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BOUNDARY CONDITIONS IN OPTIMAL CONTROL

B. D. CRAVEN1
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Abstract

A simple rigorous approach is given to finding boundary conditions for the adjoint
differential equation in an optimal control problem. The boundary conditions for
a time-optimal problem are calculated from the simpler conditions for a fixed-time
problem.

1. Introduction

When an optimal control problem is solved using the Pontryagin theory, the ad-
joint differential equation must be given suitable boundary conditions, depending
on the terminal conditions for the given problem. Even when, in a computation,
the Pontryagin maximum (or minimum) principle is not used (see e.g. [5], [6]),
the adjoint equation with boundary conditions is still needed, in order to com-
pute the gradient of the objective functional. K. L. Teo et al. [6] have obtained
boundary conditions for the adjoint equation, for a class of time-optimal control
problems, by a fairly complicated calculation. It will now be shown that such
boundary conditions can be deduced from those for a fixed-time problem, in a
manner that is simple and intuitive, as well as rigorous, and which could be
extended. The approach uses Dirac delta functions, which may be regarded ei-
ther as Schwartz distributions, or as functions with extended domain and range
spaces [3]. While the required results for fixed-time optimal control are well
known, a simple approach to them is first outlined, for the reader's convenience.

'Mathematics Department, University of Melbourne, Parkville, Vic. 3052, Australia.
© Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

343

https://doi.org/10.1017/S0334270000006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006287


344 B. D. Craven (2]

2. Pontryagin theory for a fixed-time optimal control problem

Consider the following fixed-time optimal control problem:

MinimiseF{x, u) := / f{t,x(t),u{t)) dt (PI)
Ji

subject to z(0) = x0, dx{t)/dt = m(t, x(t), u(t) {t G I),
u(t) e A(t e I), n{x{t)) e v{t) {t e I).

Here / := [0, T], with T fixed; the functions /(.,.,.) and m(.,.,.) are continuously
differentiate; for each t € / , V(t) is a closed convex cone, representing constraint
components n,(i(<)) > 0 or = 0. The differential equation may be written
as Dx = M(x, u), where D = d/dt, and M is a mapping of the functions x
and u, defined by M(x,u)(t) := m(t,x(t),u(t)). Similarly, define the mapping
N by N(x)(t) := n(x(t)). Consider the control function u(.) to be piecewise
continuous, and the state function x(.) to be piecewise smooth, with norms
||u|| := ||u||oo and ||x|| := ||z||oo + H^^lloo! denote these function spaces by
U and X respectively. It then follows [2] that F(.,.) and M(.,.) are Frechet
differentiable, and the linear mapping D is continuous. Let T := {u E U :
(Vi € I)u(t) G A}. For convenience in developing the theory, assume [2] a shift
of origin in X to make the initial condition XQ = 0; the reverse shift will be made
to the results. Denote by V(t)' the dual cone to V{i).

For problem (PI), define

H(x, u) := F{x, u) + XM(x, u) - vN(x),

where A and v are linear functionals in spaces dual to those in which M(x, u)
and N(x) take their values. Then

H(x,u) = f h{t,x(t),u{t),X(t),v{t))dt,
Ji

where the Hamiltonian

h{t,x(t),u{t),X(t),v{t)) := f{t,x(t),u(t)) + *{t)m(t,x(t),u(t)) - u(t)n(x{t)),
and A(.) and v{.) are functions (possibly involving delta functions) which repre-
sent the functionals A and v respectively. (Thus the evaluation of the functional
A at a function v(.) equals / 7 X(t)v(t)dt.) Let p = [X,p}.

Assume now that the differential equation for x(t), with initial condition,
defines a unique x = $(u) for each u G T, where the mapping 3>(.) satisfies a
Lipschitz condition. Let

P(x, u) := \-Dx + M(x, u), N{x) - s],

where s is a slack variable (thus, s(.) > 0). In the next calculation, assume that
x = $(u) and xA = $(uA), where u,uA e F. When there is a state constraint
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n(x(t)) € V(t) (t e / ) , assume that s(.) is adjoined to x(.) as additional state
component(s). Define also Q(.,.) := F(., .) + pP(.,.). Assume that F is partially
Fre'chet differentiable with respect to x, uniformly in u near uA, thus that

A\F(x,u) - F{xA,u) = Fx(x
A,uA){x - xA) + o(\\x - xA\\ + ||u - u

with Fx denoting partial Fre'chet derivative; and assume a similar property for M.
(Note that usual partial Fre'chet differentiability would have, instead, Fx(x

A,u).)
Then

H{xA,uA)-H{xA,u)

= F{xA,uA) - F(x,u) + F{x,u) - F{xA,u) + p[P(xA,uA) - P(xA,u)}

= F{xA,uA) - F{x,u) + F{x,u) - F{xA,u) + pP{x,u) - pP{xA,u)

= F(xA,uA) - F(x,u) + Q(x,u) - Q(xA,u)

= F(xA,uA) - F(x,u) + Qx(x
A,uA)(x - xA) + o(\\x - xA\\ + \\u - uA\\)

= F(xA,uA) - F(x, u) + Qx(x
A,uA)(x - xA) + o(\\u - uA\\), (Ham)

by the assumptions of differentiability uniformly in u, and the Lipschitz assump-
tion on $.

Now, if (xA,uA) minimises the control problem (PI), and if p satisfies the
equation Qx(x

A,uA) = 0 (say with p = pA), then

H(x, uA) - H{xA, uA) > o{\\u - uA\\) (u € T, u -» uA).

Thus (see [1], [2]) H(.,uA) has a quasimin at xA, subject to u € T. If the
minimum of the control problem is either global, or a local minimum with respect
to the Z/1(/) norm for u, then Theorem 5.3.1 of [2] deduces from the quasimin
of H(.,uA) the Pontryagin property, that

(Vw e A)h(t,xA(t),w,\A(t)) > h{t,xA(t),uA(t),pA(t))

for almost all t G I, where pA{.) = [AA(.),i/A(.)] is the function representing the
functional pA. Denote by D the differential operator [D,0] occurring in P, and
let D T denote its adjoint operator. Now

Hx{xA,uA) = 0*>(Vz& X)Hx{xA,uA)z = 0

«• (V* € X) f[hx(t, x(t), u(t), \{t))z[t) + p(t)Bz{t)} dt = O
Ji

o (Vz € X) f[hx(t,x(t),u(t), A(0)*(0 - [DTA(t)]z(0 dt + X(T)z(T) = 0,
Ji

on calculating the Fre'chet derivative, and integrating by parts, using z(0) = 0.
Hence Hx(x

A,uA) = 0 holds exactly when A(.) satisfies the adjoint differential
equation:

-dP(t)/dt = hx(t,x(t),u(t),W)(t e /); P{T) = 0,
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which expands to

-d\{t)/dt = hx(t, x(t),u(t), Ht))(t e /); v{i)n{x{t)) = 0; \{T) = 0; u{t) € V(t)\

Here, the requirement v(t) € V(t)* comes from the Karush-Kuhn-Tucker neces-
sary conditions for the control problem. The requirement v(t)n(x{t)) = 0 follows
from Ha{.) = 0, which is part of the adjoint equation, since the adjoint of the zero
differential operator is 0. Then, whenever component rii(x(t)) > 0,Ha(.) = 0
requires i/j (t) = 0.

Now suppose instead that the control problem (PI) includes also a parameter
p; denote the optimal objective value now also by J(p). In (Ham), suppose
now that (x, u) correspond to parameter value p, and (xA,uA) correspond to
parameter value pA. If also (x, u) is a Lipschitz function of p, then (Ham) shows
that

F(x, u) - F(xA, uA) = H(x*,u) - H(xA, uA) - o(\\p - pA||),

assuming that p — pA satisfies the adjoint differential equation. Hence, showing
now the explicit dependence of h( ) on p, arising from the explicit dependence
of / and m on p, there follows

J(p) - J(pA) = J[h(t,xA(t),pA(t),p) - h(t,xA(t),uA(t),pA(t),p)}dt

+ o(\\p-pA\\)

Hence the Frechet derivative J'(pA) is given by

J'(pA) = j hp(t,x
A(t),u(t),XA(t),pA)dt. (GRAD)

If, instead of introducing a parameter p, the gradient is sought of the objective
function J(u) := F(<&(u),u), then a similar calculation gives that

J(u) - J(uA) = / hu(t, xA(t), u(t), pA(t),pA)[u(t) - uA(t)} dt + o(\\u - uA\\).

So the gradient of J(.) is thus calculable.

3. Boundary conditions for the time-optimal control problem

Consider now the time-optimal control problem:

r*'
Minimise J = R(x(t*)) + / /(«, x(t),u{t)) dt subject to

./o
z(0) = x0, dx{t)/dt = m(t, x(t),u{t)) (0<t<t*);

« ( t ) € A ( 0 < < < r ) ; q(x(t*)) = 0. (P2)

https://doi.org/10.1017/S0334270000006287 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006287


(5] Boundary conditions in optimal control 347

Note that, in this problem, all of u(.),x(.), and t* are varied to reach the
optimum; t* denotes the (variable) time to optimality. The function q, describing
the terminal constraint, is here real valued. For brevity, * will be used to label
the values of functions evaluated at t = t*.

Now J can be rewritten as

= f[f(t,
Ji

R(x(t))6(t - <•)] dt,

where / = [0,K}, for any fixed K > t*, and ir(r) = 0(r < O),TT(T-) = l(r > 0);
6(.) is Dirac's delta function. For the resulting fixed-time optimal control problem,
the Hamiltonian is

h(t, x(t), u(t), X(t), f) = f{t, x(t), u(t))v{f -t) + R(x(t))S(t - f)
+ X(t)rn(t,x(t),u(t)) - (18{t - t*)q{x{t)).

Here, \{t) is the costate (= Lagrange multiplier) function. The state constraint
q(x(t*)) = 0 has been rewritten as (\/t)q(x{t)) e V(t), where the cone V(t) — R
except at ( = t*, where V(t*) = {0}. So the corresponding costate function
i/(t) = 0 except when t = t*, so that i/(t) = —06(t — t*), for some constant /?,
may be appropriately assumed, subject to verification that this solution satisfies
all necessary conditions.

The adjoint differential equation is then

-dX{t)/dt = fx(t, x(t), u(t))ir{t* -t) + \{t)mx{t, x(t), u(t)) - 06{t - t*)qx(x{t))

+ Rx(x(t))6(t-t*),
with boundary condition \{K) = 0. Without loss of generality, K — t* + 0 may
be assumed, in deriving necessary conditions. Integrating the adjoint differential
equation from t = t* — 0 to t = t* + 0, only the delta function terms contribute,
and then there follows

which may be briefly written as A* = \(t* — 0) = R* - 0q*.
So far, the optimality of t* has not been used in the calculation. To do this, t*

may be regarded as a parameter. For optimality, the derivative of J with respect
to t* should be equated to zero. From (GRAD) above, this gradient equals the
integral over / of dh/dt*, where h is the Hamiltonian. Now (suppressing some
obvious arguments),

dh/df = f.6{f -t)+ 06'(t - t").q - R(x(t))S'{t - f). (*)

Integrating with respect to t over /, and also integrating the 6' terms by parts,
the requirement is that
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noting that

(d/dt)R(x(t)) = Rx(x(t)).{d/dt)x(t) = Rx{x(t)).m{t,x{t),u(t)).

Thus the optimal value of 0 is determined. Substituting it into (*) yields the
following boundary condition for the adjoint differential equation:

A* = R* - [/* + R*xm*)q*xl[qlrn*). (BC)

The formula (BC) was first obtained by K. L. Teo et al [6], by a complicated
calculation of some four pages, using the chain rule. It is noted that this formula
is essential for numerically computing a time-optimal control problem, since the
costate function XA(t) is needed in order to obtain the gradient of the objective
function with respect to u, allowing for the dependence of x on u.

4. An example

The following example of a time-optimal control problem is given, without
solution, in [4], p. 57. A vehicle moves in a plane with velocity of magnitude 1.
Its Cartesian coordinates x\(t) and x2(t) in the plane, and its direction x3(t),
are described by the differential equations

), dx2{t)/dt = sin x3(t), dx3(t)/dt = u{t),

where the control function u(t) is bounded by (Vi)|u(t)| < 1. The vehicle is to be
driven from (x^O)^^)^^)) = (4,0,TT/2) to (x!(f) ,x2(r)) = (0,0),x3(r)
not specified, in minimum time t*. In the objective function, /(.,.,.) = 1, and
R(x(t*)) = 0. An optimum solution has a switching time at t = t\, and a
singular arc for t € (ti,t*), and takes the form:

X(t) = [Xi(t),X2(t),X3(t)\ — (c cos/?, c sin/?, - c

(tt<t<t*) u{t) = 0, x i ( t ) = {t* - « ) cos/3, x2{t) = (t*-,

x3(t) = T / 2 + *I ,A(0 = [Xi(t),X2{t),X3{t)\ = (ccos&csin/J.O).

Here c is a positive constant, and /? = ti — TT/2, with t\ « 1.9806 and t* ss 4.7386.
The Pontryagin theory requires X3(t) < 0 when u(t) = 1, which holds since
- 1 + sm(t - («i - TT/2)) < 0 for 0 < t < h, and = 0 at t = ti, also X3(t) = 0
for t\ < t < t*. Since this problem is symmetric in sgnx2(<), there is another
optimal solution with the opposite sign of x2(t). Any positive constant c will do
here.

Consider now the boundary condition formula (BC), taking

q(x(t)):=
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For t* -t small and positive, x?(t) « -(t-t*)cos/? and i 2 (0 « -{t-t*)s\nfi,
where x$(t*) = n + /?. (These approximations represent an informal use of
l'Hopital's rule.) Hence

ql » [(t* - t)cos/?, (f - t)sin/?,0]/((f - f)(cos2 /? + sin2 /?)) = [cos/?,sin/?,0].

Then qr*m* « [cos/J.sin&OFhcos/?, -sin^,0] = - 1 . From (BC),

A* =0-(H-0)[cos/? ,s in^,0]/(- l ) = [cos/?,sin/?,0]

= [-cos s3 (**),-sin i3(i*),0].

If instead q(x(t)) = (l/2)\x1{tf+ x2{tf] then, since x^t*) = 0 and x2[t*) =
0, the limiting case q* = 0, A* = 0 arises. Although this choice of q{x(t)) specifies
the same terminal point to the path as does the previous q(x(t)), they do not
appear to be computationally equivalent.
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