaces Fh
are the horizontal part Ph of P in E(K). Then we say that Fv and Fh are obtained from
P by the +-smoothing and that K is obtained from P′ by the +-smoothing (Figure 2).
The −-smoothing of P can be similarly defined, and the results for the +-smoothing
also hold for the −-smoothing. We note that Fh is always orientable since Ph is a union
of closed surfaces in S 3; however, Fv is nonorientable in almost all cases.

1.4. Definition of essential closed fake surfaces. Let P be a closed fake surface
embedded in the 3-sphere S 3 with the vertical–horizontal decomposition P = Pv ∪ Ph.
A loop l properly embedded in P − P′ is inessential in P if l bounds a disk δ in P − P′,
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monogon bigon

Figure 3. A monogon and bigon for P = Pv ∪ Ph.

and l is essential if it is not inessential. Let (α, ∂α) be an arc properly embedded in
(Pv,P′ − P′′) or (Ph,P′ − P′′). An arc α is inessential in P if there is an arc β in P′ − P′′

such that α ∪ β bounds a disk in Pv or Ph. Let D be a disk embedded in S 3 such that
D ∩ P = ∂D ∩ (P − P′) = ∂D. We call D a compressing disk for P if ∂D is essential in
P. We call D a monogon if ∂D ⊂ Ph − P′′ and |∂D ∩ P′| = 1. We call D a bigon if the
boundary of D is decomposed into two arcs α ⊂ Pv and β ⊂ Ph and at least one of α
and β is an essential arc in P (Figure 3). A closed fake surface P embedded in S 3 is
said to be essential if:

(1) S 3 − P is irreducible;
(2) P has no compressing disk;
(3) P has no monogon;
(4) P has no bigon; and
(5) Ph has no 2-sphere component.

1.5. Definition of essential surfaces. Let K be a knot or link in S 3 and let E(K)
denote the exterior of K. Let F be a surface properly embedded in E(K), possibly
with boundary, except for the 2-sphere or disk, and let i denote the inclusion map
F → E(K). We say that F is algebraically incompressible if the induced map i∗ :
π1(F)→ π1(E(K)) is injective and that F is algebraically boundary incompressible if
the induced map i∗ : π1(F, ∂F)→ π1(E(K), ∂E(K)) is injective for every choice of two
base points in ∂F.

A disk D embedded in E(K) is a compressing disk for F if D ∩ F = ∂D and ∂D
is an essential loop in F. A disk D embedded in E(K) is a boundary compressing
disk for F if D ∩ F ⊂ ∂D is an essential arc in F and D ∩ ∂E(K) = ∂D − int(D ∩ F).
We say that F is geometrically incompressible (respectively, geometrically boundary
incompressible) if there exists no compressing disk (respectively, boundary
compressing disk) for F.

In this paper, we say that surfaces F embedded in E(K) are geometrically essential
(respectively, algebraically essential) if each component of F is geometrically
(respectively, algebraically) incompressible, geometrically (respectively, algebraically)
boundary incompressible and not boundary parallel. In general, F is algebraically
essential if and only if ∂N(F) ∩ E(K) is geometrically essential. If F is two-sided
in E(K), namely, orientable, then F is algebraically essential if and only if it is
geometrically essential.
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Let K be a knot or link in S 3 and F be a union of closed surfaces embedded in
S 3. We call F a union of coiled surfaces for K if K ⊂ F. We call a coiled surface
F a Neuwirth surface if F − C is connected for each component C of K and F is
geometrically essential in the exterior E(K). A union of surfaces S embedded in S 3

is a spanning surface for K if ∂S = K. The usual convention is that S has no closed
components.

We remark that any nontrivial, nonsplittable knot or link has essential coiled
surfaces since it bounds geometrically incompressible Seifert surfaces F, and ∂N(F)
gives coiled surfaces. Similarly, if a knot bounds an algebraically incompressible
and boundary incompressible nonorientable spanning surface F, then ∂N(F) gives a
Neuwirth surface.

1.6. Main theorem.

Theorem 1.2. Suppose that P is an essential orientable closed fake surface embedded
in the 3-sphere S 3 with a vertical–horizontal decomposition P = Pv ∪ Ph. Let Fv and
Fh be the vertical and horizontal surfaces, respectively, obtained from P by the +-
smoothing, and let K be the knot or link obtained from P′ by the +-smoothing. Then
Fv and Fh are algebraically essential in E(K), and K is nonsplittable and prime.
Moreover, when K is a knot, ∆(∂Fv, ∂Fh) = |P′′| and if Fv is orientable, then Fh is
connected.

We say that a knot or link K is uniformly twisted if it can be obtained from P′ of an
essential orientable closed fake surface P embedded in S 3 with a vertical–horizontal
decomposition P = Pv ∪ Ph by the +-smoothing or −-smoothing.

In Theorem 1.2, if Fv is nonorientable, then K can be isotoped onto ∂N(Fv) so that
K is a nonseparating loop. Otherwise, Fh is a Neuwirth surface for K, by Theorem 1.2.
Hence, we have the following corollary.

Corollary 1.3. A uniformly twisted knot satisfies the Neuwirth conjecture.

2. Proof

Proof of Theorem 1.2. First we isotope Fv near points of Type 3 so that Fv intersects
Fh in arcs of the form {(x, y, z) : |x| ≤ 1, y = z = 0} in the neighborhoods of those points.
Since Fh is orientable and Fv is possibly nonorientable, we need to show that Fh

and the (twisted) ∂I-bundle Fv ×̃ ∂I are geometrically incompressible and boundary
incompressible in E(K). Then we may assume that in each neighborhood of points of
Type 3, Fh ∩ (Fv ×̃ ∂I) consists of two arcs.

Suppose that Fh or Fv ×̃ ∂I is compressible in E(K) and let D be a compressing
disk for it. Note that D is on the outside of Fv ×̃ ∂I since Fv ×̃ ∂I is incompressible in
Fv ×̃ I. We take D so that |D ∩ (Fv ∪ Fh)| is minimal. If D ∩ (Fv ∪ Fh) = ∅, then D
can be extended to a compressing disk for P. Otherwise, let α be an outermost arc in
D and δ be the corresponding outermost disk of D. We extend δ so that ∂δ ⊂ Fv ∪ Fh.
Then there are three possibilities; here we note that ∂α ⊂ Fv ∩ Fh:
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Figure 4. The boundary of an outermost disk (Case 1).

• Case 1: α connects two different arcs of Fv ∩ Fh which come from distinct points
of Type 3.

• Case 2: α connects a single arc of Fv ∩ Fh which comes from a single point of
Type 3, and δ lies on the same side of Fv near the point.

• Case 3: α connects a single arc of Fv ∩ Fh which comes from a single point of
Type 3, and δ lies on both sides of Fv near the point.

In Case 1, δ cannot be trivial since there are two arcs of P′ − P′′ at the two points of
∂δ in δ (Figure 4). Here we remember that Fv and Fh are obtained by the +-smoothing.
Hence, δ gives a bigon for P. In Case 2, δ is nontrivial since |D ∩ (Fv ∪ Fh)| is taken to
be minimal. Hence, δ again gives a bigon for P. Case 3 does not occur since ∂δ cannot
run from one side of Fv to the other, since Pv is orientable. Hence, Fh and Fv ×̃ ∂I are
incompressible in E(K).

At this stage, we can show that K is nonsplittable and nontrivial as follows. Let S be
an essential 2-sphere in S 3 − K. By the incompressibility of Fh, we may assume that
S is disjoint from Fh. Moreover, since Pv is incompressible in the complements of Fh,
we may assume that S is also disjoint from Pv. Then S bounds a 3-ball in S 3 − K since
S 3 − P is irreducible. Hence, K is nonsplittable. Suppose that K is trivial. Then K is a
trivial knot since K is nonsplittable. This shows that Ph consists of a single 2-sphere or
a single torus since an orientable incompressible surface Fh in a solid torus E(K) is a
disk or annulus. In the former case, it contradicts that Ph has no 2-sphere component.
In the latter case, Fh is an unknotted torus in S 3 which bounds a solid torus V , and
K winds around V exactly once. Then Fv ∩ V consists of meridian disks or boundary
parallel annuli. If Fv ∩ V consists of meridian disks, then Vcontains a monogon for P,
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and otherwise, V contains a bigon for P. In any case, we have a contradiction. Hence,
K is nontrivial.

Next, suppose that Fh is boundary compressible in E(K). Since it is well known that
a geometrically incompressible but geometrically boundary compressible orientable
surface in a link exterior is a boundary parallel annulus (cf. [7, Lemma 2]), there
exists a solid torus V bounded by a component T of Ph such that the component
of K contained in T winds around V exactly once longitudinally. Since Pv ∩ V is
incompressible in V , it consists of meridian disks or boundary compressible annuli.
If Pv ∩ V consists of meridian disks, then the remaining components of Pv having
boundary in ∂V wind around V exactly once longitudinally. Therefore, there exists
a monogon for P in V . Otherwise, there exists a bigon for P in V coming from a
boundary compressing disk for Pv ∩ V . Hence, Fh is incompressible and boundary
incompressible in E(K).

Suppose that Fv ×̃ ∂I is boundary compressible in E(K). Since it is well
known that an algebraically incompressible but algebraically boundary compressible
nonorientable spanning surface for a link is a Möbius band whose boundary is the
trivial knot (cf. [10, Lemma 2.2]), K is the trivial knot. This contradicts that K is
nontrivial.

Now we know that both Fh and Fv are not boundary parallel in E(K) since these
surfaces are incompressible, boundary incompressible and have integral boundary
slopes in E(K). Hence, Fv and Fh are algebraically essential in E(K).

Next we show that K is prime. Suppose that K is nonprime and let S be a
decomposing sphere for K. We may assume that S intersects Fh in two arcs which
form a loop l with two points p1 and p2 of K ∩ S . Then l decomposes S into two
disks, say, D1 and D2. By an isotopy, we may assume that ∂Di does not run over
neighborhoods of P′′ for i = 1, 2. Since there is an arc of Di ∩ Pv from a point p j for
j = 1, 2, there is an arc joining p1 and p2 in D1 or D2. Thus we may assume, without
loss of generality, that D1 intersects Pv in a single arc joining p1 and p2 and D2 does
not intersect Pv in its interior. Then we have a bigon for P as the subdisk of D1. Hence,
K is prime.

Hereafter, we assume that K is a knot. Then Fh consists of a single closed surface. It
can be observed that the boundaries of Fv and Fh intersects in |P′′| points essentially on
∂N(K) since Fv and Fh are obtained by the +-smoothing (Figure 5). Thus the distance
∆(∂Fv, ∂Fh) is equal to |P′′|.

Suppose that Fv is orientable. Then K can be oriented by the orientation of Fv.
This shows that Fh is connected since Fv and Fh are obtained by the +-smoothing
(Figure 6). �

3. Example

In this section, we observe that torus links and alternating links are uniformly
twisted; these are typical examples for Theorem 1.2.
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Figure 5. +-smoothing of a closed fake surface P.

Figure 6. An orientation of K induced by Fv.

Let S 2 be a 2-sphere embedded in S 3 and G be a 2-connected graph embedded in
S 2 with at least one edge. A graph G is said to be 2-connected if there does not exist a
single vertex whose removal disconnects the graph, and we remark that this is required
to have a prime knot or link K. Then the closed surface Ph = ∂N(G) decomposes S 3

into two handlebodies V1 and V2, where V1 contains G. For each edge of G, we take
parallel copies of a meridian disk of V1 which is dual to an edge of G, and for each
region of S 2 − int V1, we take parallel copies of a meridian disk of V2 as the region.
Let Pv be a union of these meridian disks. Then we obtain an essential orientable
closed fake surface P with the vertical–horizontal decomposition P = Pv ∪ Ph. Let Fv

and Fh be the vertical and horizontal surfaces, respectively, obtained from P by the
+-smoothing or −-smoothing, and let K be the knot or link obtained from P′ by the
+-smoothing or −-smoothing (Figure 7).

By the construction, torus knots and links are uniformly twisted. In the above
construction, if we take exactly one copy of a meridian disk in V1 or V2, then we
obtain a prime alternating knot or link as K. In this case, Fv is a checkerboard surface
for the alternating diagram of K, and Fh is a boundary of a regular neighborhood of
another checkerboard surface. Similarly, we note that generalized alternating knots
and links [7] are also uniformly twisted. Moreover, we can take many parallel copies
of each disk in Pv, and hence this construction gives a much larger class of knots that
satisfy the Neuwirth conjecture.
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graph G closed fake surface P uniformly twisted knot K

Figure 7. The procedure for obtaining a uniformly twisted knot.

4. Problem

We close this paper with some problems.
In the last section, we constructed an essential closed fake surface from a Heegaard

surface in the 3-sphere. It is natural to ask how to get all essential closed fake surfaces
obtained from a given closed surface as their horizontal surface.

Problem 4.1. Find a construction of an essential closed fake surface from a given
closed surface in the 3-sphere.

The class of uniformly twisted knots and links is somewhat wide, but it has a
restriction, ‘uniformly twisted’. We would like to know how wide is this class.

Problem 4.2. Does there exist a knot or link which is not uniformly twisted?
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