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Moduli Spaces of Metrics of Positive
Scalar Curvature on Topological
Spherical Space Forms

Philipp Reiser

Abstract. Let M be a topological spherical space form, i.e., a smooth manifold whose universal cover
is a homotopy sphere. We determine the number of path components of the space andmoduli space
of Riemannian metrics with positive scalar curvature on M if the dimension of M is at least 5 and M
is not simply-connected.

1 Introduction and Main Result

Let M be a closed smooth manifold. We denote by R+(M) the space of Riemannian
metrics with positive scalar curvature on M and byM+(M) the corresponding mod-
uli space, i.e., the quotient of R+(M) by the pull-back action of the diòeomorphism
group. We equip R+(M) with the smooth topology and the moduli space with the
quotient topology. hese spaces, as well as spaces andmoduli spaces of Riemannian
metrics satisfying diòerent curvature conditions, have been studied in various ways;
see, e.g., [17, 18] for an outline.

his article addresses the problemof determining the number of path components
of both R+(M) and M+(M) if M is a non-simply-connected topological spherical
space form, i.e., a non-trivial quotient of a homotopy sphere by a free action of a ûnite
group. In the casewhereM is a linear spherical space form, i.e., the action is given by an
isometric action on the round sphere, this problem has been solved if the dimension
of M is at least 5.

heorem A ([3,heorem 0.1]) Let M be a linear spherical space form of dimension
at least 5 that is not simply-connected. hen there exists an inûnite family of metrics
g i ∈ R

+(M) such that g i and g j are not concordant and lie in diòerent path components
ofM+(M) if i ≠ j.

Two metrics g0 , g1 ∈ R+(M) are concordant if there exists a metric g ∈

R+(M × [0, 1]) that is a product near the boundary and restricts to g i on M × {i}.
Metrics in the same path component ofR+(M) are concordant; see, e.g., [15]. Hence,
R+(M) has an inûnite number of path components. his also follows from the fact
that a lower bound on the number of path components ofM+(M) is always a lower
bound on the number of path components of R+(M).
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In fact, heorem A is the consequence of two theorems proved in [3] that can be
applied to manifolds satisfying certain properties involving dimension, fundamental
group, and Spin or Pin structures; seeheorems 3.1 and 3.2. heoremA is then proved
by verifying that all considered spherical space forms satisfy the requirements of one
of these theorems. heMainheoremof this article is the following,which is obtained
using the same strategy.

Main heorem Let M be a topological spherical space form of dimension at least 5
that is not simply-connected and admits a metric with positive scalar curvature. hen
there exists an inûnite family of metrics g i ∈ R

+(M) such that g i and g j are not con-
cordant and lie in diòerent path components ofM+(M) if i ≠ j.

his aõrmatively answers the question posed in [10, p. 11], where the authors de-
termined under which conditions a topological spherical space form admits ametric
with positive scalar curvature. heir main theorem is given as follows.

heorem B ([10, Main heorem]) Let M be a topological spherical space form of
dimension n ≥ 5. If n /≡ 1, 2 mod 8, then M admits a metric with positive scalar
curvature. If n ≡ 1, 2 mod 8, then M admits a metric with positive scalar curvature
if and only if ∣π1(M)∣ is even or the universal cover of M admits a metric with positive
scalar curvature.

For the last case in heorem B, note that by [16] the universal cover of the topo-
logical space form M admits ametric with positive scalar curvature if and only if its
alpha invariant vanishes.

In lower dimensions, the situation is completely diòerent. In dimension 2, the
only (topological) spherical space form that is not simply-connected is RP2. By
[15,heorem 3.4], the spaceR+(RP2) is contractible, sobothR+(RP2) andM+(RP2)

are path-connected.
In dimension 3, by Perelman’s proof ofhurston’s ElliptizationConjecture (see [14]

or [5, heorem E]), every 3-dimensional topological spherical space form M3 is dif-
feomorphic to a linear spherical space form. By [13,Mainheorem], themoduli space
M+(M3) is path-connected. For recentwork on the space ofmetricsR+(M3),we re-
fer the reader to [1]. So dimension 4 is the only remaining open case.

his article is organized as follows. In Section 2, we summarize some basic deû-
nitions and results on topological spherical space forms and prove some preliminary
group-theoretic tools. In Section 3, we use these tools to prove theMain heorem.

2 Preliminaries
In this section, we collect some deûnitions and basic results and develop the tools we
will use in the proof of theMain heorem.

Deûnition 2.1 A topological spherical space form is a smooth manifold whose uni-
versal cover is a homotopy sphere.

Linear spherical space forms have been classiûed; see [20]. his does not hold for
the much larger class of topological spherical space forms, and there are still many
open problems; see e.g., [7] for a survey.
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In the following, M denotes a topological spherical space form of dimension n.
Its universal cover M̃ is homeomorphic to Sn , and the fundamental group π1(M) is
ûnite. Furthermore, it has the following properties.

Proposition 2.2 If n is even, then π1(M) is trivial orZ2. If n is odd, then every Sylow
subgroup of π1(M) is cyclic or a generalized quaternion group.

A generalized quaternion group is a group Q2k+1 of order 2k+1, k > 1, with genera-
tors x and y and relations

(2.1) x2k−1
= y2 , x2k

= 1, yxy−1 = x−1 .

Proof If n is even, then, by Lefschetz Fixed Point heorem applied to the action
on the universal cover, every non-trivial element of π1(M) reverses the orientation.
Hence, there is at most one non-trivial element in π1(M).

If n is odd, then π1(M) has periodic cohomology by [4, Chapter XVI.9, Applica-
tion 4], which is equivalent to the claim; see [4,heorem XII.11.6]. ∎

he cyclic group Zp acts on S2m−1 ⊆ Cm via

(k + pZ) ⋅ (z1 , . . . , zm) = (λk
1 z1 , . . . , λ

k
mzm),

where λ i = λq i for λ a primitive p-th root of unity and q i and p are coprime. he
quotient space is called a lens space.

Proposition 2.3 If π1(M) is cyclic, then M is homotopy equivalent to a linear spher-
ical space form; that is, M is homotopy equivalent to Sn , RPn (if n is even) or to a lens
space (if n is odd).

Proof If n is even, then M is a homotopy sphere or π1(M) = Z2, and in the latter
case, M is homotopy equivalent to RPn as shown in [12, IV.3.1]. We refer the reader
to [19, 14E] for the case where n is odd. ∎

We now consider Spin and Pin± structures on topological spherical space forms.
Recall that the group structure of the universal cover of the orthogonal group O(n)
is uniquely determined on the component that contains the identity element (this is
the Spin group), but on the other component, a preimage of a re�ection can square to
±1, and we obtain the two groups Pin±. he existence of Spin and Pin± structures can
be characterized by Stiefel–Whitney classes as follows.

Proposition 2.4 ([11,heorem II.1.2 andheorem II.1.7] and [8, Proposition 1.1.26])
Let M be a smoothmanifold. Denote by wk(M) ∈ Hk(M;Z2) the k-th Stiefel–Whitney
class of its tangent bundle. hen the following hold:

(i) M is orientable if and only if w1(M) vanishes.
(ii) M admits a Spin structure if and only if both w1(M) and w2(M) vanish.
(iii) M admits a Pin+ structure if and only if w2(M) vanishes.
(iv) M admits a Pin− structure if and only if w2(M) +w1(M)2 vanishes.
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Now suppose that M is oriented. We equip M̃ with a Riemannian metric that is
invariant under the action of G = π1(M), so the action li�s to the oriented orthonor-
mal frame bundle PSO(M̃). he manifold M̃ is a homotopy sphere; hence, it admits
a unique Spin structure P → PSO(M̃), and every g ∈ G has two li�s to P. Denote the
group of all such li�s by G. his leads to a group extension

(2.2) 1Ð→ Z2 Ð→ G
π
Ð→ G Ð→ 1.

Both elements of ker π are central in G, so the extension is central. In order to analyze
this extension, we need two group-theoretic lemmas.

Lemma 2.5 LetG be a ûnite groupwith a cyclic 2-Sylow subgroup S. Let m ⋅2k = ∣G∣,
where m is odd. hen G has a unique normal subgroup of order m.

Proof If such a subgroup exists, then it is unique, as it contains precisely all elements
of odd order. Now the homomorphism ℓ∶G → Sym(G) given by le�-multiplication
followed by sign∶ Sym(G) → Z2 is surjective, as every generator of S has non-trivial
image. Hence, its kernel H has index 2 andH∩S is a cyclic 2-Sylow subgroup of order
2k−1 in H. Suppose H has a unique normal subgroup N of order m. Every conjugate
of N is contained in H, as H is normal, and, by uniqueness, it follows that it equals N ,
so N is normal in G. hus, the claim follows by induction. ∎

Lemma 2.6 Let G be a ûnite group and let m ⋅ 2k = ∣G∣, where m is odd. If G has a
normal subgroup N of order m, then the following hold:
(i) he group G is the semi-direct product of N and a 2-Sylow subgroup.
(ii) he group G in the extension (2.2) has a normal subgroup of order m that maps

isomorphically to N.
(iii) he extension (2.2) splits if and only if its restriction to a 2-Sylow subgroup splits.

Proof Consider the projection G → G/N . Its restriction to a 2-Sylow subgroup S is
an isomorphism; hence, the projection splits.

Now consider the extension (2.2). he 2-Sylow subgroups of π−1(N) have order 2,
so we can apply Lemma 2.5 to see that π−1(N) has a normal subgroup N of order m
that maps isomorphically to N under π. he groupN is normal in G as it contains all
elements of odd order.

It follows from (i) that G is the semi-direct product ofN and S = π−1(S). If there
is a splitting S → S, then we obtain amap

ϕ∶G = N ⋊ S Ð→ N ⋊ S = G

by identifying N with N. he map ϕ clearly satisûes π ○ ϕ = id. Hence, it deûnes
a splitting of (2.2) if it is a group homomorphism. he image ϕ(sns−1) equals
ϕ(s)ϕ(n)ϕ(s)−1 for n ∈ N , s ∈ S as both are elements ofN andmap to sns−1. Hence, ϕ
commuteswith the action of S on N ; thus, it is a homomorphismon their semi-direct
product G. ∎

he manifold M admits a Spin structure if and only if the whole action of
G = π1(M) on PSO(M̃) can be li�ed to P. his is the case if and only if the extension
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(2.2) splits, i.e., if and only if G = Z2⊕G (as the extension is central). his leads to the
following proposition.

Proposition 2.7 he topological spherical space form M is orientable if and only if
n is odd or G is trivial. If n is odd and the 2-Sylow subgroups of G are cyclic, then M
admits a Spin structure if and only if n ≡ 3 mod 4 or ∣G∣ is odd.

We will use the following lemma in the proof of the proposition.

Lemma 2.8 ([6,heorem 1]) If M is a lens space of dimension n = 2m − 1, then M
is spin if and only if m is even or ∣π1(M)∣ is odd.

Proof of Proposition 2.7 All homotopy spheres are orientable and spin, so we can
assume that G is non-trivial. If n is even, then M is homotopy equivalent to RPn

which is not orientable. Since Stiefel–Whitney classes are invariant under homotopy
equivalence, it follows that M is not orientable. If n is odd, then the action of G on
M̃ preserves the orientation as it induces the identity on Hn(M̃;Q) by the Lefschetz
Fixed Point heorem. Hence, the quotient M is orientable.

Now let n = 2m − 1 be odd and assume that G has a cyclic 2-Sylow subgroup S.
We consider the central extension (2.2). By Lemma 2.5, there is a normal subgroup
ofmaximal odd order, and we can apply Lemma 2.6 to see that the extension splits if
and only if its restriction to S splits. he quotient of the action of S on M̃ has cyclic
fundamental group, so it is homotopy equivalent to a lens space by Proposition 2.3.
hus, by using the homotopy invariance of Stiefel–Whitney classes, it follows from
Lemma 2.8 that the extension splits if and only if m is even or S is trivial; i.e., M
admits a Spin structure if and only if m is even or ∣G∣ is odd. ∎

Remark 2.9 Proposition 2.7 remains true if S is a generalized quaternion group
(cf. e.g., proof of [9,heorem 2.1]). his result cannot be obtained by the samemethod,
however, as there are central extensions ofQ8 byZ2 that do not split but every restric-
tion to a cyclic subgroup splits; these are semi-direct products of Z4 and Z4. On the
other hand, there are no central extensions ofQ8 byZ2 where every element has twice
the order of its image, as we see in the following proposition.

Proposition 2.10 he group Q2k+1 cannot act smoothly and freely on a homotopy
sphere of dimension n /≡ 3 mod 4. In particular, topological spherical space forms of
dimension n ≡ 1 mod 4 have cyclic 2-Sylow subgroups.

Proof By Proposition 2.2, we can assume that n is odd, and we again consider the
extension (2.2), where G = Q2k+1 . Now let g ∈ G be non-trivial and suppose n ≡ 1
mod 4. hen, by restricting the action to the cyclic subgroup generated by g, we ob-
tain that both elements of π−1(g) have twice the order of g, as the extension does not
split in this case. Denote by x̃ and ỹ preimages of the generators x and y of G; in
particular, x̃ has order 2k+1. By using the relations (2.1), we obtain

x̃ 2k−1
= ± ỹ 2 and ỹ x̃ ỹ −1 = ±x̃ −1 .
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Hence,
x̃ −2

k−1
= ỹ x̃ 2k−1

ỹ −1 = ± ỹ 2
= x̃ 2k−1

,

so x̃ 2k
is trivial, which is a contradiction. ∎

3 Proof of the Main Theorem

Our Main heorem will be a consequence of the following theorems.

heorem 3.1 ([3,heorem 0.2 andheorem 1.1]) Let M be a closed connectedmani-
fold of odd dimension n = 2m− 1 ≥ 5 with ûnite fundamental group G and assume that
its universal cover admits a Spin structure. Consider the central extension (2.2) given
by

1Ð→ Z2 Ð→ GÐ→ G Ð→ 1
and assume that the following hold.
(i) he group G contains an element g ≠ ±1 that is not conjugate to either −g or to

−g−1 if m is even.
(ii) he group G contains an element g that is not conjugate to either −g or to g−1 ifm

is odd.
hen if M admits ametric with positive scalar curvature, there exists an inûnite family
g i ∈ R

+(M) such that g i and g j are not concordant and lie in diòerent path components
ofM+(M) if i ≠ j.

his theorem is an extension of themain theorems in [2], where M is assumed to
be spin. hen G = Z2 ⊕ G, so condition (i) is satisûed if and only if G is non-trivial,
and condition (ii) is satisûed if and only if G has an element that is not conjugate to
its inverse.

heorem 3.2 ([3, heorem 0.3]) Let M be a closed connected manifold of even di-
mension n = 2m ≥ 6 with fundamental group Z2 and assume that M is not orientable
and admits a Pinε structure, where ε = sign(−1)m . hen if M admits a metric with
positive scalar curvature, there exists an inûnite family g i ∈ R

+(M) such that g i and g j
are not concordant and lie in diòerent path components ofM+(M) if i ≠ j.

We now adapt, with the help of the results proved in Section 2, the proof of
[3,heorem 0.1] in order to prove theMain heorem.

Proof of the Main Theorem First assume that n = 2m − 1 is odd. Denote by S a
2-Sylow subgroup of G. By Proposition 2.2, there are two possibilities: S is cyclic or a
generalized quaternion group. We consider each possibility separately.
First assume that S is cyclic. We use Proposition 2.7 to determine in which cases

M is spin. If m is even, then M is spin, and we can apply heorem 3.1. We can also
do that if m is odd and ∣G∣ is odd, since then every non-trivial element of G is not
conjugate to its inverse. If ∣G∣ is even andm is odd, then M is not spin. hen consider
the central extension (2.2) given by

1Ð→ Z2 Ð→ G
π
Ð→ G Ð→ 1.
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It does not split, sinceM is not spin, so S = π−1(S) is cyclic by Lemma 2.6, and hence,
G is the semi-direct product of S, and the uniquemaximal normal subgroupN of odd
order by Lemmas 2.5 and 2.6. Let g ∈ S. hen for n ∈ N we have

ngn−1 = g ⋅ (g−1ngn−1).

As g−1ngn−1 ∈ N, it follows that ngn−1 ∈ S if and only if g−1ngn−1 is trivial, and in
this case, ngn−1 = g. Hence, the only element of S to which g can be conjugate is g,
and g satisûes the requirement ofheorem 3.1(ii) if g ≠ g−1. But ∣S∣ is amultiple of 4,
so such an element exists.

Now consider the case where S = Q2k+1 is a generalized quaternion group. hen m
is even by Proposition 2.10. If G has a non-trivial element g of odd order, then both
−g and −g−1 have even order, so g is not conjugate to any of them, and we can apply
heorem 3.1. If there is no element of odd order, then G = S. Consider the generators
x and y in the presentation (2.1). In particular, we have

yxy−1 = x−1 .

Denote by x̃ and ỹ preimages in G. hen ỹ x̃ ỹ −1 = ±x̃ −1, so

ỹ x̃ 2 ỹ −1 = x̃ −2

holds. his shows that the conjugacy class of x̃ 2 only consists of x̃ 2 and x̃ −2. Hence,
x̃ 2 is conjugate to −x̃ 2 or −x̃ −2 if and only if x̃ 2 = −x̃ −2. his is the case if and
only if x̃ has order 8 and x has order 4. By restricting the action as in the proof of
Proposition 2.10, we see that the elements x and x̃ have the same order, so x̃ 2 is not
conjugate to −x̃ 2 or −x̃ −2, and we can apply heorem 3.1.
Finally assume that n = 2m is even. hen G = Z2 by Proposition 2.2; hence, M

is homotopy equivalent to RPn by Proposition 2.3. Denote by a ∈ H1(RPn ;Z2) the
generator of the cohomology ring. hen

w1(RPn
) = (n + 1) ⋅ a = a and w2(RPn

) =
n(n + 1)

2
⋅ a2 .

his shows thatw2(RPn)= 0 ifm is even, so M admits a Pin+ structure, andw2(RPn)

+w1(RPn)2 = a2 + a2 = 0 ifm is odd, so M admits a Pin− structure. In both cases we
can apply heorem 3.2. ∎
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