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Abstract. The main objects of study in this article are two classes of Rankin–Selberg L-func-
tions, namely Lðs; f� gÞ and Lðs; sym2ðgÞ � sym2ðgÞÞ, where f; g are newforms, holomorphic or
of Maass type, on the upper half plane, and sym2ðgÞ denotes the symmetric square lift of g to

GLð3Þ. We prove that in general, i.e., when these L-functions are not divisible by L-functions
of quadratic characters (such divisibility happening rarely), they do not admit any Landau–
Siegel zeros. Such zeros, which are real and close to s ¼ 1, are highly mysterious and are

not expected to occur. There are corollaries of our result, one of them being a strong lower
bound for special value at s ¼ 1, which is of interest both geometrically and analytically.
One also gets this way a good bound on the norm of sym2ðgÞ.
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Introduction

In this paper we study the possibility of real zeros near s ¼ 1 for the Rankin–Selberg

L-functions Lðs; f� gÞ and Lðs; sym2ðgÞ � sym2ðgÞÞ, where f; g are newforms, holo-

morphic or otherwise, on the upper half plane H, and sym2ðgÞ denotes the auto-
morphic form on GLð3Þ=Q associated to g by Gelbart and Jacquet ([GJ79]). We

prove that the set of such zeros of these L-functions is the union of the corresponding

sets for Lðs; wÞ with w a quadratic Dirichlet character, which divide them. Such a divi-
sibility does not occur in general, for example when f; g are of level 1. When g is a

Maass form for SLð2;ZÞ of Laplacian eigenvalue l, this leads to a sharp lower
bound, in terms of l, for the norm of sym2ðgÞ on GLð3Þ=Q, analogous to the well

known and oft-used result for the Petersson norm of g proved in [HL94] and

[GHLL94]. As a consequence of our result on Lðs; sym2ðgÞ � sym2ðgÞÞ one also gets

a good upper bound for the spectrally normalized first coefficient að1; 1Þ of sym2ðgÞ.

(In the arithmetic normalization, að1; 1Þ would be 1.) In a different direction, we are

able to show that the symmetric sixth and eighth power L-functions of modular
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forms f with trivial character (Haupttypus) are holomorphic in ð1� ðc= logMÞ; 1Þ,

where M is the thickened conductor (see Section 1) and c a universal, positive, effec-

tive constant; by a recent theorem of Kim and Shahidi ([KSh2002]), one knows that

these L-functions are invertible in <ðsÞ5 1 except possibly for a pole at s ¼ 1. If f
runs over holomorphic newforms of a fixed weight (resp. level), for example, the

thickened conductorM is essentially the level (resp. weight). We will in general work

over arbitrary number fields and use the adelic language.

First some preliminaries. Suppose DðsÞ is any Dirichlet series given as an

Euler product in f<ðsÞ > 1g, which admits a meromorphic continuation to the

whole s-plane with no pole outside s ¼ 1, together with a functional equation

relating s to 1� s after adding suitable archimedean factors. By an exceptional

zero, or a Siegel zero, or perhaps more appropriately (cf. [IwS2000]) a Landau–

Siegel zero, of DðsÞ, one means a real zero s ¼ b of DðsÞ which is close to

s ¼ 1. More precisely, such a zero will lie in ð1� ðC= logMÞ; 1Þ, where C is an

effective, universal constant > 0 (see Section 1). The Grand Riemann Hypothesis

(GRH) would imply that there should be no such exceptional zero, but it is of

course quite hard to verify.

It was shown in [HRa95] that for any number field F, the L-function Lðs; pÞ of a
cusp form p in GLð2Þ=F admits no Landau–Siegel zero. In the special case when p is
dihedral, i.e., associated to a character w of a quadratic extension K of F, Lðs; pÞ is
simply the Abelian L-function Lðs; wÞ considered by Hecke, and if y is the non-trivial
automorphism of K=F, the cuspidality of p forces w to be distinct from w 	 y. We will
say that p is of type ðK=F; wÞ in this case.
It was also shown in [HRa95] that for any n > 1, the standard L-series Lðs; pÞ of

cusp forms p on GLðnÞ=F admit no Landau–Siegel zero if one assumes Langlands’s
principle of functoriality, in particular the existence of the automorphic tensor product

on GLðkÞ �GLðrÞ. An analogous, but slightly more complicated, statement can be

made for general Rankin–Selberg L-series on GLðnÞ�GLðmÞ, but assuming the full

force of functoriality is but a distant dream at the moment, though it is highly

instructive to be aware of what it entails. So it becomes an interesting problem to

know how much one can unconditionally prove by making use of the available

instances of functoriality; the method has to deviate some from that given in

[HRa95]. This is what we carry out here for n ¼ m4 3.
Roughly speaking, the main point is to find a suitable positive Dirichlet series DðsÞ

which is divisible by the LðsÞ of interest to a degree k, say, which is (strictly) larger

than the order of pole of DðsÞ at s ¼ 1. If there is anything creative here, at all, it is in

the proper choice of DðsÞ and then in the verification of the holomorphy of

DðsÞ=LðsÞk, at least in a real interval ðt; 1Þ for a fixed t < 1. It should be noted, how-

ever, that this approach fails to give anything significant for L-functions of quadratic

characters; for two very interesting, and completely different, approaches for this

crucial case see [IwS2000] and [GS2000].

Now fix a number field F and consider the Rankin–Selberg L-function

Lðs; p� p0Þ associated to a pair ðp; p0Þ of cusp forms on GLð2Þ=F. Denote by o,

212 DINAKAR RAMAKRISHNAN AND SONG WANG

https://doi.org/10.1023/A:1021761421232 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021761421232


resp. o0, the central character of p, resp. p0. Our first main result is the following
theorem:

THEOREM A. Let p; p0 be cuspidal automorphic representations of GLð2;AFÞ. Then

Lðs; p� p0Þ admits no Landau–Siegel zero except possibly in the following cases:

ðiÞ p is nondihedral and p0 ’ p� m with om of order 4 2;
ðiiÞ p, resp. p0, is dihedral of type ðK; wÞ, resp. ðK0; w0Þ, with K0 ¼ K and w0w or w0ðw 	 yÞ

of order 4 2.

In case ðiÞ, resp. ðiiÞ, the exceptional zeros of Lðs; p� p0Þ are the same as those of

Lðs;omÞ, resp. Lðs; w0wÞLðs; w0ðw 	 yÞÞ. In case ðiiÞ, if w0w or w0ðw 	 yÞ is trivial, then

the exceptional zeros are the same as those of zKðsÞ. In either case, there is at most

one exceptional zero.

For the vast majority of cases not satisfying (i) or (ii), Lðs; p� p0Þ has no excep-
tional zero. In particular, if p0; p00 are fixed, nondihedral cusp forms on GLð2Þ=F
which are not twist equivalent to each other, there exists an effective constant

c > 0 such that the family Lðs; p0 � ðp00 � wÞÞ, with w running over quadratic charac-
ters of conductor q prime to the levels of p0; p00, admits no real zero b with
b 2 ð1� ðc= log qÞ.
In case (i) we have

Lðs; p� p0Þ ¼ Lðs;omÞLðs; sym2ðpÞ � mÞ:

The nonexistence of Landau-Siegel zeros for Lðs; sym2ðpÞÞ (for p nondihedral) has
been known for a while by the important work of Goldfeld, Hoffstein, Lieman

and Lockhart ([GHLL94]). For general m, the nonexistence for Lðs; sym2ðpÞ � mÞ is
known by [Ba97], following an earlier reduction step given in Section 6 of

[HRa95]. So our Theorem is not new in this case.

For any cusp form p on GLð2Þ=F, let Lðs; p; symnÞ denote, for every n5 1, the
symmetric n-th power L-function of p (see Section 1 for a definition). It is expected
that there is an automorphic form symnðpÞ on GLðnþ 1Þ=F whose standard L-func-
tion coincides with Lðs; p; symnÞ. This is classical ([GJ79]) for n ¼ 2 and a major

breakthrough has been made recently for n ¼ 3 ([KSh2000]) and for n ¼ 4

([K2001]). The proof of Theorem A uses the result for n ¼ 3 as well as the construc-

tion of the first author ([Ra2000]) of the Rankin–Selberg product of pairs ðp; p0Þ of
forms on GLð2Þ=F as an automorphic form p&� p0 on GLð4Þ=F.
Recall that p is dihedral iff it admits a self-twist by a nontrivial, necessarily quad-

ratic, character. One says that it is tetrahedral, resp. octahedral, iff sym2ðpÞ, resp.
sym3ðpÞ, is cuspidal and admits a nontrivial self-twist by a cubic, resp. quadratic,
character. It is well known that sym2ðpÞ is cuspidal ([GJ79]) iff p is not dihedral.
It has been shown in [KSh2000], resp. [KSh2002], that sym3ðpÞ, resp. sym4ðpÞ, is cus-
pidal iff p is not dihedral or tetrahedral, resp. not dihedral, tetrahedral or octahedral.
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We will henceforth say that a cusp form p on GLð2Þ=F is of solvable polyhedral type if
it is either dihedral or tetrahedral or octahedral. Our second main result is the

following:

THEOREM B. Let p be a self-dual cuspidal automorphic representation ofGLð2;AFÞ.

Then the set of Landau–Siegel zeros of Lðs; sym2ðpÞ � sym2ðpÞÞ is the union of the sets

of Landau–Siegel zeros of abelian L-functions of the form Lðs; wÞ, w2 ¼ 1, which divide

Lðs; sym2ðpÞ � sym2ðpÞÞ, if any. Moreover, if p is not of solvable polyhedral type and if

zFðsÞ has no exceptional zero ð for example, when F ¼ QÞ, then there is no exceptional

zero for Lðs; sym2ðpÞ � sym2ðpÞÞ.

This theorem holds also for any cuspidal p on GLð2Þ=F which is a twist of a self-
dual representation by a unitary character.

The following corollary of Theorem B gives precise bounds for the Petersson norm

on GLð3Þ=Q of the symmetric square of a Maass wave form g of level 1. In Section 6

(see Definition 6.3), we will define a suitably normalized function sym2ðgÞ spanning

the space of the Gelbart–Jacquet symmetric square lift to GLð3Þ=Q of the cuspidal

automorphic representation p generated by g.

COROLLARY C. Let g be a Maass form on the upper half plane H, relative to

SLð2;ZÞ, of weight zero and Laplacian eigenvalue l, which is also an eigenfunction of

Hecke operators. Then for each e > 0,
1

logðlþ 1Þ
� hsym2ðgÞ; sym2ðgÞi �e ðlþ 1Þ

e;

where sym2ðgÞ is spectrally formalized as in Theorem B.

Moreover, if faðm; nÞg denotes the collection of Fourier coefficients of the spectrally

normalized function sym2ðgÞ=jjsym2ðgÞjj, we have

jað1; 1Þj � logðlþ 1Þ:

Our proof of Theorem B will establish on the way that the symmetric 4-th power

L-function of any self-dual cusp form p on GLð2Þ, not of solvable polyhedral type,
admits no Landau–Siegel zero. A slew of interesting results for the Lðs; p; symnÞ for

n up to 9 have been established recently by H. Kim and F. Shahidi in [KSh2002],

proving in particular the meromorphic continuation, functional equation and holo-

morphy in <ðsÞ5 1, except for a possible pole at s ¼ 1. It may be of some interest to
know, for n > 4, how far to the left of s ¼ 1 can the holomorphy assertion be exten-

ded. A consequence of our work is the following tiny, but apparently nontrivial,

extension to the left of s ¼ 1 for n ¼ 6; 8.

THEOREM D. Let F be a number field and p a self-dual cusp form on GLð2Þ=F of

thickened conductor M. Then there exists a universal, effective constant c > 0 such that

Lðs; p; sym6Þ and Lðs; p; sym8Þ have no pole in the real interval ð1� ðc= logMÞ; 1Þ.
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Now we will say a few words about the proofs.

Regarding Theorem A, suppose we are in the main case, i.e., neither p nor p0 is
dihedral and also p0 is not isomorphic to p� m for any character m. Under these
hypotheses, p&� p0 is cuspidal on GLð4Þ=F by [Ra2000]. When it is not self-dual,
there is a simple argument (see Section 3 of [HRa95]) to deduce the nonexistence

of a Siegel zero. So we may assume that p&� p0 is self-dual, which implies that the
central characters o;o0 of p; p0 are inverses of each other. For simplicity assume
for the moment that o;o0 are trivial. (For a full treatment of the general case, see
Section 4.) Then the key point is to appeal to the following identity of L-functions

Lðs;P�PÞ ¼ zFðsÞLðs; sym
2ðpÞÞ2Lðs; p� p0Þ4Lðs; sym3ðpÞ � p0Þ2�

� Lðs; sym2ðpÞ � sym2ðpÞÞLðs; ðp&� p0Þ � ðp&� p0ÞÞ:

where P is an isobaric automorphic form on GLð8Þ=F defined by

P ¼ 1&þ ðp&� p0Þ&þ sym2ðpÞ;

where 1 denotes the trivial automorphic form on GLð1Þ=F and &þ the Langlands
sum operation on automorphic forms defined by his theory of Eisenstein series

([La79]), proved to be well defined by the work of Jacquet and Shalika ([JS81]).

The degree 64 Rankin–Selberg L-function Lðs;P�PÞ has the standard analytic
properties and defines, in <ðsÞ > 1, a Dirichlet series with nonnegative coefficients.

Moreover, it has a pole of order 3 at s ¼ 1, and since Lðs; p� p0Þ occurs in its factor-
ization to a power larger than 3, a standard lemma (see Lemma 1.7) precludes the

latter from having any Landau–Siegel zero. We also need to show that the ratio

Lðs;P�PÞ=Lðs; p� p0Þ4 is holomorphic, for which we appeal to the automorphy
of sym3ðpÞ ([KSh2000]).
The proof of Theorem B involves a further wrinkle, and uses in addition the auto-

morphy of sym4ðpÞ ([K2001]), as well as the works of Bump and Friedberg ([BuG92])
on the symmetric square L-functions of GLðnÞ. The well known identity

Lðs; sym2ðpÞ � sym2Þ ¼ zF ðsÞLðs; sym
2ðpÞÞLðs; sym4ðpÞÞ

reduces the problem to studying the Landau–Siegel zeros of Lðs; sym4ðpÞÞ. We show
in Section 5 (see Theorem B0) that for p not of solvable polyhedral type, Lðs; p; sym4Þ
has no exceptional zero. To do this we set

P :¼ 1&þ sym2ðpÞ&þ sym4ðpÞ;

and consider

Lðs;P�PÞ ¼ zFðsÞLðs; sym
2ðpÞÞ4Lðs; sym4ðpÞÞ4Lðs; p; sym6Þ2�

� Lðs; sym2ðpÞ � sym2ðpÞÞLðs; sym4ðpÞ � sym4ðpÞÞ:

Since Lðs;Pf �PfÞ defines a Dirichlet series in <ðsÞ > 1 with nonnegative coeffi-

cients and has a pole of order 3 at s ¼ 1, things appear to be in good shape, till

we realize that one does not yet know how to prove that Lðs; p; sym6Þ is holomorphic
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in any real interval ð1� t; 1Þ for a fixed t < 1. But luckily we also have the factoriza-

tion

Lðs; sym3ðpÞ; sym2Þ ¼ Lðs; p; sym6ÞLðs; sym2ðpÞÞ;

which allows us, after exercising some care about the bad factors, to prove the holo-

morphy of the ratio Lðs;P�PÞ=Lðs; sym4ðpÞÞ4 in ð1=2; 1Þ. For details we refer to
Section 5.

In order to prove Corollary C, we begin by deducing a precise relationship

between the Petersson norm of a suitably normalized sym2ðgÞ (see Section 6) and

Lðs; sym2ðgÞ � sym2ðgÞÞ by using the results on its integral representation due to

Jacquet, Piatetski–Shapiro and Shalika ([JPSS83], [JS90]), and an exact formula of

E. Stade for pairs of spherical representations of GLð3;RÞ ([St93], [St2001]). More

precisely, ðsym2ðgÞ; sym2ðgÞÞ differs from Ress¼1Lðs; sym
2ðgÞ � sym2ðgÞÞ by a con-

stant factor coming from the residue of an Eisenstein series. (There should also be

a similar result when f is a holomorphic newform for SLð2;ZÞ, but at this point

one does not appear to know enough about the Archimedean zeta integral on

GLð3Þ� GLð3Þ to achieve this.) Finally, the nonexistence of Landau–Siegel zeros

for Lðs; sym2ðgÞ � sym2ðgÞÞ allows us to bound from below its residue at s ¼ 1,

and this in turn gives us, when sym2ðgÞ is replaced by its spectral normalization,

the desired bound on the first Fourier coefficient að1; 1Þ. For details, see Section 6.

To prove Theorem D we appeal to the factorization of Lðs; sym4ðpÞ;L2Þ above as
well as to the identity

Lðs; sym4ðpÞ; sym2Þ ¼ Lðs; p; sym8ÞLðs; sym4ðpÞÞzFðsÞ:

For any cuspidal automorphic representation P of GLðn;AFÞ, if S denotes the union

of the archimedean places of F with the set of finite places where P is ramified, one
knows by Bump and Ginzburg ([BuG92]) that the incomplete L-function

LSðs;P; sym2Þ, defined in a right half plane by the Euler product over places outside

S, is holomorphic in ð1=2; 1Þ. Applying this with n ¼ 5;P ¼ sym4ðpÞ, and carefully
taking care of the factors at S, we deduce the holomorphy of the symmetric square

L-function of sym4ðpÞ. Now the knowledge gained from the proof of Theorem B on
Landau–Siegel zeros of Lðs; sym4ðpÞÞ allows us (see Section 7) to prove Theorem D.

1. Preliminaries on Landau-Siegel Zeros

For every m5 1, let Dm denote the class of Dirichlet series

LðsÞ ¼
X
n5 1

an
ns

;

absolutely convergent in ReðsÞ > 1 with an Euler product
Q

p Ppðp
�sÞ

�1 of degree m

there, extending to whole s-plane as a meromorphic function of bounded order, in

fact with no poles anywhere except at s ¼ 1, and satisfying (relative to another

Dirichlet series L_ðsÞ in Dm) a functional equation of the form
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L1ðsÞLðsÞ ¼WN1=2�sL_1ð1� sÞL_ð1� sÞ; ð1:1Þ

where W 2 C�, N 2 N, and the archimedean factor L1ðsÞ is

p�sm=2
Ym
j¼1

G
sþ bj
2

� �
;

where ðbjÞ 2 C
m.

Put D ¼ [m5 1Dm. It might be useful to compare this with the definition of the Sel-

berg class ([Mu94]). In the latter one requires in addition a Ramanujan type bound

on the coefficients, but allows more complicated Gamma factors.

One says that LðsÞ is self-dual if LðsÞ ¼ L_ðsÞ, in which case W ¼ f�1g.

Important examples are zðsÞ, Dirichlet and Hecke L-functions, the L-functions of
holomorphic newforms g of weight k5 1 and level N, normalized to be

LðsÞ ¼ Lðsþ
k� 1

2
; gÞ; L1ðsÞ ¼ p�sG

sþ ðk� 1Þ=2

2

� �
G

sþ ðkþ 1Þ=2

2

� �
;

ð1:2Þ

L-functions of cuspidal Maass forms f of level N which are eigenfunctions of Hecke
operators:

LðsÞ ¼ Lðs;fÞ; L1ðsÞ ¼ p�sG
sþ dþ w

2

� �
G

sþ d� w

2

� �
; d 2 f0; 1g;

ð1:3Þ

and the Rankin–Selberg L-functions Lðs; f� gÞ, where f; g are cusp forms of holo-

morphic or Maass type. See the next section for their definition and generalizations.

Call an LðsÞ 2 D primitive if it cannot be factored as L1ðsÞL2ðsÞ with L1ðsÞ;L2ðsÞ

nonscalar in D. The Dirichlet and Hecke L-functions, as well as those of cusp forms
on the upper half plane are primitive.

CONJECTURE I. Every LðsÞ 2 Dm is quasi-automorphic, i.e., there exists an auto-

morphic form p on GLðmÞ=Q such that LpðsÞ ¼ Lðs; ppÞ for almost all p. Moreover,

LðsÞ is primitive iff p is cuspidal.

This is compatible with the Langlands philosophy ([La70]) and with the conjecture

of Cogdell and Piatetski-Shapiro ([CoPS94]); Cogdell has remarked to us recently

that Piatetski-Shapiro has also formulated (unpublished) a similar conjecture invol-

ving analogs of D. Note such a conjecture cannot be formulated over number fields
of degree > 1 as one can permute the Euler factors lying over any given rational

prime. Also, there exists an example of S. J. Patterson over function fields F over

a finite field Fq satisfying analogous conditions, but with zeros on the lines

ReðsÞ ¼ 1=4 and ReðsÞ ¼ 3=4. One problem in characteristic p is that there is no
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minimal global field F such as Q. It is still an interesting open problem to know if

one can define a good notion of ‘primitivity’ over function fields.

CONJECTURE II. For any LðsÞ 2 D, if it has a pole of order r at s ¼ 1, then

zðsÞrjLðsÞ, i.e., LðsÞ ¼ zðsÞrL1ðsÞ, with L1ðsÞ 2 D.

This is compatible with the conjectures of Selberg, Tate and Langlands.

DEFINITION 1.4. Let LðsÞ 2 Dm with

L1ðsÞ ¼ p�ms
Ym
j¼1

G
sþ bj
2

� �
:

Define its thickened conductor to be M ¼ Nð2þ LÞ where L ¼
Pm

j¼1 jbjj.

DEFINITION 1.5. Let c > 0. Then we say that LðsÞ has a Landau–Siegel zero

relative to c if LðbÞ ¼ 0 for some b 2 ð1� ðc= logMÞ; 1Þ.

DEFINITION 1.6. Let F be a family, by which we will mean a class of L-functions

in D withM!1 in F . We say that F admits no Landau–Siegel Zero if there exists
an effective constant c > 0 such that no LðsÞ in F has a zero in ð1� ðc= logMÞ; 1Þ.

The general expectation is framed by the following

CONJECTURE III. Let F be a family in D. Then F admits no Landau–Siegel zero.

One reason for interest in this is that the lack of such a zero implies a good lower

bound for LðsÞ at s ¼ 1. Note that in view of Conjecture I, the Grand Riemann

Hypothesis, shortened as GRH, implies that all the nontrivial zeros of any LðsÞ in

D lie on the critical line, hence it implies Conjecture III. Of course the GRH is
but a distant goal at the moment, and it is hopefully of interest to verify Conjecture

III for various families directly.

The L-functions of pure motives over Q, in particular those associated to the

cohomology of smooth projective varieties X=Q, are expected to be automorphic

and hence should belong to D. For these L-functions, when they are of even Frobe-
nius weight, the values at s ¼ 1 have arithmetic significance by the general Bloch–

Kato conjectures, and so the question of nonexistence of Landau-Siegel zeros is

helpful to understand from a purely arithmetical point of view.

We will need the following useful (and well known) fact:

LEMMA 1.7. Let LðsÞ 2 Dm be a positive Dirichlet series having a pole of order r5 1 at
s ¼ 1, withL0ðsÞ=LðsÞ < 0 for real s in ð1;1Þ. Then there exists aneffective constantC > 0,

depending only on m and r, such that LðsÞ has most r real zeros in ð1� ðC= logMÞ; 1Þ.

For a more relaxed discussion of these matters, see the expository article [Ra99] on

the Landau-Siegel zeros, as well as the articles [GHLL94] and [HRa95].
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2. Preliminaries on Automorphic L-Functions

Fix a number field F with ring of integers OF, discriminant dF, and adèle ring

AF ¼ F1 �AF;f, where F1 is the product of the Archimedean completions of F

and the ring AF;f of finite adèles is a restricted direct product of the completions

Fv over non-Archimedean places v. For each finite v, let Ov denote the ring of inte-

gers of Fv. When F ¼ Q, F1 ’ R and AF;f ’ ẐZ�Q, where ẐZ is the inverse limit of

fZ=mjm5 1g and is noncanonically isomorphic to
Q

p Zp.

Recall that a cuspidal automorphic representation p of GLðn;AFÞ is among other

things admissible, i.e., a restricted tensor product �0vpv ’ p1 � pf, where v runs over
all the places of F, and pv is, for almost all finite v, unramified, i.e., its space admits a
vector invariant under GLðn;OvÞ. Given a partition of n as

Pr
j¼1 nj with each nj 5 1,

and cuspidal automorphic representations p1; . . . ; pr of GLðn1;AFÞ; . . .GLðnr;AFÞ,

Langlands’s theory of Eisenstein series constructs a so-called isobaric automorphic

representation ([La79]) p of GLðn;AFÞ, which is unique by the work of Jacquet

and Shalika ([JS81]), and written as

p :¼ &þ
r

i¼1
pi; ð2:1Þ

with the property that its standard degree n L-function Lðs; pÞ is the product
Qr

i¼1 Lðs; piÞ. Write

Lðs; p1Þ ¼ p�dns=2
Ydn
j¼1

G
sþ bjðpÞ
2

� �
; ð2:2Þ

where d ¼ ½F : Q� and the bjðpÞ are complex numbers depending only on p1.
Now consider a pair of isobaric automorphic representations p; p0 of GLðn;AFÞ,

GLðm;AFÞ, respectively. The associated Rankin–Selberg L-function is given as an

Euler product of degree nm:

Lðs; p� p0Þ ¼
Y
v

Lðs; pv � p0vÞ; ð2:3Þ

convergent in a right half plane, with its finite part, namely Lðs; pf � p0fÞ, defining a
Dirichlet series. When m ¼ 1 and p0 is the trivial representation 1, this L-function
agrees with the standard L-function. There are two distinct methods for defining

these L-functions, the first using the gcds of integral representations, due to Jacquet,

Piaietski-Shapiro and Shalika ([JPSS83]), and the second via the constant terms of

Eisenstein series on larger groups, due to Langlands and Shahidi ([Sh88, 90]); see

also [MW89]. The fact that they give the same L-functions is nontrivial but true.

These L-functions also admit a meromorphic continuation to the whole s-plane with

no poles except possibly at 1� s0 and s0 for a unique s0 2 iR; such a pole occurs iff p
and p0 � j:js0 are contragredients of each other. One has the functional equation

Lðs; p� p0Þ ¼ eðs; p� p0ÞLð1� s; �pp� �pp0Þ; ð2:4Þ

where

eðs; p� p0Þ ¼Wðp� p0Þ ðdnm
F Nðp� p0ÞÞ

1
2�s;
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which is an invertible holomorphic function. Here Nðp� p0Þ is the conductor, and
Wðp� p0Þ 2 C� the root number, of the pair ðp; p0Þ.
The following was proved in [HRa95] (Lemma a of Section 2):

LEMMA 2.5. For any unitary, isobaric automorphic representation p of GLðn;AFÞ,

the Dirichlet series defined by Lðs; pf � �ppfÞ has nonnegative coefficients. Moreover, the

logarithmic derivative L0ðs; pf � �ppfÞ=Lðs; pf � �ppfÞ is negative for real s in ð1;1Þ.

The local Langlands correspondence for GLðnÞ, proved in 2000 by Harris and

Taylor ([HaT2001]) and Henniart ([He2000]) in the non-Archimedean case (and

proved long ago by Langlands in the archimedean case), gives a bijection at any

place v, preserving the L- and e-factors of pairs, between irreducible admissible
representations pv of GLðn;FvÞ and n-dimensional representations sv ¼ sðpvÞ of
the extended (resp. usual) Weil groupW0

Fv
:¼WFv

�SLð2;CÞ (resp.WFv
) in the p-adic

(resp. Archimedean) case. This gives in particular the identity at any finite v:

Nðpv � p0vÞ ¼ NðsðpvÞ � sðp0vÞÞ; ð2:7Þ

where for any representation t of W0
Fv
, NðtÞ denotes the usual Artin conductor. A

consequence of this is the sharp bound:

MðpÞ�n
0

Mðp0Þ�n �Mðp� p0Þ �MðpÞn
0

Mðp0Þn: ð2:8Þ

In fact we do not need the full force of this, and the weaker bound proved in Lemma

b, Section 2 of [HRa95], where the exponents were polynomially dependent on n; n0,

is actually sufficient for our purposes.

Combining all this information with Lemma 1.7 we get the following proposition:

PROPOSITION 2.9. Let p be an isobaric automorphic representation of GLðn;AFÞ

with Lðs; p� �ppÞ having a pole of order r5 1 at s ¼ 1. Then there is an effective con-

stant c5 0 depending on n and r, such that Lðs; p� �ppÞ has at most r real zeros in the

interval

J :¼ fs 2 Cj1� c= logMðp� �ppÞ < <ðsÞ < 1g:

Furthermore, if Lðs; p� p0Þ ¼ L1ðsÞ
kL2ðsÞ for some nice L-series L1ðsÞ and L2ðsÞ

with k > r and L2ðsÞ holomorphic in ðt; 1Þ for some fixed t 2 ð0; 1Þ, then L1ðsÞ has no

zeros in J.

This provides a very useful criterion to prove the nonexistence of Landau–Siegel

zeros in some cases. By the definition of the conductor of the L-series, if we know

that the logarithm of the conductor of L2ðsÞ does not exceed some multiple of the

logarithm of the conductor of L1ðsÞ, with the constant depending only on the degrees

of those L-series and k, then we can conclude that the logarithm of the conductor of

L1ðsÞ is bounded above and below by some multiples of the logarithm of the conduc-

tor of Lðs; p� p0Þ, which will then imply that L1ðsÞ has no Landau–Siegel zero.
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Given any isobaric automorphic representation p of GLðn;AFÞ, a finite-dimen-

sional C-representation r of (the connected dual group) GLðn;CÞ, and a character

m of WF, we can define the associated automorphic L-function by

Lðs; p; r� mÞ ¼
Y
v

Lðs; rðsðpvÞÞ � mvÞ ð2:11Þ

and

eðs; p; r� mÞ ¼
Y
v

eðs; rðsðpvÞÞ � mvÞ;

where v runs over all the places of F, pv ! sðpvÞ the arrow giving the local Langlands
correspondence for GLðnÞ=Fv, and the local factors are those attached to representa-

tions of the (extended) Weil group ([De73]). (To be precise, in the treatment of the

non-Archimedean case in [De73], Deligne uses the Weil–Deligne group WDFv
, but

it is not difficult to see how its representations are in bijection with those of W 0
Fv
.

Also, the local e-factors depend on the choice of a nontrivial additive character
and the Haar measure, but we suppress this in our notation.) Originally, Langlands

gave a purely automorphic definition of the local factors at almost all places, but

now, thanks to [HaT2001] and [He2000], we can do better.

We can also define higher analogs of the Rankin–Selberg L-functions and set, for

any pair ðp; p0Þ of isobaric automorphic forms on ðGLðnÞ;GLðmÞÞ=F, a pair ðr; r0Þ
of finite dimensional C-representations of GLðn;CÞ;GLðm;CÞ, and a character m
of WF,

Lðs; p� p0; r� r0 � mÞ ¼
Y
v

Lðs; rðsðpvÞÞ � r0ðsðp0vÞÞ � mvÞ; ð2:12Þ

and

eðs; p� p0; r� r0 � mÞ ¼
Y
v

eðs; rðsðpvÞÞ � r0ðsðp0vÞÞ � mvÞ:

When m ¼ 1, p0 ’ 1 and r0 ’ 1, Lðs; p� p0; r� r0 � mÞ coincides with
Lðs; p; r� mÞ.
For each j5 1, let symj denote the symmetric j-th power of the standard represen-

tation of GLðn;CÞ. The definition (2.11) above gives in particular the families of

automorphic L-functions Lðs; p; symj � mÞ and Lðs; p� p0; symj � symk � mÞ for iso-
baric automorphic representations p; p0 of GLð2;AFÞ and idele class character m,
which we may, and we will, identify (via class field theory) with a character, again

denoted by m, ofWF. One calls Lðs; p; symjÞ the symmetric jth power L-function of p.

3. Some Useful Instances of Functoriality

Here we summarize certain known instances, which we will need, of functorial trans-

fer of automorphic forms from one group to another.

Let p; p0 be cuspidal automorphic representations of GLðn;AFÞ, GLðm;AFÞ, and

let r; r0 be C-representations of GLðn;CÞ, GLðm;CÞ of dimension d; d0 respectively.

EXCEPTIONAL ZEROS OF RANKIN–SELBERG L-FUNCTIONS 221

https://doi.org/10.1023/A:1021761421232 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021761421232


The Langlands philosophy then predicts that there exists an isobaric automorphic

representation rðpÞ&� r0ðp0Þ of GLðdd0;AFÞ such that

Lðs; rðpÞ&� r0ðp0ÞÞ ¼ Lðs; p� p0; r� r0Þ: ð3:1Þ

When it is known to exist, the map p! rðpÞ will be called a functorial transfer

attached to r; some also call it a lifting. This is far from being known in this general-

ity, but nevertheless, there have been some notable instances of progress which we

will make use of. Sometimes we do not know rðpÞ exists, but still one can derive some
good properties of the relevant L-functions.

A cuspidal automorphic representation p of GLð2;AFÞ is said to be dihedral iff it

admits a self-twist by a (necessarily) quadratic character d, i.e., p ’ p� d. Equiva-
lently, there is a quadratic extension K=F and a character w of K, such that p is
isomorphic to IFKðwÞ, the representation automorphically induced by w from K (to F).

The passage from the second to the first definition is by taking d to be the quadratic
character of F associated to K=F.

We will need to use the following results:

THEOREM 3.2 ð½Ra2000�Þ. Let p; p0 be cuspidal automorphic representations of

GLð2;AFÞ. Then there exists an isobaric automorphic representation p&� p0 of

GLð4;AFÞ such that

Lðs; p&� p0Þ ¼ Lðs; p� p0Þ:

Moreover, p&� p0 is cuspidal iff one of the following happens:

ðiÞ p; p0 are both nondihedral and there is no character m such that p0 ’ p� m;
ðiiÞ One of them, say p0, is dihedral, with p0 ¼ IFKðwÞ for a character w of a quadratic

extension K, and the base change pK is cuspidal and not isomorphic to

pK � ðm 	 yÞm�1; where y denotes the nontrivial automorphism of K=F.

Note that in case (ii), p may or may not be dihedral, and in the latter situation,
p&� p0 is cuspidal.
If LðsÞ ¼

Q
v LvðsÞ is an Euler product, and if T is a finite set of places, we will write

LTðsÞ for the incomplete Euler product
Q

v =2T LvðsÞ.

THEOREM 3.3 ð½GJ79� for n ¼ 2; ½PPS89� for n ¼ 3 and ½BuG92� for general nÞ.

Let p be a cuspidal automorphic representation of GLðn;AFÞ. Let S be the union of the

Archimedean places of F with the set of finite places where p is ramified. Then

LSðs; p; sym2Þ admits a meromorphic continuation and is holomorphic in the real

interval ð1=2; 1Þ.

When n ¼ 2, there is even an isobaric automorphic representation sym2ðpÞ of
GLð3;AFÞ such that

Lðs; sym2ðpÞÞ ¼ Lðs; p; sym2Þ ðn ¼ 2Þ;

and sym2ðpÞ is cuspidal iff p is non-dihedral.
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We are stating here only the facts which we need. The reader is urged to read the

articles quoted to get the full statements. The functional equation and the mero-

morphic continuation of the symmetric square L-functions of GLðnÞ=F can also be

deduced from the Langlands–Shahidi method.

THEOREM 3.5 ð½KSh2000�; ½K2001�; ½KSh2002�Þ. Let p be a cuspidal automorphic

representation of GLð2;AFÞ. Then for j ¼ 3; 4, there is an isobaric automorphic

representation symjðpÞ such that

Lðs; symjðpÞÞ ¼ Lðs; p; symjÞ ð j ¼ 3; 4Þ:

Moreover, sym3ðpÞ is cuspidal iff sym2ðpÞ is cuspidal and does not admit a self-twist by

a cubic character, while sym4ðpÞ is cuspidal iff sym3ðpÞ is cuspidal and does not admit a

self-twist by a quadratic character.

A cuspidal automorphic representation p of GLð2;AFÞ is said to be tetrahedral,

resp. octahedral, iff sym2ðpÞ, resp. sym3ðpÞ, is cuspidal and admits a nontrivial self-
twist by a cubic, resp. quadratic character. We will say that p is of solvable polyhedral
type iff it is either dihedral or tetrahedral or octahedral.

4. Proof of Theorem A

In this section we will say that a pair ðp; p0Þ of cuspidal automorphic representations
of GLð2;AFÞ is of general type iff we have:

ð4:1Þ(a) Neither p nor p0 is dihedral; and
(b) p0 is not a twist of p by a character.

First we will deal with the special cases when (a) or (b) does not hold.

Suppose (a) is satisfied, but not (b), i.e., there is a character m of (the idèle class
group of) F such that

p0 ’ p� m:

Then we have the decomposition

p&� p0 ’ ðsym2ðpÞ � mÞ&þom; ð4:2Þ

where p&� p0 denotes the isobaric automorphic representation of GLð4;AFÞ associ-

ated to ðp; p0Þ in [Ra2000], and o is the central character of p. In terms of L-func-
tions, we have

Lðs; p� p0Þ ¼ Lðs; sym2ðpÞ � mÞLðs;omÞ: ð4:3Þ

One knows that, since p is nondihedral, Lðs;sym2ðpÞ � mÞ admits no Landau–Siegel
zero. This was proved in the ground-breaking article [GHLL94] for m ¼ 1 and p self-
dual; the general case was taken care of by a combination of the arguments of

[HRa95] and then [Ba97]. Besides, when om is not self-dual, i.e., not of order 4 2,

EXCEPTIONAL ZEROS OF RANKIN–SELBERG L-FUNCTIONS 223

https://doi.org/10.1023/A:1021761421232 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021761421232


Lðs;omÞ admits no Siegel zero (see for example [HRa95]). Finally, it is a well known
classical fact that for any character w of order 4 2, Lðs; wÞ can have at most one
Siegel zero. So, putting all this together, we see that

(a) The Landau–Siegel zeros of Lðs; p� ðp� mÞÞ coincide with those of Lðs;omÞ,
and

(b) This set is empty unless om is of order 4 2, in which case there is at most one
Landau–Siegel zero.

ð4:4Þ

If F is a Galois number field (over Q) not containing any quadratic field, one

knows by H. Stark [Stk74] that the Dedekind zeta function of F has no Landau–

Siegel zero. So we may replace order 4 2 in ðbÞ by order 2 for such F. This gives

the desired assertion in this case, and it also brings up case (i) of Theorem A.

Next consider the case when p is nondihedral, but p0 is dihedral, associated to a
character w of a quadratic extension K of F. We will write p0 ¼ IFKðwÞ and say that
it is automorphically induced from K to F by w. Then by the basic properties of
the Arthur–Clozel base change ([AC89], [Ra2000]) we have

p&� p0 ’ IFKðpK � wÞ; ð4:5Þ

where pK denotes the base change of p to GLð2Þ=K, which is cuspidal because p is non-
dihedral. Thus by the inductive nature of L-functions, we get the following identity:

Lðs; p� p0Þ ¼ Lðs; pK � wÞ; ð4:6Þ

By [HRa95] we know that Lðs; pK � wÞ does not admit any Landau–Siegel zero, and
this gives Theorem A in this case.

Now suppose both p, p0 are both dihedral. Then p, resp. p0, is naturally attached to
a dihedral representation s, resp. s0, of the global Weil groupWF. Say, s ¼ IndFKðwÞ,
for a character w of the Weil group of a quadratic extension. (By abuse of notation,
we are writing IndFK instead of Ind

WF

WK
.) Since &� corresponds to the usual tensor pro-

duct on the Weil group side (see [Ra2000]), we have

Lðs; p� p0Þ ¼ Lðs; IndFKðwÞ � s0Þ: ð4:7Þ

By Mackey,

IndFKðwÞ � s0 ’ IndFKðw�Res
F
Kðs

0ÞÞ; ð4:8Þ

where ResFK denotes the restriction functor taking representations of WF to ones of

WK.

Suppose s0 is also not induced by a character of WK. Then Res
F
Kðs

0Þ is irreducible

and the base change p0K is cuspidal, and since Lðs; p� p0Þ equals Lðs; p0K � wÞ, it has
no Landau–Siegel zero, thanks to [HRa95].

So we may assume that s0 is also induced by a character w0 of WK. Then

ResFKðs
0Þ ’ w0 � ðw0 	 yÞ;

224 DINAKAR RAMAKRISHNAN AND SONG WANG

https://doi.org/10.1023/A:1021761421232 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021761421232


where y denotes the nontrivial automorphism of K=F. Plugging this into (4.8) and
making use of the inductive nature of L-functions, we get

Lðs; p� p0Þ ¼ Lðs; ww0ÞLðs; wðw0 	 yÞÞ: ð4:9Þ

So there is no Landau–Siegel zero unless ww0 or wðw0 	 yÞ is of order 4 2, which we
will assume to be the case from now on. We have yet to show that there is at most

one Landau–Siegel zero, which is true (see the remarks above) if only one of them

has order 4 1. Suppose they are both of order 4 2. If one of them, say ww0, is trivial,
then

Lðs; p� p0Þ ¼ zKðsÞLðs; nÞ; ð4:10Þ

where n ¼ ðw0 	 yÞ=w0. Note that since s0 is irreducible, w0 is not equal to w0 	 y. Then n
must be a quadratic character, and the right-hand side of (4.10) evidently defines a

nonnegative Dirichlet series with a pole of order 1 at s ¼ 1. So by Lemma 1.7,

Lðs; p� p0Þ can have at most one Landau–Siegel zero.
It is left to consider when m :¼ ww0 and n are both quadratic characters. The argu-

ment here is well known, and we give it only for the sake of completeness. Notes that

the Dirichlet series defined by

LðsÞ :¼ zFðsÞLðs; mÞLðs; nÞLðs; mnÞ; ð4:11Þ

has non-negative coefficients, meromorphic continuation and a functional equation,

with no pole except at s ¼ 1, where the pole is simple; LðsÞ is the Dedekind zeta func-

tion of the biquadratic extension of F obtained as the compositum of the quadratic

extensions cut out by m and n. Thus by applying Lemma 1.7 again, we see that LðsÞ,
and hence its divisor Lðs; p� p0Þ (see (4.9)), has at most one Landau–Siegel zero.
This finishes the proof of Theorem A when p; p0 are both dihedral, bringing up

case (ii) when they are both defined by characters of the same quadratic extension K.

So we may, and we will, assume from here on that both (a) and (b) of (4.1) are

satisfied. Now Theorem A will be proved if we establish the following theorem,

which gives a stronger statement.

THEOREM 4.12. Let p and p0 are unitary cuspidal automorphic representations of

GLð2;AFÞ,and assume that the pair ðp; p0Þ is of general type. Then the following hold:

ðaÞ There is an effective absolute constant c > 0 such that Lðs; p� p0Þ has no zero in

the interval ð1� c=logM; 1Þ;

ðbÞ If p and �pp0 are not twist equivalent by a product of a quadratic character and jjit,

then there exists an absolute effective constant c2 > 0 such that Lðs; p� p0Þ has no
zero in the region

s ¼ sþ it j s4 1� ðc2LtÞ
�1

� �
;

where

Lt ¼ log ½Nðp� p0ÞD4Fð2þ jtj þ LÞ4N�;

with N ¼ ½F : Q� and L denoting the maximum of the infinite types of p and p0.
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See 1.4 for the definition of the infinite parameter L. Such a result was a working
hypothesis in the work of Moreno ([Mo85]) on an effective version of the strong mul-

tiplicity one theorem for GLð2Þ.

Proof of Theorem 4.12. (a) Put L ¼ L0: Then by the definition of L,

logM ¼ L: ð4:13Þ

Let o and o0 be the central characters of p and p0, respectively.
Since p; p0 are nondihedral, sym2ðpÞ and sym2ðp0Þ are cuspidal. Also, ðp; p0Þ being

of general type implies (cf. [Ra2000]) that their Rankin–Selberg product p&� p0 of
GLð4;AFÞ is cuspidal.

Consider the following isobaric automorphic representation

P ¼ 1&þ ðp&� p0Þ&þ ðsym2ð �ppÞ � oÞ ð4:14Þ

Write, as usual

P ¼ P1 �Pf:

Note that P is unitary and so its contragredient P_ identifies with its complex con-
jugate �PP. By the bi-additivity of the Rankin–Selberg process, we have the factoriza-
tion

Lðs;Pf � �PPfÞ ¼ zFðsÞLðs; pf � p0fÞLðs; �ppf � �pp0fÞ�

� Lðs; sym2ðpfÞ � o�1Þ�

� Lðs; sym2ð �pfpfÞ � oÞLðs; ðpf &� p0fÞ � ð �ppf &� �pp0fÞÞ�

� Lðs; sym2ðpfÞ � sym2ð �ppfÞÞ�

� Lðs; ðpf &� p0fÞ � sym
2ðpfÞ � o�1Þ�

� Lðs; ð �ppf &� �pp0fÞ � sym
2ð �ppfÞ � oÞ: ð4:15Þ

By abuse of notation we are writing o instead of of, which should not cause any con-

fusion.

It is well known that zFðsÞ has a simple pole at s ¼ 1, and since sym2ðpÞ and p&� p0

are cuspidal, Lðs; ðpf &� p0fÞ � ð �pfpf &� �pp0fÞÞ and Lðs; sym2ðpfÞ � sym2ð �ppfÞÞ have simple
poles at s ¼ 1 as well. Moreover, the remaining factors are entire with no zero at

s ¼ 1 (see the discussion following (2.3)). Thus

�ords¼1Lðs;Pf � �PPfÞ ¼ 3: ð4:16Þ

By Lemma 2.5, the Dirichlet series defined by Lðs;Pf � �PPfÞ has nonnegative coeffi-

cients.

Put

L1ðsÞ ¼ Lðs; pf � p0fÞLðs; �ppf � �pp0fÞ ð4:17Þ
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Since the real zeros of Lðs; pf � p0fÞ and Lðs; �ppf � �pp0fÞ are the same, we get for any
b 2 ð0; 1Þ,

ords¼bL1ðsÞ ¼ 2 ords¼bLðs; pf � p0fÞ: ð4:18Þ

Next observe that at any place v, if sv (resp. s0v) denotes the tow-dimensional
representation of W0

Fv
(resp. WFv

) attached to pv for v finite (resp. v Archimedean)
by the local Langlands correspondence, we have

sv � sym2ðsvÞ ’ ðsv � ovÞ � sym
3ðsvÞ;

which implies the decomposition

ðsv � s0vÞ � sym
2ðsvÞ � o�1v ’ ðsv � sym2ðsvÞ � o�1v Þ � s0v

’ ðsv � s0vÞ � ðsym
3ðsvÞ � o�1v � s0vÞ: ð4:19Þ

This gives, by the definition of automorphic L-functions in Section 1, the following

identity of L-functions:

Lðs; ðpf &� p0fÞ � sym
2ðpfÞ � o�1Þ ¼ Lðs; pf � p0fÞLðs;A

3ðpfÞ � p0fÞ ð4:20Þ

where, following [KSh2002], we have set

A3ðpÞ :¼ sym3ðpÞ � o�1:

We need

LEMMA 4.21. Since ðp; p0Þ is of general type, Lðs;A3ðpfÞ � p0fÞ and Lðs;A3ð �ppfÞ � �pp0fÞ
are entire.

Proof. Existence of a pole for one of them, say at s ¼ s0, will imply a pole for

the other at s ¼ s0; hence it suffices to prove that Lðs;A
3ðpfÞ � p0fÞ is entire. Since the

local factors at the archimedean places do not vanish, it is enough to show that

the full L-function Lðs;A3ðpÞ � p0Þ is entire. Since ðp; p0Þ is of general type, p; p0 are
nondihedral and not twists of each other. If p is not tetrahedral (see Section 3 for
definition), then by [KSh2000], sym3ðpÞ is cuspidal. The assertion of Lemma is clear
in this case by the standard results on the Rankin–Selberg L-functions (see Section

2). So we may, and we will, assume that p is tetrahedral. Then sym2ðpÞ is isomorphic
to sym2ðpÞ � n for some cubic character n, and by Theorem 2.2 of [KSh2002], A3ðpÞ
is isomorphic to ðp� nÞ&þ ðp� n2Þ. Then Lðs;A3ðpÞ � p0Þ factors as Lðs; ðp� nÞ � p0Þ
Lðs; ðp� n2Þ � p0Þ, which is entire by the Rankin–Selberg theory, because p0 is not a
twist of �pp ’ p� o�1. &

Put

L2ðsÞ ¼ zFðsÞLðs; sym
2ðpfÞ � o�1ÞLðs; sym2ð �pfpfÞ � oÞ�

� Lðs; ðpf &� p0fÞ � ð �ppf &� �pp0fÞÞLðs; sym
2ðpfÞ � sym2ð �ppfÞÞ�

� Lðs;A3ðpfÞ � p0fÞLðs; �AA3ðpfÞ � �pp0fÞ ð4:22Þ
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Then by (4.15) and (4.17),

Lðs;P� �PPÞ ¼ L21ðsÞL2ðsÞ: ð4:23Þ

Applying Lemma 4.21, and using the cuspidality of sym2ðpÞ and p&� p0, we get the
following lemma:

LEMMA 4.24. L2ðsÞ is entire.

Combining this lemma with (4.16), (4.23) and (2.8), and using Lemma 1.7 and

Proposition 2.9, we get the existence of a positive, effective constant c such that

2 ords¼bL1ðsÞ4 3 if b 2 ð1� c= logM; 1Þ: ð4:25Þ

In view of (4.18), if Lðs; p� p0Þ has a Landau–Siegel zero b (relative to c), then b will
be a zero of L21ðsÞ of multiplicity 4, leading to a contradiction.

We have now proved part (a) of Theorem 4.12 and, hence, Theorem A.

(b) First note that under the hypothesis, Lðs; p� p0 � jjitÞ has, by the proof of
part (a), no Landau–Siegel zero. Moreover, the maximum Lt of infinite types LðpÞ
and Lðp0 � j � jitÞ are no more than jtj þ L. Thus Lðs; p� j � jitÞ has no zero in the
interval

1�
1

ðc2LtÞ
< s < 1; ð4:26Þ

for an absolute effective constant c2 > 0.

Since we have

Lðsþ it; p� p0Þ ¼ Lðs; p� p0 � j � jitÞ;

the assertion of (b) now follows. &

5. Proof of Theorem B

Let p be a cuspidal automorphic representation of GLð2;AFÞ of central character o.
First we will dispose of the solvable polyhedral cases, where we will not need to

assume that p is self-dual.
Suppose p is dihedral, i.e., of the form IFKðwÞ for a character w (of the idele classes)

of a quadratic extension K of F, with y denoting nontrivial automorphism of K=F.
Let wo denote the restriction of w to F. Note that

wwy ¼ w0 	NK=F; ð5:1Þ

where NK=F denotes the norm from K to F. (w0 	NK=F is the base change ðw0ÞK of w0 to
K.) In particular,

IFKðww
yÞ ’ w0&þ w0d; ð5:2Þ

where d denotes the quadratic character of F attached to K=F by class field theory.

For any pair ðl; xÞ of characters of K, one has (cf. [Ra2000])
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IFKðlÞ&� IFKðxÞ ’ IFKðlxÞ&þ IFKðlx
y
Þ: ð5:3Þ

Putting l ¼ x ¼ w in (5.3), and using (5.1), (5.2), we get

p&� p ’ IFKðw
2Þ&þ w0&þ w0d:

Since p&� p is the isobaric sum (&þ ) of sym2ðpÞ with o, which is w0d (as it corresponds
to the determinant of the representation IndFKðwÞ of WK), we get

sym2ðpÞ ’ IFKðw
2Þ&þ w0; ð5:4Þ

Putting l ¼ x ¼ w2 in (5.3), using (5.1), (5.2), (5.4), and the inductive nature of L-
functions, we get the following identity of L-functions:

Lðs; sym2ðpÞ � sym2ðpÞÞ ¼ Lðs; w4ÞLðs; w20Þ
2Lðs; w20dÞLðs; w

3wyÞ2: ð5:5Þ

It is an Abelian L-function, and the problem of Landau–Siegel zeros here is the clas-

sical one, and there is no such zero unless one (or more) of the characters appearing

on the right of (5.5) is of order 4 2. When o ¼ 1, w0 is d, and since d2 ¼ 1 ¼
d 	NK=F, we obtain

Lðs; sym2ðpÞ � sym2ðpÞÞ ¼ Lðs; w4ÞzFðsÞ
2Lðs; dÞLðs; w2Þ2: ð5:6Þ

Next let p be tetrahedral, in which case sym2ðpÞ is cuspidal and admits a self-twist
by a nontrivial cubic character m. In other words, there is a cyclic extension M=F of

degree 3 cut out by m, with nontrivial automorphism a, and a character l of M, not
fixed by a, such that

sym2ðpÞ ’ IFMðlÞ: ð5:7Þ

Since by Mackey,

IndFMðlÞ
�2
’ IndFMðl

2
Þ � IndFMðll

a
Þ � IndFMðll

a2
Þ

we get

Lðs; sym2ðpÞ � sym2ðpÞÞ ¼ Lðs; l2ÞLðs; llaÞLðs; lla
2

Þ: ð5:8Þ

Again it is an abelian L-function, and there is nothing more to prove.

Now let p be octahedral. Then by definition, symjðpÞ is cuspidal for j4 3 and
moreover,

sym3ðpÞ ’ sym3ðpÞ � Z; ð5:9Þ

for a quadratic character Z. Equivalently, there is a quadratic extension E=F

(attached to Z) such that the base change pE is tetrahedral, i.e., there exists a cubic
character n of E such that

sym2ðpEÞ ’ sym2ðpEÞ � n: ð5:10Þ

Now we appeal to the evident identity

Lðs; sym2ðpÞ � sym2ðpÞÞ ¼ Lðs; sym4ðpÞÞLðs; sym2ðpÞ � oÞLðs;o2Þ: ð5:11Þ
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Then it suffices to prove that the set of Landau–Siegel zeros of Lðs; sym4ðpÞÞ is the
same as that of the maximal abelian L-function dividing it. To this end we note that

by Theorem 3.3.7, part (3), of [KSh2001],

sym4ðpÞ ’ IFEðn
2Þ � o2&þ sym2ðpÞ � oZ; ð5:12Þ

so that

Lðs; sym4ðpÞÞ ¼ Lðs; n2ðo 	NE=FÞ
2
ÞLðs; sym2ðpÞ � oZÞ: ð5:13Þ

Recall from Section 1 that since p is nondihedral, Lðs; sym2ðpÞ � bÞ has no Landau–
Siegel zero for any character b. So we are done in this case as well.
So from now on we may, and we will, assume that p is not of solvable polyhedral

type. In view of the identity (5.11), the derivation of Theorem B will be complete

once we prove the following result on the symmetric fourth power L-function of

p, which may be of independent interest.

THEOREM B0. Let p be a cuspidal automorphic representation of GLð2;AFÞ with

trivial central character, which is not of solvable polyhedral type. Then Lðs; sym4ðpÞÞ
admits no Landau–Siegel zero, More explicitly, there exists a positive, effective con-

stant C such that it has no zero in the real interval ð1� CL�1; 1Þ for some constant C,

where L ¼ log½NðpÞd 2Fð2þ LÞ2N�; where N ¼ ½F : Q�, and L the infinite type of p.

COROLLARY 5.14. Under the hypotheses of Theorem B0, any Landau–Siegel zero of

Lðs; sym2ðpÞ � sym2ðpÞÞ comes from one of zFðsÞ. If F is a Galois extension of Q not

containing any quadratic field, there is no Landau–Siegel zero at all.

Proof of Theorem B0. First we note that sym4ðpÞ is cuspidal as p is not of solvable
polyhedral type ([KSh2001]). Also, sym4ðpÞ is self-dual as p is.
Put

P ¼ 1&þ sym2ðpÞ&þ sym4ðpÞ; ð5:15Þ

which is a self-dual isobaric automorphic representation of GLð9;AFÞ. Since it is

unitary, it is also self-conjugate.

A formal calculation gives the identities

Lðs; sym4ðpÞ � sym2ðpÞÞ ¼ Lðs; sym2ðpÞÞLðs; p; sym6Þ; ð5:16Þ

and

Lðs;P�PÞ ¼ zFðsÞLðs; sym
2ðpÞ � sym2ðpÞÞLðs; sym4ðpÞ � sym4ðpÞÞ�

� Lðs; sym2ðpÞÞ2Lðs; sym4ðpÞÞ2Lðs; sym4ðpÞ � sym2ðpÞÞ2

¼ zFðsÞLðs; sym
2ðpÞ � sym2ðpÞÞLðs; sym4ðpÞ � sym4ðpÞÞ�

� Lðs; sym2ðpÞÞ4Lðs; sym4ðpÞÞ4Lðs; p; sym6Þ2: ð5:17Þ
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By Lemma 2.5, the Dirichlet series defined by Lðs;Pf �PfÞ has nonnegative coeffi-

cients and moreover, the cuspidality of symjðpÞ for j ¼ 2; 4 implies that

�ords¼1Lðs;Pf �PfÞ ¼ 3: ð5:18Þ

Put

L1ðsÞ ¼ Lðs; sym4ðpfÞÞ
4

ð5:19Þ

and define L2ðsÞ by the equation

Lðs;Pf �PfÞ ¼ L1ðsÞL2ðsÞ: ð5:20Þ

PROPOSITION 5.21. L2ðsÞ is holomorphic in the interval ð1=2; 1Þ.

Proof. Since we have

L2ðsÞ ¼ zFðsÞLðs; sym
2ðpfÞ � sym2ðpfÞÞLðs; sym4ðpfÞ � sym4ðpfÞÞ�

� Lðs; sym2ðpfÞÞ
4Lðs; pf; sym6Þ

2; ð5:22Þ

and since all the factors other than the square of the symmetric sixth power L-func-

tion are, owing to the cuspidality of symjðpÞ for j ¼ 2; 4, holomorphic in ð0; 1Þ, it suf-
fices to show the same for Lðs; pf; sym6Þ. But this we cannot do, given the current
state of what one knows.

But we are thankfully rescued by the following identity

Lðs; sym3ðpfÞ; sym2Þ ¼ Lðs; sym2ðpfÞÞLðs; pf; sym6Þ: ð5:23Þ

Consequently, we have

L2ðsÞ ¼ zFðsÞLðs; sym
2ðpfÞ � sym2ðpfÞÞLðs; sym4ðpfÞ � sym4ðpfÞÞ�

� Lðs; sym2ðpfÞÞ
2Lðs; sym3ðpfÞ; sym2Þ

2; ð5:24Þ

and Proposition 5.21 will follow from

LEMMA 5.25. Lðs; sym3ðpfÞ; sym2Þ is holomorphic in ð1=2; 1Þ.

Proof. Let S be the union of the Archimedean places of F with the (finite) set of

finite places v where sym4ðpÞ is unramified. It will be proved in Section 7 (see Lem-
mas 7.9 and 7.4) that at any v in S, Lðs; pv; sym2jÞ is holomorphic in ð1=2; 1Þ for
j4 4.
Thus it suffices to prove that the incomplete L-function LSðs; sym3ðpÞ; sym2Þ,

defined in a right half plane by
Q

v=2S Lðs; sym
3ðpvÞ; sym2Þ, is holomorphic in

ð1=2; 1Þ. But since sym3ðpÞ is a cuspidal automorphic representation of GLð4;AFÞ,

this is a consequence (see Theorem 3.3) of the main result of [BuG92]. &

Proof of Theorem B0 (contd.) Apply Lemma 1.7 and Proposition 2.9 to the positive

Dirichlet series Lðs;Pf �PfÞ, which has a pole at s ¼ 1 of order 3. Since L2ðsÞ is
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holomorphic in ð1=2; 1Þ, there is an effective constant c > 0 such that the number of

real zeros of L1ðsÞ in ð1� ðc= logMðP�PÞÞ; 1Þ is bounded above by 3. But L1ðsÞ is
the fourth power of Lðs; pf; sym4Þ, and so Lðs; pf; sym4Þ can have no zero in this
interval. Also, by (2.8),

Mðp; sym4Þ �MðP�PÞ; ð5:26Þ

where the implied constants are effective.

Now we have proved Theorem B0, and hence Theorem B. &

Remark 5.27. In Theorem B, we assumed that p is self-dual. To treat the general
case with these arguments one needs the following hypothesis for r ¼ 4.

HYPOTHESIS 5.28. Let p be a unitary cuspidal representation of GLðr;AFÞ, and w a

nontrivial quadratic character of F, then Lðs; p; sym2 � wÞ is holomorphic in ðt; 1Þ for a

fixed real number t < 1.

For r ¼ 2, of course, there is nothing to do as sym2ðpÞ is automorphic ([GJ79]).
For r ¼ 3, this was established W. Banks in [Ba96], thus proving a hypothesis of

[HRa95] enabling the completion of the proof of the lack of Landau–Siegel zeros

for cusp forms on GLð3Þ=F.

6. Proof of Corollary C

Here g is a Maass form on the upper half plane relative to SLð2;ZÞ, with Laplacian

eigenvalue l and Hecke eigenvalues ap. If p is the cuspidal automorphic representa-
tion of GLð2;AÞ, A ¼ AQ, generated by g (see [Ge75]), we may consider the Gel-

bart–Jacquet lift sym2ðpÞ, which is an isobaric automorphic representation of
GLð3;AÞ. Since g has level 1, it is not dihedral, and so sym2ðpÞ is cuspidal. More-
over, since sym2ðppÞ is, for any prime p, unramified because pp is, which means that
sym2ðppÞ is spherical at p, i.e., it admits a non–zero vector fixed by the maximal com-
pact subgroup Kp :¼GLð3;ZpÞ. It is also spherical at infinity, i.e., has a non–zero

fixed vector under the orthogonal group K1 :¼ Oð3Þ. Moreover, the center ZðAÞ

acts trivially, and the Archimedean component sym2ðp1Þ consists of eigenfunctions
for the center z of the enveloping algebra of LieðGLð3;RÞÞ. In sum, sym2ðpÞ is a sub-
representation of

V :¼ L2cuspðZðAÞGLð3;QÞnGLð3;AÞÞ; ð6:1Þ

admitting a spherical vector, i.e., a (nonzero) smooth function f invariant under
K :¼

Q
v Kv, where v runs over the places f1; 2; 3; 5; 7; . . . ; p; . . .g. Here the subscript

cusp on the L2-space signifies taking the subspace of cusp forms. The locally compact

group GLð3;AÞ acts on V by right translation and leaves invariant the natural scalar

product h:; :i given, for all x1; x2 2 V, by
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hx1; x2i ¼
Z
ZðAÞGLð3;QÞnGLð3;AÞ

x1ðxÞx2ðxÞdx;

where dx is the quotient measure defined by the Haar measures on GLð3;AÞ, ZðAÞ

and GLð3;QÞ, chosen as follows. On the additive group A, take the measure to be

the product measure
Q

v dyv, where dy1 is the Lebesgue measure on Q1 ¼ R, and

for each prime p, dyp is normalized to give measure 1 to Zp. Take the measure

d�y ¼ dy=jyj on A�, where jyj ¼
Q

v jyvj the natural absolute value, namely the

one given by jy1j ¼ sgnðy1Þy1 and jypj ¼ p�vpðypÞ. Since the center Z is isomorphic

to the multiplicative group, this defines a Haar measure dz ¼
Q

v dzv on ZðAÞ. On

GLð3;AÞ take the product measure
Q

v dxv, where each dxv is given, by using the

Iwasawa decomposition GLð3;QvÞ ¼ ZvTvNvKv, as dzvdtvdnvdkv. Here Tv denotes

the subgroup of diagonal matrices of determinant 1, with dtv being the transfer of

the measure d�tv via the isomorphism Tv ’ F �v , Nv the unipotent upper triangular

group with measure dnv being the transfer of dtv via the isomorphism of Nv with

the additive group Fv, and dkv the Haar measure on Kv normalized to give total

volume 1.

The representation sym2ðpÞ is a unitary summand. Since sym2ðpÞ is irreducible,
such a f will generate the whole space by taking linear combinations of its translates
and closure. Note that f is the pull back to GLð3;AÞ of a function f0, which is real
analytic by virtue of being a z-eigenfunction, on the five-dimensional (real) orbifold

M :¼ ZðAÞGLð3;QÞnGLð3;AÞ=K ¼ SLð3;ZÞnSLð3;RÞ=SOð3Þ: ð6:2Þ

Since f and f0 determine each other, we will by abuse of notation use the same sym-
bol f to denote both of them.
The spherical function f, sometimes called a new vector, is unique only up to mul-

tiplication by a scalar. It is important for us to normalize it. There are two natural

ways to do it. The first way, called the arithmetic normalization, is to make the Four-

ier coefficient að1; 1Þ (see below) equal 1 (as for newforms on the upper half plane).

The second way, which is what we will pursue here, is called the spectral normalization,

and normalizes the scalar product h; i of f with itself to be essentially 1. When so
normalized, we will use the symbol sym2ð f Þ for f. We will appeal to the Fourier
expansions in terms of the Whittaker functions to do it. We begin with the general

setup.

DEFINITION 6.3. Let f be automorphic form on GLðnÞ=Q generating a unitary,

spherical, cuspidal automorphic representation P. Say that f is normalized if we
have:

fðgÞ ¼
X

g2Uðn�1;QÞnGLðn�1;QÞ

WP
g
1

� �
g

� �
; ð6:4Þ

where Uðn� 1;QÞ denotes the subgroup of GLðn� 1;QÞ consisting of upper trian-

gular, unipotent matrices,WP ¼
Q

v WP;v the global Whittaker function whose local
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components are defined below. (Again, P spherical means that Pv admits, at every

place v, a nonzero vector invariant under the maximal compact (mod center) sub-

group Kv, which is GLðn;ZpÞ when v is vp for a prime p.)

� WP;p is, for any prime p, the unique Kp-invariant function corresponding to Pp

normalized so thatWP;pðeÞ ¼ 1. (6.5)

� At the Archimedean place,

WP;1 ¼ CðPÞ�
1
2Wn;a;

where Wn;a be the normalized spherical function of infinite type a on GLðn;RÞ

in the sense of Stade [St2001], and

CðPÞ ¼ Lð1;P1 �P1Þ:

Denote the function so normalized in the space of P by the symbol fðPÞ.
Now let us get back to our Maass form g for SLð2;ZÞ, with associated spherical

cuspidal representation p, resp. sym2ðpÞ, of GLð2;AÞ, resp. GLð3;AÞ. We set

sym2ðgÞ ¼ fðsym2ðpÞÞ: ð6:6Þ

Since g has level 1, one knows that l > 1=4 (in fact >50, though we do not need it),

so that if we write

l ¼
1� t2

4
;

then t is a nonzero real number; we may choose t to be positive. We have

Lðs; p1Þ ¼ GRðsþ itÞGRðs� itÞ:

Consequently,

Lðs; sym2ðp1ÞÞ ¼ GRðsþ 2itÞGRðsÞGRðs� 2itÞ;

and

Lðs; sym2ðp1Þ � sym2ðp1ÞÞ

¼ GRðsþ 4itÞGRðsþ 2itÞ
2GRðsÞ

3GRðs� 2itÞ
2GRðs� 4itÞ:

Then, since Gð1� aitÞ is the complex conjugate of Gð1þ aitÞ for any real a, and since

Gð1Þ ¼ 1, we obtain

Cðsym2ðpÞÞ ¼ Lð1; sym2ðp1Þ � sym2ðp1ÞÞ

¼ p�3jGð12þ 2itÞj
2
jGð12þ itÞj

4

¼ 1=ðcoshð2ptÞ cosh2ðptÞÞ: ð6:7Þ

Recall that Theorem B proves that if p is not of solvable polyhedral type, then

Lðs; sym2ðpÞ � sym2ðpÞÞ admits no Landau–Siegel zero. To put this to use we need
the following proposition:
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PROPOSITION 6.8. If p is a spherical cuspidal representation on GLð2Þ=Q, then p is

not of solvable polyhedral type.

Proof. At each prime p (resp. 1) let sp (resp. s1) denote the two-dimensional
representation ofW0

Qp
(resp.WR) associated to pp (resp. p1) by the local Langlands

correspondence. By the naturality of this correspondence, we know that the con-

ductors of pp and sp agree at every p.
On the other hand, as p is spherical, the conductor of p, which is the product of the

conductors of all the pp, is trivial. This implies that for every p, the conductor of sp,
and hence also that of symjðspÞ is trivial for any j5 1. Appealing to the local corre-
spondence again, we see that

For any j4 4; the automorphic representation symjðpÞ is spherical: ð6:9Þ

For the definition of conductors, for any local field k, of representations of

GLðn; kÞ admitting a Whittaker model, see [JPSS79].

Assume that p is of solvable polyhedral type, i.e., it is either dihedral or tetrahedral
or octahedral.

Recall that if p is dihedral, then p is automorphically induced, i.e. there exists an
idele class character w of a quadratic field K s.t.

p ’ IQ
K ðwÞ: ð6:10Þ

If p is tetrahedral, then by [KSh2000], sym2ðpÞ is cuspidal and moreover,

sym2ðpÞ ’ IQ
K ðwÞ; ð6:11Þ

for some idele class character w of some cyclic extension K of degree 3 over Q.

If p is octahedral, then by [KSh2001], sym3ðpÞ is cuspidal and

sym3ðpÞ ’ sym3ðpÞ � m;

for some quadratic Dirichlet character m. This implies, by [AC89], that

sym3ðpÞ ’ IQ
K ðZÞ; ð6:12Þ

for some cuspidal automorphic representation Z of GLð2;AKÞ, with K being the

quadratic field associated to m.
In view of (6.9), it suffices to show that some symjðpÞ must be ramified, thus giving

a contradiction. Thanks to (6.10), (6.11) and (6.12), one is reduced to proving the

following

LEMMA 6.13. Let K=Q be a cyclic extension of degree ‘, a prime, and let Z be a

cuspidal automorphic representation of GLðm;AKÞ, m5 1. Then IQ
K ðZÞ is ramified at

some p.

One can be much more precise than this, but this crude statement is sufficient for

our purposes. However, it should be noted that there are polyhedral representations,

for example of holomorphic type of weight 1 for F ¼ Q, with prime conductor.
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Proof of Lemma 6:13: Put P ¼ IQ
K ðZÞ. Since Q has class number 1, K=Q is

ramified. So there exists some prime p, and a place u of K above p, such that Ku=Qp is

ramified of degree ‘. The local component Pp is simply I
Qp

Ku
ðZuÞ, and it is enough to

check that Pp must be ramified. If su is the m-dimensional representation of W0
Ku
,

then the conductor ofPp is the same as that of Ind
Qp

Ku
ðsuÞ. Moreover, su is semisimple

and its conductor is divisible by that of Ind
Qp

Ku
ðs0uÞ for any irreducible sub-

representation s0u of W
0
Ku
. So it suffices to prove the following sublemma:

SUBLEMMA 6.14. Let E=F be a cyclic ramified extension of non-Archimedean local

fields, and let s be an irreducible m-dimensional representation of W0
E. Then IndFEðsÞ is

ramified.

Proof. Since W0
E is WE � SLð2;CÞ, the irreducibility hypothesis implies that

s ’ t� symjðstÞ;

for some irreducible t ofWE and j5 0, where st denotes the natural two-dimensional
representation of SLð2;CÞ. Then

IndFEðsÞ ’ Ind
WF

WE
ðtÞ � symjðstÞ: ð6:14Þ

It suffices to prove that IndWF

WE
ðtÞ is ramified. Recall that there is a short exact

sequence

1! IF !WF ! Z ! 1; ð6:15Þ

where IF denotes the inertia subgroup of Galð �FF=FÞ. If Fq is the residue field of F and

j the Frobenius x! xq, then WF is just the inverse image of the group of integral

powers of the j under the natural map

Galð �FF=FÞ ! Galð �FFq=FqÞ:

Suppose r :¼ IndWF

WE
ðtÞ is unramified. Then by definition IF must act trivially, and

since the quotientWF=IF is abelian, r is forced to be a sum of one dimensional, unra-
mified representations. For this one must have

(i) dimðtÞ ¼ 1; and
(ii) ty ’ t, with y denoting the nontrivial automorphism of E=F.

Consequently we have

r ’
M½E:F��1
i¼0

ndi; ð6:16Þ

where n is a character of WF extending t and d the character of WF associated to

E=F. But whatever n is, ndi will necessarily be ramified for some i between 0 and
½E : F� � 1. Thus r ¼IndWF

WE
is ramified, contradicting the supposition that it is unra-

mified. Done.

We have now proved Proposition 6.8. &
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Next we need the following two lemmas.

LEMMA 6.17. Let LðsÞ ¼ S1n¼1bðnÞ=n
s be an L-series with nonnegative coefficients,

with bð1Þ ¼ 1. Assume that LðsÞ converges for <s > 1 with an analytic continuation to

<s > 0. Let M > 1. Suppose that LðsÞ satisfies the growth condition below on the line

<s ¼ 12:

jLð12þ igÞj4Mðjgj þ 1ÞB

for some positive constant B. If LðsÞ has no real zeros in the range

1�
1

logM
< s < 1;

then there exists an effective constant c ¼ cðBÞ such that

Ress¼1LðsÞ5
c

logM
:

For a proof, see [GHLL94].

LEMMA 6.18. Let LðsÞ ¼ Lðs; sym2ðpÞ � sym2ðpÞÞ. Then there exist absolute con-

stants A and B such that

Lð12þ igÞ4 ðlþ 1ÞAðjgj þ 1ÞB:

Proof. Note that, for any prime p, as pp is unramified, the p-part of LðsÞ is the
reciprocal of a polynomial in p�s of degree 9. Let ap, bp be the coefficients of the
Satake representation of pp. Note that we assume that p is self-dual, thus

LpðsÞ
�1
¼ ð1� a4pp

�sÞð1� b4pp
�sÞð1� a2pp

�sÞ
2
ð1� b2pp

�sÞ
2
ð1� p�sÞ3 ð6:19Þ

Now apply the classical bound japj < p1=4, jbpj < p1=4 on the coefficients [GJ79]; we

know a much stronger bound now (cf. [K], Appendix 2), but the 1=4 bound suffices

for us. Then LðsÞ is bounded by an absolute constant on the line <ðsÞ ¼ 2. Also,

LðsÞ satisfies a functional equation relating s and 1� s. Thus, we get a bound

for LðsÞ on the line <ðsÞ ¼ �1. We claim that the ratio of gamma factors arising

from the functional equation is bounded by a certain fixed power of l and the ima-
ginary part of s. In fact, the constants giving the infinite type of LðsÞ are all ima-

ginary as l > 50 for Maass forms of level 1. (The constants are real or purely

imaginary, and the latter happens iff l5 1=4, which is a difficult open problem
for Maass forms of higher level.) Moreover, the self-duality of p implies that the
constant set is symmetric about the real axis. So, the norm of the ratio of the

gamma factors is a product of a constant and some terms of the form

jGð1þ itÞ=Gð� 12 �itÞj where t involves the imaginary part of s and the constants

(of the infinity type). Note that
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Gð1þ itÞ

Gð� 12� itÞ

					
					 ¼

Gð1þ itÞ

Gð� 12þ itÞ

					
					 ¼ jtj

3
2ð1þOðt�1ÞÞ; ð6:20Þ

since for a4s4 b we have the estimation.

jGðsÞj ¼
ffiffiffiffiffiffi
2p
p
e�

p
2jtjs�1=2ð1þOðt�1ÞÞ ð6:21Þ

where the implied constant depends only on a and b. Hence the claim.

As p is spherical, so is sym4ðpÞ. Hence we get

Lð�1þ igÞ � ðlþ 1ÞAðjgj þ 1ÞB ð6:22Þ

for certain constants A and B. Applying the Phragmén–Lindelöf principle in the strip

�14<ðsÞ4 2, we see that the same bound applies also on the line <ðsÞ ¼ 12. &

The following proposition sets up the relationship between the Petersson norm of

the normalized automorphic function sym2ðgÞ and the residue of a certain L-series at

s ¼ 1.

Denote ZnðAÞ the center of GLðn;AÞ. Denote E �ðg; hsÞ the Eisenstein series, where

hs ¼
Q

v hs;v and hs;v is in the space of the induced representation

Ind
GLðn;FvÞ

Pðn�1;1;FvÞ
ðdsPÞ ð6:23Þ

where dP is the modular quasicharacter of the standard parabolic subgroup PðQvÞ of

type ðn� 1; 1Þ, whose Levi factor is GLðn� 1Þ �GLð1Þ.

PROPOSITION 6.24. Let P ¼ P1 �Pf be an unramified cusp form on GLðn;AÞ,

with P1 a spherical principal series representation with trivial central character. Then

Z
ZnðAÞGLðn;QÞnGLðn;AÞ

fðgÞ �ffðgÞE �ðg; hsÞdg ¼
Lðs;P1 �P1ÞLðs;Pf �PfÞ

Lð1;P1 �P1Þ
;

where f is the normalized function in the space of P. Furthermore,

hf;fiRess¼1E �ðg; hsÞ ¼ Ress¼1Lðs;Pf �PfÞ

Proof. Let us study the integral

I ¼

Z
ZnðAÞGLðn;QÞnGLðn;AÞ

fðgÞ �ffðgÞE �ðg; hsÞdg: ð6:25Þ

By the Rankin–Selberg unfolding method, we have

I ¼
Y
v

Iv ð6:26Þ

where

Iv ¼ CðWfv
;W �ffv

; hs;vÞ ¼

Z
ZnðQvÞXnðQvÞnGLnðQvÞ

Wfv
ðgÞW �ffv

ðgÞhsðgÞdg ð6:27Þ
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Here Xn denotes the subgroup of the upper triangular, unipotent matrices, andWf;v

is a Whittaker function for Pv. By Jacquet and Shalika [JS81], when we choose f to
be a new vector, this local integral Iv equals to Lðs;Pv �PvÞ when v is nonarchime-

dean.

When v is Archimedean, we appeal to the work of Stade ([St93], [St2001]) and

obtain

Iv ¼ CðPÞ�1Lðs;Pv �PvÞ; ð6:28Þ

where CðPÞ ¼ Lð1;P1 �P1Þ. It appears that such a result has also been obtained
by Jacquet and Shalika in the spherical case. In the nonspherical case, they can prove

only that the L-factor is a finite linear combination of such integrals [JS90].

Thus I is in fact the same as the quotient of the complete L-series for P�P by
Lð1;P1 �P1Þ. Note that the Whitaker function at infinity we take here differs
from the standard one used by Stade in [St2001] by the factor CðPÞ�1=2.
Now take the residue at s ¼ 1 on both sides, and note that Ress¼1E

�ðg; hsÞ is a

positive constant independent of g. Hence the Proposition. &

Proof of Corollary C (contd). Since sym2ðpÞ is spherical in our case, we may apply
Proposition 6.24 with P ¼ sym2ðpÞ and get

ðsym2ð f Þ; sym2ð f ÞÞ ¼ C�1Ress¼1Lðs; sym
2ðpfÞ � sym2ðpfÞÞ; ð6:29Þ

where C ¼ Ress¼1E
�ðg; hsÞ.

The bound on the right of the corollary is easy since

Ress¼1Lðs; sym
2ðpfÞ � sym2ðpfÞÞ ¼ Lð1; sym2ðpfÞÞLð1; sym4ðpfÞÞ ð6:30Þ

which is bounded by any arbitrary power of 1þ l. (See [HRa95])
To prove the bound on the left, it suffices to show that

Ress¼1Lðs; sym
2ðpfÞ � sym2ðpfÞÞ ! ðlogð1þ lÞÞ�1: ð6:31Þ

For this apply Lemmas 6.17 and 6.18, with LðsÞ ¼ Lðs; sym2ðpfÞ � sym2ðpfÞÞ and
M ¼ ðlþ 1ÞB

0

for suitably large constant B0.

It remains to prove the asserted bound on the first Fourier coefficient of the spec-

tral normalization of sym2ðgÞ. Put

G ¼ GLð3;ZÞ; ð6:32Þ

G0 ¼ fg ¼ ðgijÞ 2 Gjg31 ¼ g32 ¼ 0; g33 ¼ 1g;

and

G1 ¼ fg ¼ ðgijÞ 2 Gjgij ¼ 0 if i > jg:

Recall that the spherical cusp form sym2ðgÞ on GLð3Þ=Q defines, and is determined

by, a function, again denoted by sym2ðgÞ, on the double coset space

GnGLð3;RÞ=ZðRÞOð3Þ; ð6:33Þ

where Z is the center of GLð3Þ.
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Define the spectrally normalized function in the space of sym2ðpÞ to be

sym2ðgÞspec ¼ sym2ðgÞ=jjsym2ðgÞjj; ð6:34Þ

with jj:jj denoting (as usual) the L2-norm given by h: ; :i1=2.

The adelic Fourier expansion (6.4) gives rise to the following explicit expansion

(see [Bu89], page 71, formula (2.1.6)) as a function of GLð3;RÞ:

sym2ðgÞðxÞ ¼
X

ðm;nÞ6¼ð0;0Þ

X
g2G1nG0

aðm; nÞðsym2ðgÞÞ

mn
W1

mn 0 0
0 n 0
0 0 1

0
@

1
Agx

0
@

1
A:

ð6:35Þ

The coefficients aðm; nÞðsym2ðgÞÞ are bimultiplicative, implying in particular that the

first coefficient að1; 1Þðsym2ðgÞÞ is equal to 1. Consequently,

að1; 1Þ :¼ að1; 1Þðsym2ðgÞspecÞ ¼
1

jjsym2ðgÞjj
; ð6:36Þ

and

jað1; 1Þj2hsym2ðgÞ; sym2ðgÞi ¼ 1:

Hence the desired upper bound on að1; 1Þ follows from the lower bound proved

above (see (6.29) and (6.31)) for hsym2ðgÞ, sym2ðgÞi. Done. &

7. Proof of Theorem D

Let p be a cuspidal automorphic representation of GLð2;AFÞ of trivial central char-

acter. Denote by S the union of the set S1 of Archimedean places of F with the set of

finite places where p is ramified. Given any Euler product LðsÞ ¼
Q

v LvðsÞ over F, we

will write LSðsÞ to mean the (incomplete Euler) product of LvðsÞ over all v outside S.

Next recall (see Section 3) that for every j4 4, there is an isobaric automorphic
representation symjðpÞ of GLðjþ 1;AFÞ, established long ago for j ¼ 2 by S. Gelbart

and H. Jacquet [GJ77], and very recently for j ¼ 3, resp. j ¼ 4, by H. Kim and F.

Shahidi ([KSh2000]), resp. H. Kim ([K2000]), such that

Lðs; symjðpÞÞ ¼ Lðs; p; symjÞ:

LEMMA 7.1. Let T be any finite set of places. Then we have the following factor-

izations of incomplete L-functions:

ðiÞ LTðs; sym3ðpÞ; sym2Þ ¼ LTðs; p; sym6ÞLTðs; sym2ðpÞÞ
and

ðiiÞ LTðs; sym4ðpÞ; sym2Þ ¼ LTðs; p; sym8ÞLTðs; sym4ðpÞÞzTFðsÞ.

Proof. It suffices to prove these locally at every place outside T. But at any v, we

have by definition,

Lðs; sym3ðpvÞ; sym2Þ ¼ Lðs;L2ðsym4ðsvÞÞÞ; ð7:2Þ

and
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Lðs; sym4ðpvÞ; sym2Þ ¼ Lðs; sym2ðsym4ðsvÞÞÞ;

where sv is the two-dimensional representation ofWFv
, resp.W0

Fv
, associated to pv by

the local correspondence for n Archimedean, resp. non-Archimedean. By the
Clebsch–Gordon identities, we have

sym2ðsym3ðsvÞÞ ’ sym6ðsvÞ � sym2ðsvÞ; ð7:3Þ

and

sym2ðsym4ðsvÞÞ ’ sym8ðsvÞ � sym4ðsvÞ � 1:

The assertion of the Lemma now follows. &

LEMMA 7.4. Let p be a cuspidal automorphic representation of GLð2;AFÞ with

trivial central character, and let v be a place where pv is a ramified, nontempered

principal series representation. Then sym4ðpÞ is unramified at v.

Proof. As pv is a ramified principal series representation of trivial central charac-
ter, we must have

pv ’ mv &þ m�1v ; ð7:5Þ

for a ramified (quasi-)character mv of F
�
v . Since pv is nontempered, we may write,

after possibly interchanging mv and m�1v ,

mv ¼ nvj:jtv; ð7:6Þ

for a unitary character nv of F�v and a real number t > 0. (j:jv denotes as usual the
normalized absolute value on Fv.) On the other hand, the unitarity of pv says that
its complex conjugate representation �ppv is isomorphic to the contragredient p_v . This
forces the identity nv ¼ nv: Since nv is unitary, we get

n2v ¼ 1 and pv ’ nv � p0v ; ð7:7Þ

where p0v ’ j:j
t
v &þ j:j

�1
v . Then the associated two-dimensional Weil group representa-

tion sv is of the form nv � s0v , with s0v corresponding to p0v . Moreover, since nv is
quadratic, we have for any j5 1,

sym2jðsvÞ ’ sym2jðs0vÞ; ð7:8Þ

which is unramified. Since by [K2000], sym4ðpÞv corresponds to sym
4ðsvÞ (at every

place v), we see that it must be unramified as claimed. &

LEMMA 7.9. Let p be a cuspidal automorphic representation of GLð2;AFÞ, and v a

place of F where pv is tempered. Then for any j5 1, the local factor Lðs; pv; symjÞ is

holomorphic in <ðsÞ > 1=2 except for a possible pole at s ¼ 1.

Proof. If v is Archimedean, or if v is finite but pv is not special, pv corresponds to a
two-dimensional representation sv of the local Weil groupWFv

. The temperedness of

pv implies that sv has bounded image in GLð2;CÞ. Then for any finite-dimensional

C-representation r of dimension N, in particular for symj, of GLð2;CÞ, the image of
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rðsvÞ will be bounded, and this implies that the admissible, irreducible representation
Pv of GLðN;FvÞ, associated to rðsvÞ by the local Langlands correspondence, is tem-
pered. Then Lðs;PvÞ is holomorphic in <ðsÞ > 1=2 except for a possible pole at s ¼ 1

(see [BaR94]). (One can also prove directly, using the extension in [De73] of Brauer’s

theorem to the representations ofWFv
, that Lðs; rðsvÞ has the requisite property.) We

are now done in this case because Lðs; pv; symjÞ is defined to be Lðs; symjðsvÞÞ.
So we may take v to be finite and assume that pv is a special representation spðmvÞ

(see [HRa95], Section 2 for notation), associated to the partition 2 ¼ 1þ 1 and a

(unitary) character mv of F�v . Then the associated sv is of the form
ðw; gÞ ! mvðwÞ � g, for all w in WFv

and g in SLð2;CÞ. So we have

symjðsvÞ ’ mjv � sym
j;

which corresponds to the special representation spðmjvÞ of GLðjþ 1;FvÞ associated to

the partition jþ 1 ¼ 1þ � � � þ 1 and the character mjv. Now we may appeal to the fact
(see [BaR94]) that for any unitary character nv, the function Lðs; spðnvÞÞ is holo-
morphic in <ðsÞ > 0. &

Having established these preliminary lemmas, we are ready to begin the proof of

Theorem D. Let S denote the union of the Archimedean places of F with the set

of finite places v where pv is ramified and tempered. In view of Lemma 7.9, it suffices
to show the following

PROPOSITION 7.10. The incomplete L-function LSðs; p; sym6Þ is holomorphic in the

real interval ð1� ðc=logMÞ; 1Þ for a positive, effective constant c independent of p, with
M denoting the thickened conductor of p. The same result holds for the symmetric

eighth power L-function if F is a Galois extension of Q not containing any quadratic

extension of Q.

Proof. When p is of solvable polyhedral type, the results of Kim and Shahidi in
[KSh2001] imply that LSðs; p; symjÞ is holomorphic in ð1=2; 1Þ for any j4 9. So we
may assume that we are not in this case, so that sym4ðpÞ is a cuspidal automorphic
representation of GLð5;AFÞ.

By the definition of S, given any place n outside S, pv is either unramified or a
ramified, nontempered principal series representation. Thanks to Lemma 7.4,

sym4ðpvÞ is unramified in either case. So we may appeal to the work of Bump-
Ginzburg ([BuG92]) on the symmetric square L-functions, we get the holomorphy

in ð1=2; 1Þ of the incomplete L-functions LSðs; sym4ðpÞ;L2Þ and LSðs; sym4ðpÞ; sym2Þ.
Next we appeal to the identities of Lemma 7.1 with T ¼ S. The assertion of the

Proposition is then clear for the symmetric 6-th power L-function since

LSðs; sym2ðpÞÞ admits no Landau–Siegel zero by [GHLL94]. So let us turn our atten-
tion to the (incomplete) symmetric eighth power L-function of p. It suffices, by the
identity (ii) of Lemma 7.1, to show that LSðs; sym4ðpÞÞzSFðsÞ admits no Landau–Siegel
zero. Since F is by hypothesis a Galois extension of Q not containing any quadratic

field, one knows by Stark ([Stk]) that zSFðsÞ admits no Landau–Siegel zero. So we are
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finally done by our proof of Theorem B, where we showed that LSðs; sym4ðpÞÞ admits
no Landau–Siegel zero. Strictly speaking, we showed it for the full L-function. But

the local factors at S, being tempered, do not have any pole in ð1=2; 1Þ. &

Acknowledgements

We would like to thank D. Bump, W. Duke, H. Jacquet, H. Kim, W. Luo, S. Miller,

F. Shahidi and E. Stade for useful conversations and/or correspondence. Clearly this

paper depends on the ideas and results of the articles [HL94], [GHLL94], [HRa95],

[Ra2000], [KSh2000,1] and [K2000]. The first author would like to thank the NSF

for support through the grants DMS-9801328 and DMS-0100372. The subject mat-

ter of this paper formed a portion of the first author’s Schur Lecture at the University

of Tel Aviv in March 2001, and he would like to thank J. Bernstein and S. Gelbart

for inviting him and for their interest.

References

[AC89] Arthur, J. and Clozel, L.: Simple Algebras, Base Change and the Advanced Theory
of the Trace Formula, Ann. Math. Stud. 120, Princeton Univ. Press, 1989.

[Ba97] Banks, W.: Twisted symmetric-square L-functions and the nonexistence of Siegel

zeros on GLð3Þ, Duke Math. J. 87(2) (1997), 343–353.
[BaR94] Barthel, L. and Ramakrishnan, D.: A non-vanishing result for twists of L-func-

tions of GLðnÞ, Duke Math. J. 74(3) (1994), 681–700.

[Bu89] Bump, D.: The Rankin–Selberg method: A survey, In: Number Theory, Trace
Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA,
1989, pp. 49–109.

[BuG92] Bump, D. and Ginzburg, D.: Symmetric square L-functions on GLðrÞ, Ann. of
Math. (2) 136(1) (1992), 137–205.

[coPS94] Cogdell, J. and Piatetski-Shapiro, I.: Converse theorems for GLn, Publ. Math.
IHES 79 (1994), 157–214.
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