
Robotica (2025), 43, pp. 350–367
doi:10.1017/S0263574724001905

RESEARCH ARTICLE

Robot hybrid inverse dynamics model compensation
method based on the BLL residual prediction algorithm
Yong Tao1 , Shuo Chen1,2, Haitao Liu1, Jiahao Wan1, Hongxing Wei1 and Tianmiao Wang1

1School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2School of Large Aircraft Engineering, Beihang University, Beijing 100191, China
Corresponding author: Yong Tao; Email: taoy@buaa.edu.cn

Received: 20 June 2024; Revised: 23 September 2024; Accepted: 9 October 2024; First published online: 18 November 2024

Keywords: residual compensation; inverse dynamics model; model compensation method; industrial robot; LSTM; ensemble
learning

Abstract
The inverse dynamics model of an industrial robot can predict and control the robot’s motion and torque output,
improving its motion accuracy, efficiency, and adaptability. However, the existing inverse rigid body dynamics mod-
els still have some unmodelled residuals, and their calculation results differ significantly from the actual industrial
robot conditions. The bootstrap aggregating (bagging) algorithm is combined with a long short-term memory net-
work, the linear layer is introduced as the network optimization layer, and a compensation method of hybrid inverse
dynamics model for robots based on the BLL residual prediction algorithm is proposed to meet the above needs.
The BLL residual prediction algorithm framework is presented. Based on the rigid body inverse dynamics of the
Newton–Euler method, the BLL residual prediction network is used to perform error compensation on the inverse
dynamics model of the Franka robot. The experimental results show that the hybrid inverse dynamics model based
on the BLL residual prediction algorithm can reduce the average residuals of the robot joint torque from 0.5651
N·m to 0.1096 N·m, which improves the accuracy of the inverse dynamics model compared with those of the rigid
body inverse dynamics model. This study lays the foundation for performing more accurate operation tasks using
industrial robots.

1. Introduction
The inverse dynamics model of industrial robots plays a key role in improving robot control accuracy and
operation efficiency. These inverse dynamics models allow robots to perform complex tasks more accu-
rately and effectively by predicting and calculating the forces and torques required. In high-performance
manufacturing, automated assembly, and fine operation, the application of inverse dynamics models is
particularly important. However, these inverse dynamics models still face challenges when dealing with
complex variables and uncertainties in the actual industrial environment. For example, environmental
noise, joint friction, dynamic load change, and uncertain factors such as flexibility and joint clearance
of the robotic arm may lead to inaccurate inverse dynamics model predictions, affecting industrial robot
performance. Considering these problems and urgent needs, academia and industry are actively research-
ing improving the accuracy and computational efficiency of inverse dynamics models to better meet the
needs of modern industry for high-precision and high-efficiency industrial robots.

The uncertainty residuals of the inverse dynamics model originated from influencing factors such as
the greater influence of the motor by temperature, the flexible connection of the harmonic reducer, and
the greater influence of temperature on nonlinear friction. Therefore, Gao et al. [1] proposed that an
accurate and reasonable friction model is important for studying the inverse dynamics mode. Iskandar
et al. [2] proposed a collaborative joint friction model of industrial robots that comprehensively consid-
ered the effects of speed, temperature, and load torque. Callar [3] proposed a physically excited friction

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574724001905
https://orcid.org/0000-0002-8585-0797
mailto:taoy@buaa.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 351

model with a parametric description of a nonlinear dependence of temperature and velocity as well as
the dependence on external loads.

The friction model alone is insufficient; the model still has many gaps, which cause uncertain resid-
uals. Fitting models such as neural networks can provide efficient data-driven optimization with a small
deviation. Romeres et al. [4] developed a learning method for an inverse dynamics model of a long short-
term memory (LSTM) network based on time complexity. Seeger et al. [5] discussed an online robot
inverse dynamics modelling algorithm. Dalla et al. [6] used the Gaussian process (GP) framework to
model the inverse dynamics model. Michael et al. [7] proposed a method for forward dynamics estima-
tion from data-driven inverse dynamics learning, which derived the physical dynamics equations of rigid
body dynamics (RBD) by learning the inverse dynamics model and estimating each dynamics compo-
nent from it. However, these purely data-driven inverse kinetics models usually have low data efficiency,
cannot guarantee the stability of the extrapolation method, and can achieve good performance only near
the training data, which prevents them from being used in safety-critical applications in semistructured
environments.

Hybrid models inspired by physics-inspired neural networks, such as deep Lagrangian networks
(DeLaNs) [8] or Hamiltonian networks [9], ensure physically reasonable dynamic models and thus save
energy. These physics-inspired neural networks incorporate the system dynamics structure into the neu-
ral network architecture, are limited to modelling conservative forces, and capture all nonconservative
effects using an additional neural network. The residual hybrid model combines the rigid body model
with an additional residual model to learn the residuals of the RBD model [10]. A GP or a neural net-
work (NN) can be used for the residual model. Nguyen-Tuong and Eters [11] used the GP model to learn
the residuals of the inverse dynamics model. Several recent works have combined standard multilayer
perceptron NNs with rigid body models [12–15]. Similar methods have been applied to physics-inspired
NNs to capture nonconservative forces. Our previous work successfully applied different recurrent NNs
to the black-box inverse dynamics model [16]. The LSTM algorithm was applied to train the residual
mixture model, and the results were better than those of GP.

Industrial robot is a complex nonlinear system with multiple inputs and multiple outputs, with time-
varying, strongly coupled, nonlinear, and other complex dynamics, thus making the high-performance
control of the robot very complex and difficult [17]. There are many control methods for robotic arms
nowadays; for example, An et al. proposed a sparrow search algorithm [18] based on the Levy flight
operator for self-correcting robot controller parameters to improve the accuracy of motion trajectory.
Chen et al. proposed a target tracking control system based on a bionic closed-loop central pattern gen-
erator to achieve accurate target tracking [19]. Wu et al. formulated a systematic approach for the elastic
dynamics analysis of tandem robot manipulators [20]. Chen et al. proposed a segmented dynamic mod-
elling approach to construct propulsion and lift models for the beaver-like tail of a robot. Combining
fluid dynamics and material mechanics, a theory of sectorial flexible dynamics was developed [21].
Model-based predictive control (MPC) algorithms [22] provide better results with less accurate models
avoiding the need for dynamic modelling of disturbances. However, traditional Proportion Integration
Differentiation (PID) control as well as MPC control can hardly meet the demand of high speed and high-
precision control in modern industry, and feedforward control based on the inverse dynamics model is an
effective way to improve the control performance of robots. However, this control method has the prob-
lem of model imprecision. The actual industrial robot system has parameter uncertainty, non-parametric
uncertainty, external environment interference, etc. It is difficult to establish an accurate inverse dynam-
ics model of the robot, and the inaccuracy of the model will lead to a decrease in the control performance.
In this paper, under the assumption that the robot is an ideal rigid body and elastic deformation is not
taken into account, we carry out a research to address the above problems and propose a hybrid inverse
dynamics model compensation method for industrial robots oriented to the feedforward control method
of robots. However, only the LSTM algorithm is still insufficient for the compensation accuracy of the
inverse dynamics of industrial robots, and there is an urgent need to propose new algorithms to fur-
ther improve the compensation accuracy. Therefore, this paper proposes a combination of bootstrap
aggregating (bagging) algorithm and LSTM network and at the same time introduces the linear layer

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


352 Yong Tao et al.

Figure 1. Flow chart of the hybrid inverse dynamics residual compensation algorithm.

as the network optimization layer. The BLL residual prediction algorithm (BLL algorithm for short) is
constructed to improve the accuracy of the residual model of industrial robots.

First, the rigid body inverse dynamics model and the hybrid inverse dynamics model based on the
compensation of the residual prediction algorithm are introduced. Then, the composition and principle
of the BLL algorithm are introduced. Finally, experiments are conducted based on the public dataset of
the Franka Emika Panda robot to validate the average residual value of each joint of the hybrid inverse
dynamics model of the robot decreased from 0.5651 N · m to 0.1096 N · m, which improved the cal-
culation accuracy of the robot inverse dynamics model. Compared with the LSTM and GP algorithms
in this field, the proposed BLL algorithm improves the mean squared error (MSE), root mean square
residual error (RMSE), mean absolute error (MAE), R2, and the reduction rate of the mean value of the
residuals after compensation, validating the effectiveness of the proposed algorithm. Figure 1 shows the
flow chart of the model compensation technique.

2. Robot inverse dynamics model
2.1. Body inverse dynamics model
The primary purpose of industrial robot dynamics is to achieve real-time control and an accurate
dynamic model; accurate dynamic parameters are the key. Robot inverse dynamics modelling meth-
ods include Lagrangian methods, recursive Newton–Euler methods, symbolic computational methods,
and methods based on a mixture of symbolic and numerical methods. Among these, the Newton–Euler
[23] method has a relatively fast computational speed, especially when using a recursive form, which is
well suited for robot control systems and is computationally efficient [24], so the Newton–Euler method
is used here, with the following expression:

τ = M(q)q̈ + H(q, q̇) + G(q) + ξ (2.a)

q, q̇, q̈ are the vectors of the joint position, velocity, and acceleration, respectively, and n represents robot
degrees of freedom (DOF). τ is the joint torque vector, M(q) ∈ Rn×n is the inertia matrix, H(q, q̇) ∈ Rn

is the vector of the centrifugal force and the Coriolis force, G(q) ∈ Rn is the gravitational torque or
force, and ξ ∈ Rn is the offset torque, which represents the dynamic uncertainty influencing factor. The
nonlinear friction factor is one of the factors affecting the high-precision movement of a robot [25]. The

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 353

Figure 2. Two-frame diagram of the hybrid inverse dynamics model based on the BLL algorithm
compensation.

dynamic identification model of industrial robots usually uses the viscosity and Coulomb friction model
to represent the effect of friction on robot dynamics:

ξ = fvq̇ + fcsign(q̇) + ε(q, q̇, q̈) (2.b)

where fv, fc are the viscosity and the Coulomb friction coefficient, respectively, and (q, q̇, q̈) ∈ Rn repre-
sents the factors not modelled in the physical kinetics model. Predicting the unmodelled part is the focus
of this paper in Sections 3 and 4 and is described in detail.

2.2. Hybrid inverse dynamics model compensated based on the BLL residual prediction algorithm
Based on Formula (2.a), this paper proposes a hybrid architecture that couples the RBD model, friction
model, and residual error prediction algorithm. The BLL algorithm models the residual errors of the
RBD model and accounts for the uncaptured effects, such as the flexibility of the robot. The architecture
proposed in this paper is composed of the following three parts:

τ = fRBD(qt, q̇t, q̈t
des) + fF(q̇t) + fBLL(qt, q̇t, q̈t

des, θBLL) (2.c)

fRBD is a partial rigid body model using the motion equations in Eq. (2.a). fFfBLL is a residual prediction
model that captures some observable effects, such as joint and link flexibility and more complex friction
effects.

This paper proposes a hybrid inverse dynamics model framework, as shown in Fig. 2. First, the
Newton–Euler algorithm is used for inverse dynamics joint torque calculations. Then, the values of the
friction model are calculated. Finally, the calculated joint torques are used as the BLL network inputs
to train the BLL network model. The network-predicted values are compared with those of the RBD
model. The friction models are combined to obtain a hybrid inverse dynamics model. In this paper, the
main objective is to predict the residual error.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


354 Yong Tao et al.

Figure 3. Flow chart of the BLL algorithm.

3. Principle of the BLL residual prediction algorithm
The BLL residual prediction algorithm proposed in this paper comprises three layers: a sample data
sampling layer based on ensemble learning bagging, a network LSTM prediction layer, and a linear
optimization fitting layer to predict the residual joint torque values (Fig. 3).

Bootstrap aggregating (bagging) was first proposed by Leo Breiman in 1996 [26]. The bagging algo-
rithm can be combined with other classification and regression algorithms to improve the accuracy and
stability and reduce the variance in the results simultaneously to avoid overfitting.

LSTM NNs are a special type of recurrent neural network (RNN) [27]. During the training of the
original RNN, with prolonged training time and an increase in the number of network layers, the problem
of gradient explosion or gradient disappearance is prone to occur, and the RNN cannot process longer
sequence data and thus cannot obtain long-distance data. LSTM was proposed to solve this problem.

The linear layer, also called the fully connected layer, is a basic network layer structure in deep
learning [28]. A linear layer usually contains an input matrix, a weight matrix, and a bias vector.

In this paper, the bagging algorithm is first used to sample n groups, and an independent LSTM
network is used for training. At this time, the learning rate of the fully connected layer is set to 0, and
no training is performed. The trained n groups of LSTM network models are validated using the same
validation set, and n sets of validation results are obtained. These results still have a residual error ε

from the actual value. To further optimize the residuals, the n-group LSTM validation set results are
averaged and combined with the true values ym of the original validation set to form a new training set,
which is used to train the subsequent fully connected layer to optimize the residuals. The learning rate
of the fully connected layer is changed to 0.01. Then, a unified whole is validated with the test dataset
after the training is complete. The validation is performed using the same validation set to validate the
n-group model and perform residual optimization.

Bagging generates different training subsets based on random sampling, such that some data in each
subset are not sampled. In this way, more data changes can be introduced, which can increase the differ-
ence between models and improve the diversity of the ensemble model. In addition, as a deep learning
network, LSTM has many parameters that require training and is prone to overfitting the training data.
Through bagging, since each learner is trained on a different subset, overfitting can be reduced, and the
generalization ability of the model can be improved. Finally, the linear layer is trained and optimized
based on the LSTM prediction result to reduce the residual error further.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 355

Table I. Model-related mathematical symbols.

Mathematics symbol Meaning
ft Forget gate
it Input gate
C̃t update vector
Ct Cell status
ot Output gate
ht Cell status output
xt Input value

Figure 4. Principle of LSTM [29].

In this paper, three algorithms, namely, bagging, LSTM, and linear, are coupled, and the mathematical
mapping formula corresponding to the BLL algorithm is created according to the coupling mechanism.
The relevant mathematical symbols are shown in Table I.

Bagging-based random sampling:

Dt = Bootstrap(D) (3.a)

Next, the LSTM algorithm makes independent predictions. Figure 4 shows the principle of LSTM.
The underlying logic of LSTM is to selectively retain and forget historical information [30] based on

various gating weight matrices. The specific formulas are as follows:
Forget gate:

ft = σ (Wf · [ht−1, xt] + bf ) (3.b)

Input gate:

it = σ (Wi · [ht−1, xt] + bi) (3.c)

Update vector:

C̃t = tanh(WC · [ht−1, xt] + bC) (3.d)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


356 Yong Tao et al.

Cell status update:

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.e)

Output gate:

ot = σ (Wo[ht−1, xt] + bo) (3.f)

Cell state output:

ht = ot*tanh(Ct) (3.g)

Output value:

yt = ht · Wyh (3.h)

After n groups of LSTM networks are independently trained, the average value of the n models is
taken at each moment after validation is performed using test_data:

yt =
n∑
1

yt/n (3.i)

Assuming there are K time points in the validation set, the average vector predicted by LSTM is:

Yk×1 = [y1, y2 · · · yk]
T (3.j)

The validation results of the test_data and actual result are used as the input of the linear layer to train
a NN with a total of three layers, including input, output, and linear hidden layers. The linear weight
matrix is:

W1
m×k =

⎡
⎢⎢⎣

W11 · · · W1k

...
. . .

...

Wm1 · · · Wmk

⎤
⎥⎥⎦ (3.k)

The linear hidden layer is:

h0 = relu
(
W1

m×kYk×1 + b1

)
(3.l)

The output result of the full connection is:

OUT = relu
(
W2

k×mh.0 + b2

)
(3.m)

4. Residual model validation
4.1. Dataset preprocessing
The dynamic parameters and public datasets of the Franka Emika Panda robot used in this paper are from
the “Dynamic Identification of the Franka Emika Panda Robot With Retrieval of Feasible Parameters
Using Penalty-Based Optimization” provided by Claudio Gaz et al. [31].

In this paper, the angular acceleration is calculated by derivation based on the time, angular displace-
ment, and angular velocity of the seven joints in the dataset. The inverse Newton–Euler algorithm [32]
was used to calculate the torque variation in each joint of the rigid body inverse dynamics model (2.a).

In this paper, the data collected at 12.9 S–13.2 S are selected as the results. The input layer of the
inverse Newton–Euler algorithm has seven channels: the joint angle, joint velocity, and joint acceleration
of the seven DOF of the Franka robot; the output is seven channels, which are the calculated torques of
the seven joints of the Franka robot. The calculation results of the inverse Newton–Euler algorithm are
compared with the actual acquisition results, as shown in Fig. 5.

The residual data of subtracting the calculated and actual torque are shown in Fig. 6.
The above figure shows a large gap exists between the calculated and actual results. The model

training process and results are described in detail in Section 4.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 357

Figure 5. Comparison of the calculated and actual torques for joints 1–7.

Figure 6. Residual values of the seven robot joints.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


358 Yong Tao et al.

Table II. Loss training variation in the seven robot joints.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
Conv_epoch 86 82 51 49 118 90 39
Loss_max 0.038 0.051 0.034 0.048 0.19 0.095 0.37
Loss_min 0.002 0.0018 0.0019 0.002 0.008 0.005 0.02
De_proportion 94.7% 96.4% 94.4% 95.8% 95.7% 94.7% 94.6%

Figure 7. Joints loss function curves of seven joints.

4.2. Analysis of the model training set results
The hardware conditions of this model were an Intel i7-13700H CPU, 16 GB of memory, an NVIDIA
RTX4060 graphics card with 8 GB of video memory, an operating system of Windows 11, and
environmental configurations of Anaconda Python 3.9, PyTorch-Cuda 11.8, and PyTorch 2.1.0.

The input layer of the BLL algorithm is the torque residual of a single joint, which is the difference
between the calculated torque and the actual torque of the RBD of the robot; the output layer of the BLL
is a single channel, which is the predicted value of the torque residual of a single joint. The figure below
shows the decline curve of the loss function when the BLL algorithm trains seven joint data points alone.

The fitness value function decreases as the number of iterations increases. After 800 iterative training
tests, most converge within 130 iterations. Therefore, in this paper, the number of epochs is adjusted to
130. The training loss is shown in Fig. 7. The training data are presented in Table II.

Table II shows that the training results of the decrease rate of the fitness function of the model training
were between 94.4% and 96.4%. Additionally, the model was able to fit the data points better. Next, the
BLL parameter settings for training are introduced (Table III).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 359

Table III. BLL training parameters.

Parameter Symbol Optimization value
LSTM_hidden_dim 32

BLL hidden layer dimension Linear_hidden_dim1 100
Linear_hidden_dim2 50
Linear_hidden_dim3 25

BLL input dimension input_dim 1
BLL output dimension output_dim 1
BLL Learning rate Learning_rate 0.01
Number of BLL iterations num_epochs 130
Batch size for BLL batch_size 32
BLL activation function Activation ReLU

In Table III, the dimensions of the BLL hidden layer include the original LSTM and fully con-
nected layers. Therefore, the hidden dimension needs to be divided into LSTM_hidden_dim and
linear_hidden_dim1-linear_hidden_dim3. The effect of a batch size of approximately 32 is the best.
The following is the evaluation of the test set and the model comparison.

4.3. Results analysis on the model test set
To verify the effectiveness and improvement effect of the proposed BLL network, 290 verification points
were arbitrarily selected within the range of 25,000 datasets to verify the training set. The comparison
results of the actual residuals with the BLL-predicted residuals and the comparison between the actual
residuals and model-compensated residuals are shown in Figs. 9 and 10, respectively.

The BLL network proposed in this paper uses four indicators: the MSE, the RMSE, the MAE, and the
R2 score. We conducted a test set analysis [33]. The definitions and descriptions of these four indicators
are given as follows:

MSE = 1

n

n∑
i=1

(
yi − ŷi

)2 (4.a)

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2 = √
MSE (4.b)

MAE = 1

n

n∑
i=1

∣∣yi − ŷi

∣∣ (4.c)

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − yi

)2 = 1 −
∑n

i=1(yi−ŷi)
2

n
∑n

i=1(yi−yi)
2

n

= 1 − REMSE|
Var

(4.d)

where yi represents the true value of the dataset, ŷi represents the predicted value of the dataset, yi

represents the mean value of the predicted value of the dataset, and n represents the number of datasets
and the variance in the data. R2 represents the determination coefficient of the model. The best score is
1.0, indicating that the model predicts the true value perfectly. It can also be negative because the model
can vary arbitrarily; that is, there is no mapping fit between the predicted and real data. Table IV shows
the MSE, RMSE, MAR, and R2 values.

The determination coefficient of R2 of the predicted values of the specific residuals is shown in Fig. 8.
R2 is approximately 0.84–0.98. The predicted values (blue dots) are closely distributed around the true

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


360 Yong Tao et al.

Table IV. Values of MSE, RMSE, MAE, and R2.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
MSE 0.0432 0.0652 0.0291 0.0335 0.0046 0.0072 0.0010
RMSE 0.2078 0.2554 0.1705 0.1830 0.0678 0.0848 0.0316
MAE 0.1770 0.1453 0.1453 0.1391 0.0530 0.0649 0.0212
R2 0.9601 0.9455 0.9436 0.9656 0.9208 0.8428 0.9867

Figure 8. Training and testing of joints 1–7.

value (red line), with R2 close to 1, indicating that the predicted values have a high correlation with the
actual value and a high fitting accuracy.

During the BLL network training, the training and iterations were performed in a single dimension,
so the characteristics of each dimension were inconsistent. In addition, the accuracy of the robot end
was affected by nonlinear factors such as the accuracy of the dataset and the environmental conditions,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 361

Figure 9. Comparison of the actual residuals and the BLL-predicted residuals between joints1 and 7.

which caused some differences in the effect of residual compensation of the end-accuracy of the robots,
such as joint 6.

Table IV shows that the MSE, RMSE, and MAE of the predicted values of the joint robot residuals
are all close to zero. Therefore, the proposed machine learning model is adaptable to the prediction of
the residuals of the inverse dynamics model.

As Figs. 9 and 10 show, before compensation, the absolute values of the Joint1 residuals were approxi-
mately evenly distributed at [4.0374, 0.0006]; the absolute values of the Joint2 residuals were distributed
at [5.4627, 0.0121]; the absolute values of the Joint3 residuals were distributed at [4.3725, 0.0066]; the
absolute values of the Joint4 residuals were distributed at [2.9014, 0.0109]; the absolute values of the
Joint5 residuals were distributed at [0.7850, 0.0039]; the absolute values of the Joint6 residuals were
distributed at [0.6646, 0.0014]; and the absolute values of the Joint7 residuals were evenly distributed
at [0.4305, 0.0088]. Using the BLL algorithm-based residual compensation method proposed in this
paper, the residual errors of the seven robot joints are distributed at approximately 0, the fluctuations
near ±0.2N · m, and the fluctuation range is very small, indicating that the compensated accuracy has
high stability and can improve the operating accuracy of the robot.

The results of the static statistical analysis of the robot inverse dynamics model before and after
residual compensation are shown in Table V. Compared with the precompensation, the model residual
of the seven robot joints was reduced [62.76–92.72%] to good effect.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


362 Yong Tao et al.

Figure 10. Comparison of the actual residual error and the model-compensated residual error of joints
1–7.

The robot dataset is based on Franka Emika Panda, a highly collaborative robot. The torque residual
range is much smaller than that of traditional heavy-duty industrial robots. Therefore, using LSTM or
GP [34] for feature extraction, model training, and optimization is more difficult. In this paper, the BLL
algorithm is proposed to predict and compensate for the residuals of the Franka Emika Panda robot’s
inverse dynamics model, and a joint residual mapping model and a hybrid inverse dynamics model of
the industrial robot are established. Figure 11 shows the seven joints reproducing the actual torques after
rearranging the errors to compensate for them in the order in which they were collected. Note that the
range and accuracy of the vertical axis are different for each figure. Therefore, the seven joints cannot
be compared. The results show that the reproduction results of the 7 joints were better, and the residual
compensation model was effective.

4.4. Results analysis on the model test set
To validate the test results, the method in this paper was compared with the LSTM algorithm [35] and
the GP algorithm [36], which are commonly used in previous studies. The results are shown in Tables VI
and VII. After offline compensation, the algorithm proposed in this paper outperforms the LSTM and
GP algorithms in terms of the MSE, RMSE, MAE, and R2. Compared with those of the LSTM, the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 363

Table V. Analysis of the positional errors.

Joint error (N · m) Error range Percent improvement
Joint 1 error (N · m) before [4.0374, 0.0006] 81.29%

after [0.6190, 0.0009]
Joint 2 error (N · m) before [5.4627,0.0121] 77.65%

after [0.7132,0.0013]
Joint 3 error (N · m) before [4.3725,0.0066] 82.76%

after [0.4685,0.0009]
Joint 4 error (N · m) before [2.9014,0.0109] 82.60%

after [0.6077,0.0015]
Joint 5 error (N · m) before [0.7850,0.0039] 84.96%

after [0.2604,8.5e-05]
Joint 6 error (N · m) before [0.6646,0.0014] 62.76%

after [0.3443,0.0003]
Joint 7 error (N · m) before [0.4305,0.0088] 92.72%

after [0.0738,1.4e-05]

Table VI. Values of MSE, RMSE, MAE, and R2.

Evaluation Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
BLL_MSE 0.0432 0.0652 0.0291 0.0335 0.0046 0.0072 0.0010
LSTM_MSE 0.0497 0.0655 0.0320 0.0497 0.0086 0.0214 0.00067
GP_MSE 0.4988 0.5689 0.2228 0.5281 0.0744 0.0996 0.0255
BLL_RMSE 0.2078 0.2554 0.1705 0.1830 0.0678 0.0848 0.0316
LSTM_RMSE 0.2230 0.2560 0.1788 0.2229 0.093 0.1465 0.0260
GP_RMSE 0.7062 0.7542 0.4720 0.7267 0.2728 0.3156 0.1599
BLL_MAE 0.1770 0.1878 0.1453 0.1391 0.0530 0.0649 0.0212
LSTM_MAE 0.2042 0.2091 0.2069 0.1750 0.0730 0.1130 0.0254
GP_MAE 0.4605 0.4593 0.3224 0.4861 0.1915 0.2343 0.1132
BLL_R2 0.9601 0.9455 0.9436 0.9656 0.9208 0.8428 0.9867
LSTM_R2 0.9534 0.9252 0.9379 0.8959 0.8801 0.6314 0.9578
GP_R2 0.5332 0.5247 0.5682 0.5268 0.5123 0.5564 0.5621

mean values of the seven joints increase with respect to the MSE by 19.23%, RMSE by 12.68%, MAE
by 21.69%, R2 by 5.84%, and the average residual reduction rate by 21.48%. Compared with those of the
GP, the average increase in MSE is 90.89%, t in RMSE is 70.63%, in MAE is 65.23%, in R2 is 42.37%,
and the residual reduction rate is 65.23%. Therefore, compared with the LSTM and GP methods, the
RMSE, MAE, R2, and reduction rate of the average residual in the robot inverse dynamics model based
on the BLL method proposed in this paper increased.

5. Conclusions
In order to improve the residual prediction accuracy of inverse dynamics models for industrial robots,
this paper combines the bootstrap aggregating (bagging) algorithm with LSTM network, introduces lin-
ear layer as the network optimization layer, and proposes a method based on the BLL residual prediction
algorithm, which is introduced as a network optimization layer. Additionally, hybrid inverse dynamics
model compensation method for robots based on BLL residual prediction algorithm is proposed, and
the framework of BLL residual prediction algorithm is given. The BLL residual prediction algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


364 Yong Tao et al.

Figure 11. Comparison of the actual torque of joints 1–7 and the calculated torque after model
compensation.

can achieve accurate prediction of residuals, and the algorithm can accurately estimate the residual value
under the current value, which provides a prerequisite for the establishment of a hybrid inverse dynamics
model.

To verify the effectiveness of the BLL residual model-based compensation method, we compared
it with the rigid body inverse dynamics model. The torque residual of each robot joint decreased from
0.5651 N · m to 0.1096 N.m on average for the hybrid inverse dynamics model based on the BLL residual
prediction algorithm. The calculation accuracy of the robot inverse dynamics model is improved, which
is beneficial for aiding the robot to perform manipulation tasks more accurately. The BLL algorithm
proposed in this paper was compared and analysed with the LSTM and GP algorithms in this field, and
the BLL algorithm proposed in this paper achieved improvements in MSE, RMSE, MAE, R2, and the
reduction rate of average residuals after compensation, which validated the effectiveness of the proposed
algorithm in this paper. The study laid the foundation for accurately modelling the inverse dynamics of
industrial robots.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 365

Table VII. Values of MSE, RMSE, MAE, and R2 comparison of values after error
compensation of the BLL, LSTM, and GP algorithm.

Error (N m) Max Min Average
Uncompensated joint 1 4.0374 0.0006 0.9464
LSTMs 0.9323 0.0028 0.2042
GP 2.199 7.3e-12 0.4605
BLL 0.6190 0.0009 0.1770
Uncompensated joint 2 5.4627 0.0121 0.8404
LSTMs 1.0800 0.0011 0.2069
GP 2.9480 7.6 e-12 0.4592
BLL 0.7132 0.0013 0.1878
Uncompensated joint 3 4.3725 0.0066 0.8429
LSTMs 0.9004 0.0027 0.2069
GP 1.5329 6.5e-12 0.3224
BLL 0.4685 0.0009 0.1453
Uncompensated joint 4 2.9014 0.0109 0.7996
LSTMs 0.6605 0.0015 0.1750
GP 2.2541 2.0e-12 0.4861
BLL 0.6077 0.0007 0.1391
Uncompensated joint 5 0.7850 0.0039 0.3525
LSTMs 0.3194 0.0001 0.0730
GP 0.6510 7.7e-12 0.1914
BLL 0.2604 8.5e-05 0.0530
Uncompensated joint 6 0.6646 0.0014 0.1743
LSTMs 0.6068 0.0002 0.1130
GP 0.6042 1.4e-12 0.2342
BLL 0.3443 0.0003 0.0649
Uncompensated joint 7 0.4305 0.0088 0.2911
LSTMs 0.1178 2.10e-05 0.0254
GP 0.3859 5.9e-13 0.1132
BLL 0.0738 1.4e-05 0.0212

Author contribution. Conceptualization, Y.T. and S.C.; methodology, Y.T.; software, H.L. and S.C.; validation, J.W.; formal
analysis, S.C.; investigation, H.W.; resources, H.L.; data curation, S.C.; writing – original draft preparation, S.C.; writing – review
and editing, S.C.; visualization, S.C.; supervision, J.W.; project administration, Y.T.; funding acquisition, Y.T. All authors have
read and agreed to the published version of the manuscript.

Financial support. This research was funded by the Ministry of Industry and Information Technology of the People’s Republic
of China, National Key Research and Development Plan “Intelligent Robot” Project No. 2022YFB4700400.

Competing interests. The authors declare no competing interests.

References
[1] L. Gao, J. Yuan, Z. Han, S. Wang and N. Wang, “A Friction Model with Velocity, Temperature and Load Torque Effects

for Collaborative Industrial Robot joints,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE (2017) pp. 3027–3032. doi: 10.1109/IROS.2017.8206141.

[2] M. Iskandar and S. Wolf, “Dynamic Friction Model with Thermal and Load Dependency: Modelling, Compensation and
External Force Estimation[C],” In: 2019 International Conference on Robotics and Automation (ICRA), IEEE, IEEE (2019)
pp. 7367–7373.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1109/IROS.2017.8206141
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


366 Yong Tao et al.

[3] T. C. Çallar and S. Böttger, “Hybrid learning of time-series inverse dynamics models for locally isotropic robot motion[J],”
IEEE Robot Autom Lett 8(2), 1061–1068 (2022

[4] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro and A. Chiuso, “Derivative-free online learning of inverse dynamics
models[J],” IEEE Trans Contr Syst Technol 28(3), 816–830 (2019).

[5] M. Seeger, “Gaussian processes for machine learning[J],” Int J Neural Syst 14(02), 69–106 (2004).
[6] A. D. Libera, G. Giacomuzzo, R. Carli, D. Nikovski and D. Romeres, Forwards Dynamics Estimation from Data-Driven

Inverse Dynamics Learning. arXiv e-prints, 2023: arXiv: 2307.05093.
[7] M. Lutter, K. Listmann and J. Peters, “Deep Lagrangian Networks for End-to-End Learning of Energybased Control for

Underactuated Systems,” In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE
(2019) pp. 7718–7725.

[8] S. Greydanus, M. Dzamba and J. Yosinski, “Hamiltonian neural networks,” Adv Neur Inf Process Syst 32, 1–5 (2019)
[9] J. K. Gupta, K. Menda, Z. Manchester and M. Kochenderfer, “Structured Mechanical Models for Robot Learning and

Control,” In: Learning for Dynamics and Control, (PMLR, 2020) pp. 328–337.
[10] F. Meier, D. Kappler, N. Ratliff and S. Schaal, “Towards Robust Online Inverse Dynamics Learning,” In: In. 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), IEEE (2016) pp. 4034–4039.
[11] D. Nguyen-Tuong and J. Peters, “Using Model Knowledge for Learning Inverse Dynamics,” In: 2010 IEEE International

Conference on Robotics and Automation, IEEE (2010) pp. 2677–2682.
[12] Y. Wang and Y. Liu, “Adaptive output-feedback tracking for nonlinear systems with unknown control direction and generic

inverse dynamics[J],” Sci China Inf Sci 65(8), 182204 (2022). doi: 10.1007/s11432-020-3207-3.
[13] D. Kappler, F. Meier, N. Ratliff and S. Schaal, “A New Data Source for Inverse Dynamics Learning,” In: In. 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), IEEE (2017) pp. 4723–4730.
[14] X. Zhao, J. Wang, L. Liu, “Research on the inverse dynamics of the planar 3-RRR rigid-flexible coupling parallel robot[J],”

J Mach Des 36(11), 8 (2019). doi: CNKI: SUN: JXSJ.0.2019-11-002
[15] P. Sun, Z. Shao, Y. Qu, Y. Guan and J. Tan, “Inverse Dynamics Modelling of Robotic Manipulator with Hierarchical

Recurrent Network[C],” In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE
(2019) pp. 751–756.

[16] V. Shaj, P. Becker, D. Buchler, H. Pandya, C. J. T. Niels van Duijkeren, M. Hanheide and G. Neumann, “Action-Conditional
Recurrent Kalman Networks for Forwards and Inverse Dynamics Learning,” In: Conference on Robot Learning, (2020)
pp. 1–5.

[17] M. W. Spong, “An historical perspective on the control of robotic manipulators[J],” Annu Rev Control Robot Auton Syst
5(1), 1–31 (2022).

[18] B. An, J. Chen, H. Sun, M. Yin, Z. Song, C. Zhuang, C. Chang and M. Liu, “Optimization of fracture reduction robot
controller based on improved sparrow algorithm[J],” Biomimetic Intell Robot 3(4), 100120 (2023).

[19] G. Chen, Y. Xu, X. Yang, H. Hu, H. Cheng, L. Zhu, J. Zhang, J. Shi and X. Chai, “Target tracking control of a bionic mantis
shrimp robot with closed-loop central pattern generators[J],” Ocean Eng 297, 116963 (2024).

[20] G. Wu, On the elastodynamics of a five-axis lightweight an-thropomorphic robotic arm[J], (2021).
[21] G. Chen, Y. Xu, Z. Wang, J. Tu, H. Hu, C. Chen, Y. Xu, X. Chai, J. Zhang and J. Shi, “Dynamic tail modeling and motion

analysis of a beaver-like robot[J],” Nonlinear Dynam 112(9), 6859–6875 (2024).
[22] P. Tatjewski, “Effective nonlinear predictive and CTC-PID control of rigid manipulators[J],” J Autom Mobile Robot Intell

Syst 18(2), 1–16 (2024).
[23] D. Zhang, Y. Xu, J. Yao and Y. Zhao, “Inverse dynamic analysis of novel 5-DOF hybrid manipulator [J],” Trans Chinese

Soc Agric Mach 48(9), 8 (2017). doi: 10.6041/j.issn.1000-1298.2017.09.049 .
[24] N. Yilmaz, J. Y. Wu, P. Kazanzides and U. Tumerdem, “Neural Network based Inverse Dynamics Identification and External

Force Estimation on the da Vinci Research Kit[C],” In: 2020 IEEE International Conference on Robotics and Automation
(ICRA), IEEE (2020) pp. 1387–1393.

[25] M. Wang and M. Wang, “Dynamic modeling and performance evaluation of a new five-DOF hybrid robot [J],” J Mech Eng
59(9), 63–75 (2023). doi: 10.3901/JME.2023.09.063.

[26] L. Breiman, “Bagging predictors [J],” Mach Learn 24(2), 123–140 (1996).
[27] A. Graves, “Long Short-Term Memory [J],” In: Supervised Sequence Labelling with Recurrent NNs, (Springer, 2012) pp.

37–45.
[28] H. Abdi, “A neural network primer [J],” J Biol Syst 2(03), 247–281 (1994).
[29] H. Zhao, Z. Lai, H. Leung and X. Zhang, “Neural-Network-Based Feature Learning: Recurrent Neural Network[J],” In:

Feature Learning and Understanding: Algorithms and Applications, (Springer, 2020) pp. 253–275.
[30] N. Liu, L. Li, B. Hao, L. Yang, T. Hu, T. Xue and S. Wang, “Modelling and simulation of robot inverse dynamics using

LSTM-based deep learning algorithm for smart cities and factories[J],” IEEE Access 7, 173989–173998 (2019).
[31] C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano and A. De Luca, “Dynamic identification of the Franka Emika Panda

robot with retrieval of feasible parameters using penalty-based optimization,” IEEE Robot Autom Lett 4(4), 4147–4154
(2019). doi: 10.1109/lra.2019.

[32] M. Lutter, A Differentiable Newton–Euler Algorithm for Real-World Robotics[M]//Inductive Biases in Machine Learning
for Robotics and Control (Springer Nature Switzerland, Cham, 2023) pp. 9–34.

[33] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot modeling and control[M] (John Wiley & Sons, USA 2020).
[34] S. Rezaei-Shoshtari, D. Meger and I. Sharf, “Cascaded Gaussian Processes for Data-Efficient Robot Dynamics Learning[C],”

In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (IEEE, 2019) pp. 6871–6877.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1007/s11432-020-3207-3
https://doi.org/10.6041/j.issn.1000-1298.2017.09.049
https://doi.org/10.3901/JME.2023.09.063
https://doi.org/10.1109/lra.2019
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core


Robotica 367

[35] X. U. Zheng, Z. Gong, W. Huo-Ming, H. Zhi-Cheng, Y. Wen-Lin, L. Ji-min, W. Jian and G. Xing, “Error compensation of
collaborative robot dynamics based on deep recurrent neural network [J],” Chinese J Eng 43(7), 995–1002 (2021).

[36] E. Rueckert, M. Nakatenus, S. Tosatto and J. Peters, “Learning Inverse Dynamics Models at o (n) Time with LSTM
networks[C],” In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), IEEE (2017) pp.
811–816.

Cite this article: Y. Tao, S. Chen, H. Liu, J. Wan, H. Wei and T. Wang (2025). “Robot hybrid inverse dynamics model
compensation method based on the BLL residual prediction algorithm”, Robotica 43, 350–367. https://doi.org/10.1017/
S0263574724001905

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001905
Downloaded from https://www.cambridge.org/core. IP address: 3.144.229.52, on 03 May 2025 at 00:41:53, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574724001905
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001905
https://www.cambridge.org/core

	Robot hybrid inverse dynamics model compensation method based on the BLL residual prediction algorithm
	Introduction
	Robot inverse dynamics model
	Body inverse dynamics model
	Hybrid inverse dynamics model compensated based on the BLL residual prediction algorithm

	Principle of the BLL residual prediction algorithm
	Residual model validation
	Dataset preprocessing
	Analysis of the model training set results
	Results analysis on the model test set
	Results analysis on the model test set

	Conclusions


