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ABSTRACT

For some time now, the convenient and fast calculability of collective risk
models using the Panjer-algorithm has been a well-known fact, and indeed
practitioners almost always make use of collective risk models in their daily
numerical computations. In doing so, a standard link has been preferred for
relating such calculations to the underlying heterogeneous risk portfolio and to
the approximation of the aggregate claims distribution function in the individ-
ual risk model. In this procedure until now, the approximation quality of the
collective risk model upon which such calculations are based is unknown.

It is proved that the approximation error which arises does not converge to
zero if the risk portfolio in question continues to grow. Therefore, necessary
and sufficient conditions are derived in order to obtain well-adjusted collective
risk models which supply convergent approximations. Moreover, it is shown
how in practical situations the previous natural link between the individual and
the collective risk model can easily be modified to improve its calculation
accuracy. A numerical example elucidates this.
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INTRODUCTION

For decades one of the central themes of risk theory has been the calculation of
the aggregate claims distribution of a portfolio. The aim of this paper is to take
this subject and shed a new light on theoretical aspects and practical
applications.

In the eighties, with the development of recursive algorithms, a considerable
degree of progress was made towards the numerical calculation of the aggregate
claims distribution for both the individual and the collective risk model. In
particular, the special collective risk models considered by PANJER (1981) are
generally accepted by practitioners as being adequate, and the use of Panjer's
algorithm has meanwhile become a widespread standard technique of actuaries.
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24 S. KUON, M. RADTKE AND A. REICH

In applied risk theory the n policies Xt of which a portfolio is composed are
usually independent but, as a rule, not identically distributed random variables.
Instead of the collective risk model, in practice one is initially concerned with
the individual risk model, in which the calculation of the distribution function
of

( = 1

is a fundamental task. The fact that the above-mentioned collective risk model
can be calculated so quickly has led in the practical application to a switch
from the individual risk model to a collective risk model, in the hope that the
error which inevitably occurs as a result is sufficiently small. So a (hopefully)
appropriate collective risk model is linked to the individual risk model.

Until now, when this link was being made, it was not the whole class of
collective risk models

- X * .
(with independent identically distributed random variables Z, and random
claims number N independent of the sequence of single claims amounts Z,, N
in the Panjer-class) which was considered with regard to its suitability. Rather,
in literature and in practice a "classical link", which is described precisely e.g.
in GERBER (1979, p. 50), and, for our purposes, in Section 1, Remark 1.4, has
become generally accepted. Here, the N (whether binomial, Poisson or negative
binomial distributed) and the (Z,), both characterizing the collective risk model,
are clearly determined by the individual risk model. In practice N is almost
always chosen as the Poisson distributed claims number.

For the error

(1) A = sup \P(Sind<x)-P(Scon<x)\

the paper by HIPP (1985) provides an error estimate for the classical link to the
compound Poisson model which is small enough for various practical applica-
tions. This sharpens an error estimate given by GERBER (1984).

However, for very large portfolios, these error estimates become so bad that
they are unusable — which does not of course rule out the fact that the error A
itself may converge to zero for portfolios which are becoming increasingly
large. (The meaning of this is to be defined more specifically.)

With regard to the standard link to the compound Poisson model, in
Section 1 of this paper, proof is supplied for the (surprising?) results that this
error does not in fact converge to zero. This also applies when the Poisson
distribution is replaced by the negative binomial distribution. In the binomial
case, the situation has proved to be ambiguous (cf. Section 1, Model 1.1). In
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short, the methods normally used in practice have proved to be bad for large
portfolios.

These results can be derived from the answers to more general questions
concerning the connections between the individual and collective risk models.
These questions are of interest in their own right and of fundamental
significance, and they refer in the first instance to general collective risk models
with weak additional conditions. In particular there is no requirement for a
collective risk model to emerge from an individual risk model ih the standard
manner.

The requirement

(2) A -> 0

(for portfolio size growing to infinity) is obviously a theoretically reasonable
(asymptotic) quality criterion for judging whether individual risk models can be
adjusted precisely by means of collective risk models. This immediately gives
rise to two questions:

With regard to (2), are there equivalent and simple conditions which make it
possible to check the validity of (2) in concrete cases? Is the theoretical quality
criterion (2) also a relevant measure of quality for practical applications, or, to
put it more precisely, is the assumption contained in (2) that A becomes small
equivalent to the assertion that the difference in the two risk premiums does
not become overly large?

Both questions are answered in the affirmative with Theorem 2.1, the first
question in particular being answered by the fact that (2) is equivalent to the
(mostly easily verifiable) condition

(3)
Var Smd

The more comprehensive result of Theorem 2.2 represents a quantitative
sharpening of Theorem 2.1 which is particularly interesting because equivalent
conditions are given for situations where the difference in the two portfolio
premiums even remains bounded. A useful tool for proving these central
statements of the paper is provided by the often neglected paper by VON
CHOSSY, R. and G. RAPPL (1983); here the possibility of representing
stochastic sums by means of deterministic sums is proved. These results and
required Berry-Esseen bounds are presented separately in the Appendix.

An important point for the practical application is that for good approxima-
tions, in addition to the requirement that the expected values should be equal,
it would now, in view of (3), be appropriate to seek and construct collective
risk models with

Var SiDd = Var Sc°n.

In order to ensure that collective risk models can be calculated quickly, only
collective risk models belonging to the Panjer-class are suitable. On the other
hand—as mentioned at the beginning of this paper—collective risk models
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which emerge from an individual risk model via the standard link are ruled out.
However, converging approximation models which are simple to construct can
be obtained by scaling the range of the single claims amount in the standard
link.

If an appropriate scaling factor and the parameter modifications correspond-
ing to it are chosen, then for all three claims number distributions of the
Panjer-class, the equality of the first two moments can be achieved in the
individual and the collective risk model. Moreover, in Section 3 an analysis is
carried out to show that the best adjustment should be reached with the
compound binomial model. This is also verified by several numerical examples,
which can be taken from the Gerber portfolio (GERBER 1979, p. 53). Thus, in
practical applications, instead of the standard link to the compound Poisson
model, a modified compound binomial model, which is described precisely in
Section 3, should be used (cf. JEWELL and SUNDT (1981)).

1. The link between a given individual risk model and the related
collective risk model

In the following Xt denotes the amount of claims produced by risk /, i e IN. The
single risks are understood to be numbered in a suitable way. Their, in future,
undefined claims amounts are understood as random variables. The accidental
aggregate claims amount resulting from a segment of n risks, that is the sum of
all single claims amounts, is called an individual risk model, if the following is
valid:

Definition 1.1. (Individual risk model, cf. BOWERS et al. (1987), p. 25).

The individual claims amounts Xt, \<i<n, neN, set up a sequence of
independent, in general not identically distributed random variables Xt such
that Xj > 0. Xj = 0 means that risk / does not produce a claim. The random

n

variable 5"nd = 2_, %i is called the aggregate claims amount of the individual

risk model.
We shall write S™A instead of Sind to indicate the dependency of S on the

size of the underlying risk segment. As no misunderstanding is possible below,
we will drop the index n there. In view of later considerations and in order to
make the model tractable, we shall impose additional conditions.

Assumption 1.1. The sequence of random variables (X,), i e IN, fulfills the
inequalities 0 < c < EXt < d < co and 0 < a < Var X, < b < oo, where a, b, c, d
are real-valued constants.

Assumption 1.1 does not impose any restrictions on practical applications,
excluding only unrealistic cases. The validity of Assumption 1.1 follows, as a

https://doi.org/10.2143/AST.23.1.2005100 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005100


AN APPROPRIATE WAY TO SWITCH FROM THE INDIVIDUAL RISK MODEL 27

rule, from the fact that in practical applications the sequence of random
variables Xt are even uniformly bounded, that is sup \Xt\ < oo.

ie N

Remark 1.1. In accordance with the sequence (X,), ie M, we can define a
sequence of independent random variables (/,), ie IN, by setting /, = l(x>o}- In

addition to this we can go on to construct a sequence of independent random
variables (Y,), i eN , by postulating for their one-dimensional distribution
functions:

P(Xi<x)-P(X; = 0)
(1.1) P{Yt<x) = - - - — if x>0; P(Ji = 0) = 0.

P(Xt>0)
Thus, we have the representation Xi = /, Yt for each / e DM. Yt can be interpreted
as the claims amount of risk i, provided that this risk produces
a claim. The claims number N* in the individual risk model is established
by

N*= l^Ii, Ii~P(\,qi) with qt = P(Xi>0) and fi the binomial distribution.

The events {/, = 1} and {Yj<x}, x > 0 arbitrary, are independent.
In many practical situations the calculation of the distribution function Fmd

of the individual aggregate claims amount 5"nd is of fundamental importance.
However, its precise numerical computation is in general impossible without
the support of a computer and, in spite of recent recursive algorithms
(KORNYA (1983), HIPP (1985, 1986), DE PRIL (1989)), still costly. Therefore, at
a very early stage of risk theory, the question of the calculability of Fmd led to
the concept of the collective risk model (BOWERS et al. (1987), p. 317), which is
easier to handle when theoretical considerations are made. Its fast numeri-
cal calculability (Panjer-class) is another, more recent reason for using it.

In the following we shall denote by N the random number of claims occuring
in a risk portfolio in a given period, and by Z, the accidental amount of the
rth-claim, i < N. We will then be speaking of a collective risk model, if we state
the following:

Definition 1.2. (Collective risk model, cf. BOWERS et al. (1987), p. 317).

The random collective claims amounts Z,, iehl, set up a sequence of
independent, indentically distributed random variables such that Z, > 0 for
each i e IN. The sequence Z,, i e IN, is assumed to be independent of the random
claims number N. The random variable N takes on non-negative integer values.

N

The random variable Sco]] = V Z, (with ScoU = 0 if TV = 0) is then called

the aggregate claims amount of the collective risk model. For N and (Z,), ie N, we
assume in addition: 0 < EN< oo, 0 < Var N< oo, 0 < EZX < oo, 0 < Var Z, < oo.
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28 S. KUON, M. RADTKE AND A. REICH

Remark 1.2. Scon satisfies ESc°n = ENEZX and Var ScM = ENVarZl +
Var N(EZi)2.

The link between Definition 1.1 and Definition 1.2 at once becomes clear
when we refer to the individual risk model with independent, identically
distributed random variables X(, 1 <i<n. This, in turn, brings us to

Remark 1.3. If the individual model satifies Xt Z F for each /, it follows that
N* £ 0(n, q) with q = P(XX > 0). Put NI N* and Zx ^ G, where G(x) =
(F(x)-(l-q))/q for x > 0. Thus we get Siad =? Sco" with claims number
distribution P{n,q) in the collective risk model.

In general the question arises how the distribution functions of N and Zx

should be chosen such that the distribution function Fco" of ScM supplies a
good approximation to the distribution function Find of 5"nd. The following
procedure is usual:

Remark 1.4. Define the distribution function G of Zx by

(1.2) G(x) = £ i i G,(x) with G,(x) = F ' ( X ) ~ ( 1 ~ — , x > 0,
1=1 H<? 9 ;

and

(1.3) ? = - £ q,, qt = P{Xt > 0), Xt I /, ^ , Xt Z F,, Y, Z G,.
n 1=1

In this remark the representation Xt = /, yj is such as given in Remark 1.1.

1 "
Consequently we have Z, > 0 and £Z,m = — ^ EX™ < co, m- 1,2.

nq ,= i

Assumption 1.1 establishes the existence of real-valued constants a', b', c', d'
(independent of n) with 0 < c' < EZX < d' < oo and 0 < a' < Var Zx<b' < oo.
Note that the distribution function G of Zx depends on n.

The last remark results in three different collective risk models, each of them
specified by the choice of the claims number distribution (Panjer-class).

Model 1.1. The natural approximation (compound binomial approximation).

Let

N%P{n,q) and ZXZG,

G as defined in (1.2). Then

EScM = ESind and Var Sc°n = Var Sind + ABi,
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where

Am= X (£X,)2- i (X EX,) .
1=1 n \ 1=1 /

ABi > 0, since n £ (EX,)2 >

ABj = 0 <*• EXj = EXX for each i= 1, . . . , « .

The natural approximation can also be derived from an individual risk
model as follows. Put

n

ScM = £ Z,* with ZfEG*,
(=i

where for x > 0

(1.5) G*(X) = ! £ F,(x) and Z^F,-.
n i=\

Since

1 A l A Z',(x)-(1-^)
(1.6) G*(x) = - X 0-fc) + " S g- -

n ;=i « i=i ^,

we conclude from the characteristic function

(
/•CO

(\-q) + q I e"x

Jo
V / M , v, t t r ir

= >, (\~q) q e"
k = 0 \ K I J o

that the two approaches lead to the same collective model.

Model 1.2. The compound Poisson approximation.

Let

N ~ n (nq), n the Poisson distribution, and Zx ~

G as defined in (1.2). Then

EScoU = ES'md and Var Sco11 = Var 5"nd + APo,
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where
n

(1.8) APo = £ (EX,)2.

Model 1.3. The compound negative binomial approximation.

Let

N S, J^'3! I n, 1, J>"S%! the negative binomial distribution, and Z\ ~ G,

G as defined in (1.2). Then

EScM = ESind and Var ScoU = Var Sind + ANB,

where
n *

(1.9) ANB = X EX2 + - (ESiad)2

; = i n

" i

= Var^ind + J (EXtf + ~-(ESind)2.
1=1 n

Thus, the three collective risk approximation models correctly adjust the

expected claims number E \ l{x,>o} = nq = EN and the expected aggregate

claims amount, although they overestimate Var 5"nd. Obviously, for the
overestimation the following is valid:

0<ABi<APo<ANB.

In respect of Assumption 1.1 a simple calculation leads to the following
result, because EXt and Var X, are uniformly bounded.

(i) N binomial distributed:

VarS""1 ABi V
(1.10) — - 1 = 6 0,-

Var Smd A
Var X,

(ii) Â  Poisson distributed:

Var,Sco11 APo V c2 d2

(1.11) _ - l = ^ e - , —
Var5" n d " \b a
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(iii) N negative binomial distributed:

Var Scott ANB V c2 1 \ d2 I 1
1 1 + l + 1 + 1+

Var S
(1.12) - 1 =

VarSind
1 +

b
- , l + _ l + _
n I a \ n

Var X,
1=1

Hence, only in the case of binomial distributed claims number N we can
achieve Var Sind = Var ScM. For instance, this is fulfilled if EX, = EXX for all
i = 1, . . . , n or if even all of the Xt are identically distributed (cf. Model 1.1).
The following example shows that in general the variance ratio in the
compound binomial approximation does not equal to 1 either.

Example 1.1. Look at a sequence of random variables (Z,), 1 <i <n,
Z,e{0, 1}. Let for each /"

1 1/4, i odd.

Therefore we have

3/4, / even ( 3/16, i even
and Var Xt = {

1/4, / odd 1 3/16, i odd.

From that

Var Scon _ ( 4/3 , n even

Var Smi \ (4/3) - 1 /(3 n2), n odd

easily is concluded.

Further on we shall analyze the impact to which Var 5"nd =£ Var Scoil leads in
the case of premium calculations which are based on the above-mentioned
approximation models instead of the individual risk model. As these assertions
depend on the number n of risks underlying the portfolio at issue, we shall now
add the dropped index n to our previous notations, thus Sj,nd instead of 5"nd,
ST" instead of Sc°n, etc.

Assumption 1.1 instantly implies ES™d t-oo, Var S™d >-oo, and, as

ES™d = ESc
n
M, also ESc

n°
n • oo. As shown above, the variances of the col-

n -> oo

lective and the individual risk models differ from one another in general.
Only in the case of binomial distributed claims number the variance ratio

can converge to 1. In particular we have Var S£oll-Var 5^nd ^ > oo in most

situations.
The consequences of the overestimated actual variance for premium calcula-

tion by means of collective risk models is demonstrated using the percentile
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premium. Let

(1.13) ^n
ind(a) = M{x\P(Si,Dd < x) > a}

with security level a e (0, 1), j^colI(a) analogously. That is, the premium
j^n

ind(a) is not exceeded by the aggregate claims amount S™d with probability
a. Of course the difference ^nd (a) - j ^ c o " (a) is of interest. This heuristic
reflection serves to motivate the following. Under assumptions which are
always satisfied in practice, we obtain approximately the following result if n is
large enough (cf. Lemma A.2 (i)):

(1.14) j ^ i n d (a) « /Cd + 0 ~' (a)

and

(1.15) ^T"1 (a) « / C

where /Cd = ES™d, /i?n = ES?U, a™ = y/VarS™, ac
n°

n =
denotes the inverse function of standardized normal distribution function <P.

Thus, as /4nd = /C11 the premium difference j ^ c o U (a) - ^ i n d (a) of the risk
models under consideration directly depends on the difference of the standard
deviation, namely

(1.16) ^n
co11 (a)-^n

ind(a) w (CTn
co11 -o'™A) 0"' (a) > 0.

A further analysis shall show that the difference o-n
co" — a ™d is strictly related

to the term sup \Flad(x)-F™n(x)\.
X

2. Approximation of an individual risk model by a collective risk model

In this section, at first we focus our analysis on the approximation of

individual risk models ^ n d = ^ Xt of growing size by a sequence of so-

called homogeneous collective risk models S«co" = 2^ Z<- We shall deduce

our main results in Theorem 2.1 and Theorem 2.2 and then apply these results
to a reasonable concept for a portfolio growth which conducts to Corollary 2.1
and Corollary 2.2. We start with

Definition 2.1. We call (S'^oll)neN a sequence of homogeneous collective risk
Nn

models if, for each n e IN, S™n = 2^ Z, is a collective risk model and the

distribution function of Z, is independent of n. In addition we assume that Nn

possesses a representation Nn %, L*" with arbitrary distribution function L on
No (cf. Proposition A.I).
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In the following, the notations used are the same as in Section 1. The
sequence (X,)ieN is supposed to fulfill Definition 1.1, Assumption 1.1 and

sup {EXf} < oo. In addition to Definition 2.1, we assume that EZ\ < oo,
ze M

£7Vn
3 < oo for all n e IN. Under these conditions, all the results listed in the

Appendix are applicable to S"d and Sn
co" and to their distribution functions

F " d and Fc
n
o[l.

Let our analysis start from the supremum norm of the difference of the two
distribution functions F^nd and F™", i.e.

(2.1) Jn = sup\Fi?d(x)-F™u(x)\.
X

With F?d(x) = P(S?d < x), 0^(x) = 0((x-/Cd)ACd); K*1 and <t>^ ana-
logously, note that

(2.2) F™d (x) - F™n (x) = (F™d (x) - Kd 00) + (<*Cd (x) - <pf\x))

Since

ElX-EXf Jn sup

(2.3) <
\ / I ——-— —

n inf {Var X,}
ie N

the central limit theorem for ^ n d (cf. Theorem A.I) is applicable to the first
term of (2.2) and Proposition A.2 can be applied to the third term of (2.2), the
following assertion is valid.

Proposition 2.1. Under the assumptions stipulated at the beginning of this
section we have

(2.4) J n _ — . O ^ O V a r ^ ^ l and (^-^)/^oU ^ ^ 0 .

Proof. Referring to (2.2) it remains to be shown that

(2.5) 0ind (x) - 0c
n°

n (x) - j r T ^ 0 uniformly in x

is equivalent to the right side of the assertion.
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With rn = on

(2.6)

s.

we

KUON,

have

= 0

M

X

RADTKE AND A

- A 0 0 "

n ». _l_ n

1 *

REICH

d ##co'l
Mn

of

" <= ". The assertion is true, as 0 is a uniformly continuous function.

"=>". Because 0 is a strictly increasing function, An >0 supplies

ind „ ind ind coll

(2.7) — — n— rn — — >• 0 uniformly in x.
v ' ^.ind ^ i n d " coll « - oo J

By replacing x with ^ n d we get (/z^-^0 1 1)/^0 1 1 _ _ - . 0 .

Then by replacing x with /zind + a 'nd, we obtain /•„ • 1.

Furthermore, for the difference j ^ , c o " (a) — j ^ m d (a) of the percentile pre-
miums related to S^nd and ^n00", we obtain a result which corresponds to
Proposition 2.1.

Proposition 2.2. Under the assumptions stipulated at the beginning of this
section we have

(2.8)

and

Proof. For all a e (0, 1) the following identity is true:

(2.9) T (a) - ^ r («) / ̂ co" («) - tf
_ind

.coll

.coll

coll

.ind

,ind ind

ind

Then, Lemma A.2 (i) supplies

(2.10) ^" (<*)~Mn ,0
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Thus, the conclusion from the right side to the left side follows directly from
the above indentity. The converse is also true, since a e (0, 1) is arbitrary. So is
0"'(«). As (fil

n
ad-nloll)/a^ol] is independent of a, the argumentation is

complete.
The following theorem can be gathered directly from the last two proposi-

tions.

Theorem 2.1. Under the assumptions above the following assertions are
equivalent:

(i) s u p \Fi,nd(x)-Fc
n°

n(x)\ - — > 0 ,

(ii) Var 5" ™d/Var S™n -^-^ 1 and ( £ ^ n d - £Sn
col l)/VVar Sn

co" - ^ - ^ 0,

(iii) ^ c o " (a) - ,^ i n d (a) = o (JVar ^ c o " ) , « e (0, 1),

(iv) #f (a) - ^ad (a) = o (VvaT^P), a 6 (0, 1).

This result can be sharpened to a "bounded version" of (iv), i.e. the
difference of the two portfolio premiums even remains bounded under certain
conditions.

Theorem 2.2. Under the assumptions above the following assertions are
equivalent:

(i) sup \F™ (x) — F"
X

(ii) sup\Flad(x)-Fc
n

M(x)\ =
X

(iii) ^Var S^nd - ^/Var SB
co11 = 0(1) and £S^

(iv) ,^ind (a) - ,$C" («) = 0 (1), a e (0, 1).

Proof. Let us sharpen our argumentation with regard to the equation (2.2).
Since the Berry-Esseen bounds from Theorem A.I and Proposition A.3 are
applicable to the first and the third term, Theorem 2.1 yields the following
equivalence:

(2.11) An =
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where An = sup \<P™A{x)-<Pc
n
oX\x)\. According to Lemma A.I, (i)o(ii)o(iii)

X

has been proved.
With yind(a) = (^ i n d(a)-^n d)/a ' n d , yn

co"(a) analogously, a e (0, 1), we have

Consequently, Lemma A.2 and (i) o (iii) supply (i) => (iv).
It remains to prove (iv) => (i). For all a e (0, 1) we have

(2.13) 0(1) = ^,ind (a) - ^,c0" (a)

= (j««nd^Hn°U) + y«o"(«) (<Cd~o?

again in respect of Lemma A.2 (ii).
By choosing ax ± a2, we can conclude that

(2.14) O(l) = (yr l l («i)-7r"(a2)) '

Again using yn
co11 (a) • 0""' (a), we have

(2.15) cCd - <7n
co11 = O (1), hence /Cd

Thus (iv)=>(iii) has been proved, and therefore (iv) => (i) since (iii)<s>(i).

It should be noted that the statements of Theorem 2.2 (i) and (ii) can be
specified by deriving explicit constants in the O-estimates from the proofs.

Each assertion of Theorem 2.2 implies the corresponding one of Theo-
rem 2.1, but the converse is false, which becomes obvious in Example 2.1 at the
end of this section.

For the rest of the section we consider a concept of a portfolio growth
described by an appropriately chosen sequence of homogeneous collective risk
models. Therefore at first we have to formulate some additional requirements
to the underlying risk portfolio. These concern the mixture ratio of its distinct
risk classes.

Assumption 2.1. In addition to the previous assumptions the sequence of risks
and its random claims amounts (X,), ie IN, are required to fulfill the following:
the set of random variables (A",|/elN} consists of K distinct risk classes

k = 1, ..., K; thus {Xj\ie M} = ( J ^ . Each class is represented by
k=l

a distribution function F(jt). Xt e J^k means that Xt SI Ft and Ft = F( t ) . Corre-
spondingly g(t) e (0, 1] denotes the representative of qt, if XjeJfk, where
qt = P (Xj > 0) is related to Xt. It is assumed that the mixture ratio of n risks
satisfies the stability criteria below: For each n e IN define for all k = 1, ..., K
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n K

an integer nk = 2_, ^{x^:xk}\ thus n= ]T nk. Assume, for each k there exists
; = i ' * = i

a number c*. e (0, 1] independent of n, which fulfills nk — nck = 0(1) as n tends
to infinity.

Continuing to use the previous notations, we also introduce some new.
Let

* n K

(2.16) ?<"> = - £ ^ a n d q=
« i=l

This means that qe (0, 1], since ĉ  < 1 for all A; and ck=fc 0 for at least one fc.
Furthermore, let

(2.17) GB(JC) = 2 , — n G ' ( x ) W l t h G'^ = , x > 0,
1=1 nqw qt

that is

(2-18) G,(*)= f ^ ^ C W W .
t=l « 9 W

Moreover, let

(2.19) G W = t ck^ G(k)(x) with G w ( x ) = ^ ) W ( 1 g w ) , x>0.

In the following, the claims number in the collective risk models specified in
Section 1 (cf. Model 1.1-1.3) is denoted by Nn and Nn, refering to the
parameters q(n) and q. We write Zx, Zx resp. for the collective single claims
amount variable, where Zx^Gn, Z\%L G resp.; thus

(2.20) Sc
n°

n= X Z,,Zl%Zl
/== 1

and

(2.21) Sr"=
1=1

Finally, in the collective risk model ,Sn
co" we denote by /£o11 and CTn

co" the
mean value and the standard deviation resp., in line with //™d and cr̂ nd

above.
In this framework the portfolio growth is defined by the corresponding

sequence of homogeneous collective risk models (S^°u)ne^ which fulfill
Assumption 2.1 and to which Theorem 2.1 and Theorem 2.2 can be applied.
Thus, we can prove the following:

https://doi.org/10.2143/AST.23.1.2005100 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005100


38 S. KUON, M. RADTKE AND A. REICH

Proposition 2.3. Under the assumptions of Section 2 in all the three collective
risk models described above (cf. Model 1.1-1.3) the distribution function F™d

of S™d and Fn
c°" of S™n resp., fulfill a Berry-Esseen bound, i.e.

(i) sup \F{
n

ad (x)- Kd (x)\ = O (l/VVa7
X

(ii) sup|Fn
coll(x)-0n

coll(*)l =

_ 7-COll
x

where &f\x) = <Z> '

Proof:

(i) As E\Xi-EXi\3 < EX3 + (EX,)3, we have from the assumptions

max {E\Xj—EXt\
3} < oo. Assumption 1.1 supplies Var S™d > na and thus we

conclude
n

\""* 3 3

^"^ i G IN

(2.22) — < < oo .
n

E a
Var X,

Consequently, from the Berry-Esseen bound for non-identically distributed
random variables (cf. Theorem A.I) we obtain

n

X E\X-EXt\
3

6 1=1

(2.23) sup |i^nd(x) - 0ind (x)| < for all n.
<7'nd

(ii) Since EN3 < oo and EZ\ < oo, the Berry-Esseen bound for random sums
according to Definition 2.1 can be applied (cf. Proposition A.3). When this is
done,

(2.24) Var Sn
co" = n (q Var Z, + Var Z, (^Z,)2)

must be taken into consideration.

Consequently 5r^nd and S^°" fulfill in particular the central limit theorem with
the standard normalization and the law of large numbers.

A result such as that in Proposition 2.3 valid for §™n and <P£o11 resp.,
<Pc

n°
n(x) = 0((x- /C")/<5«co"), cannot be directly deduced from the Berry-
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Esseen bound in Proposition A. 3. In fact, the distribution function Gn of Zx

depends on n. Thus Gn and the distribution function of Nn do not satisfy the
assumptions required in Definition 2.1.

Nevertheless, taking into account the stability of the mixture ratio given in
Assumption 2.1 we have

(2.25) ES*M = ESc
n

M +0(1)

and

(2.26) VVar Sc
n

M = ̂ Var Sn
co" + O (l/^Var Sn

co").

Together with

(2.27) sup |FK
coU(x)-Fc

n°
u(x)\ = O(1/Var 5n

co")•
X

and the Berry-Esseen bound for S«co11 and Fn
co11, i.e.

(2.28) sup |Fn
co"(x)~k°n(x)\ = 0(1/VVar 5n

co"),
X

we get ultimately the validity of Theorem 2.1 and Theorem 2.2 even for S^oli

straightforward from the identity

(2.29) Find (x) - F™" (x) = (Find (x) - Fc
n°" (x)) + (Fn

co11 (x) - F«co" (JC)) .

Thus we have proved

Corollary 2.1. Under the assumptions of Section 2 these assertions are
equivalent:

(i) s u p | F ' n d ( x ) - F r " ( * ) | - — 0 ,

(ii) Var Sind/Var Sn
co" -—^> 1,

(iii) i V ° > ) - ^ i n d ( a ) = o(Vyar Sc
n°

n), <x e (0, 1),

(iv) .ir11 (a)-^,ind(a) = o(VVaTsF), a e (0, 1).

The following result represents a quantitative sharpening of Corollary 2.1.

Corollary 2.2. Under the assumptions of Section 2 these assertions are
equivalent:

(i) sup \F?d(x)-F;on(x)\ = <9(l/VVa7^nd),
X

(ii) sup\Flad(x)~Fc
n

oll(x)\ =
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40 S. KUON, M. RADTKE AND A. REICH

(iii) VVarS^-VVarSr" = 0(1),

(iv) j C d (a) - i« o U (a) = 0(1), a e (0, 1).

Obviously each condition of Corollary 2.1 follows from the corresponding
one of Corollary 2.2. The inverse conclusion is wrong as shown below by
Example 2.1. Note that from the proofs given above explicit constants can be
derived to replace the 0-constants in Corollary 2.2 (i) and (ii).

Accurate premium calculation or their equivalent, precise approximation of
the distribution function in the individual model, depends mainly on well
variance fitted collective risk models. The previous collective risk models do
not achieve that as proved for Model 1.1-1.3. In the next section we shall look
at modifications of these models, which improve the variance fit.

Example 2.1. Let us consider a sequence of positive random variables (Ar,),-6|N
with distribution functions

(2.30) Ft(x) = (1 - ? , ) + ?, F ( x ) , q,fe (0, 1), F(x) = 1 -e~x, x>0.

Therefore,

(2.31) P(X, > 0) = <?,-, EX, = q,, Var Jf, = q,(2-qd,

For each n e IN, let
n n

(2.32) a, = Y qh and Z>n = V qf

For Sind = 2^ Xi, this implies that

(2.33) ES™ = aH and Var S™d = 2an-bn.

We construct the collective risk model 5'n
co11 = V Z, corresponding to Sfd

in the same way as described in Section 1, by means of the following equation:

(2.34) G(x) = X Si- G,(X) with JCSSO, ?<"> = - £ *„
i= I nqy ' n <= I

where G,(x) = (F,(x)-(l-qd)lq, = F(x), x>0. Thus, we have G(x) = F(x).
Assuming Zl £ G, we obtain EZX = Var Zx = 1.
Moreover, we stipulate that Nn is distributed as f}{n,q(n)). Hence (cf.
Model 1.1),

(2.35) ESc
n

M = an and Var 5n
co" = 2an - — .
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Now, for all a e (0, 1/2), with a suitable choice of q, e (0, 1), i e IN,

(2.36) an~n-nl-a and bn~n-2n1-" + ( 1 ~ a ) / i ' " 2 a

l - 2 a

is fulfilled. For instance, <?, = 1 —(1 —a)//a is appropriate.
For proof of this, note that

(2.37)

All these definitions supply

(
J I

^-', fie(0,1).

(2.38)
Var coll

z* —

Var5« b ""°°
2 - —

since an In • 1 and bn lan > 1.
n —* GO n —*• c o

However,

(2.39) JVarS™d-vVarSn
C0" =

a2n~nbn rjr^
since —

3. Modified collective risk models with variance adjusted to that of the underlying
individual risk model

In this section the assumptions of Section 2 are stipulated. The notations used
below are the same as stated previously. We drop the index n because there is
no misunderstanding possible.
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42 S. KUON, M. RADTKE AND A. REICH

Corollary 2.1 and Corollary 2.2 proved above suggest to adjust not only
ESind = EScoU but also Var Siad = Var Sco11 for all n. In this case condition (iii)
and therefore all conditions of Corollary 2.2 are valid. The classical
approaches, which derive collective risk models from an individual one, do not
fulfill the two conditions (equality of the mean values and the variances)
simultaneously in general (cf. Model 1.1, 1.2, 1.3). JEWELL and SUNDT (1981)
deal with this problem in their paper too. They discuss two different modifica-
tions of the compound binomial approximation (Model 1.1) by using modified
counting distributions. In addition SUNDT (1985) studies an approach with an
"average" collective claims amount distribution.

We shall now derive a similar modification of our in Section 1 constructed
collective risk models which ensures the equality of their first two moments
with those in the individual risk models given. In view of practical applications
(i.e. numerical computation by the Panjer algorithm) we presume the range of
the collective claims amounts to be discrete and arithmetic. For the purpose of
modeling a new collective claims distribution function we define a random
variable Z,mod with discrete range {ky\k e IN}, y > 0 fixed, by setting

(3.1)

where (cf. Remark 1.4)

(3.2) g{k)=YJ — 9i(k), 9i{k) = P{Xi k \ q = -fdql,ql= P(X,> 0) .
1=1 nq qt n i=\

Zx
mod differs from Zx as constructed in the models provided above only by a

simple transformation of the range. Obviously we have (cf. Remark 1.4)

n

(3.3) EZx
mod = yEZx = — £ EXt

nq (=i

and

2 «

mod)2 = y2EZ = £ EXf
(3.4) E(Zx

mod)2 = y2EZx = — £ EXf.
nq i= I

co11 = £ Zmod the basic requirement ESind = EScol]If one considers 5*co11 = £ Z,mod, the basic requirement ESind = ES
;=i

results in EN = nq/y, because ES°°n = ENEZx
mod. The following is also valid in

this case:

(3.5) Var Sc°n = ENE(Z?od)2 +(Var N-EN) {EZx
mod)2

y2EN /

nq

7 ' (Var N-EN) (ESind)2

nq '
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EN EN

where

(3.6) A(y) = (y - 1 (ES in(K2

Therefore the following equivalence holds:

(3.7) Var Sco" = Var Sind<>A (y) = 0.

J(y) = 0 cannot be fulfilled with y= 1 (cf. Model 1.1-1.3), i.e. the original

range of the collective claims variables Z,, ie IN, must be transformed.

Model 3.1. The modified natural approximation (modified compound binom-
ial approximation; cf. JEWELL and SUNDT (1981)).
Let

n

X (EX,)2~n'l(ESind)2

(3.8) y = l - — and N £ P{n, q/y).

t
1=1

n

T h e n y e ( 0 , 1 ] , s i n c e (ESind)2 < n ^ ( £ X , ) 2 a n d

1=1 1=1

If q/y > 1 we modify the parameters n, q, y, see below. Obviously we have
= 0 and, hence, Var Sind = Var Scol\ However, with this stipulation

n

EN = nq/y differs from E 2_,
;=i

A simple manipulation of the parameters n, q, y facilitates obtaining in

addition EN = E 2_, 1<A-,>0}- For this purpose, we set N~ p(n',q'/y') and
1=1

adjust n', q', y' accordingly. The condition ESind = EScoU implies that

n'q' = nq; consequently q' = — q .
n'
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From the equivalence Var S"nd = Var Sc°noA (y) = 0 we deduce

(3.9)

1=1

On the other hand EN = E / = 1-

This leads to the choice

\2 1

(3.10) n' = , [x] = greatest integer m with w < x,

from that we have y' x \(y' > 1) and n' <n as
n

( E S i a d ) 2 < n ^ ( E X , ) 2 .

However, note that possibly

— < 1, where q' = — q,
y' « '

is no longer valid with such a choice of n'. Clearly, increasing ri ultimately
guarantees q'/y' < 1. Note that n' = noq' = q. However, y' is then more and
more different from 1.

To show that possibly q'/y' > 1, let n > 2. Choose Xx,...,Xn such that
<lt ~ 1Q > 1/2 for each / = 1 , . . . , n and EX2 = ... = EXn = 1.
The ratio

(ESind)2 _ (l+(n-l)(EX2/EXl))
2

(3.11)

takes on values near n for EXX close to 1, and tends to 1 if EXX -* oo.
Therefore, we can choose EXl such that

ind\2
(3.12)

(ESma)

(EX,)2

n

2
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If n is even we have n' = n/2 and y' = 1, however:

q' nq 2
= =nqo- > 1.

y n y n

Model 3.2. The modified compound Poisson approximation.

Let

(3.13) y = l -
Var Sind

and N ~ n

EXf £

In this case we have A(y) = Q, that is Var ,Sind = Var ScoU.
n

With this choice of parameters, EN = nq/y differs from E ^ l{x,>o) = W-
i= 1

The harmonization of these two quantities fails in this case, because we can
select only two parameters.

Model 3.3. The modified compound negative binomial approximation.

Let

Var A-;

(3.14) y =

1=1

ind\2(ESma)
and N n,

+ q/y

Obviously y <

Hence, y = 1 is impossible; that is equivalent to the assertion, that
n

EN = nq/y differs from E Z !{*,><)} = n(i- However, we have achieved A (y) = 0.

Application 3.1 In order to verify, whether our modified collective risk models
lead to good results also in the case of small portfolios, we have calculated the
stop loss premium (without any loading) by means of the distribution functions
of the discussed standard and modified collective risk models (Model 1.1-1.3,
Model 3.1-3.3 resp.). The calculations are based on the Gerber-Portfolio (cf.
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GERBER (1979), p. 53) and the 100-fold Gerber-Portfolio. Comparison was
made between the different models by the relative error, that is the absolute
error in percentage of the " true " risk premium, which was exactly calculated
by convolution. It can be easily seen from the figures below, that the modified
collective risk models lead almost always to smaller errors than in the case of
the standard approximations. Obviously the absolute relative error depends on
the underlying priority, i.e. the stop loss point.

Gerber — Portfolio of 31 Policies

Pi

0.03
0.04
0.05
0.06

Total

1

2
0
0
0

0.06

Amount at

2

3
1
2
2

0.35

3

1
2
4
2

0.43

Risk

4

2
2
2
2

0.36

5

0
1
2
1

0.20

Gerber — Portfolio of 3100 Policies

Amount at Risk
Pi

0.03
0.04
0.05
0.06

200
0
0
0

30
100
200
200

100
200
400
200

200
200
200
200

0
100
200
100

Total 06 35 43 36 20

Error of Stop—Loss Premiums
for the Gerber-Portfolio

related to the Standard and Modified Collective Models

10000-

w
o
>.
i-
«

>

o
n
a

1000-

100-

10-

1-

0.1 -

iragcrtfva-blnomtal

• ggrraga-t* claim of th« port-folio
•xpaetad vulut i 4.49
virlinci • 15.3003

10 15 20 25 30 35
s t o p - l o s s p o i n t

40 45 50
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Error of Stop-Loss Premiums
for the 100-fold Gerber-Portfollo

related to the Standard and Modified Collective Models

cwguHv binomial

*grgragr«t« claim o-f th« portfolio
• xpactad valut t 449. 0B
vtritnci t 1530.03

300 400 500 600 700 800 900 1000
s t o p - l o s s p o i n t

TABLE 1

STANDARD COLLECTIVE MODELS FOR THE GERBER PORTFOLIO
ERROR OF THE STOP LOSS PREMIUM

(WITHOUT ANY LOADING)

Security Level
of Percentile

Premium

Stop Loss
Point

Stop Loss Error
Premium in in % of the Stop Loss Premium

the Ind. Mod. Binomial Poisson Neg. Binomial

50
60
70
80
90
95
99

4
5
6
8
10
12
16

1.776
1.340
1.001
0.515
0.251
0.113
0.019

0.16
0.37
0.54
1.25
2.35
4.28
9.87

1.68
2.62
3.68
6.92
11.39
17.97
37.51

35.52
52.95
75.10
146.61
268.31
492.38
1725.27
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TABLE 2

MODIFIED COLLECTIVE MODELS FOR THE GERBER PORTFOLIO

ERROR OF THE STOP LOSS PREMIUM
(WITHOUT ANY LOADING)

Security Level
of Percentile

Premium

Stop Loss
Point

Stop Loss Error
Premium in in % of the Stop Loss Premium

the Ind. Mod. Binomial Poisson Neg. Binomial

50
60
70
80
90
95
99

4
5
6
8
10
12
16

1.776
1.340
1.001
0.515
0.251
0.113
0.019

0.15
0.10
0.12
0.06
0.44
1.42
4.31

0.05
0.45
0.38
1.85
3.71
6.81
15.89

0.03
0.57
0.27
2.10
3.95
8.90

24.79

TABLE 3

STANDARD COLLECTIVE MODELS FOR THE 100-FOLD GERBER PORTFOLIO

ERROR OF THE STOP LOSS PREMIUM

(WITHOUT ANY LOADING)

Security Level
of Percentile

Premium

Stop Loss
Point

Stop Loss Error
Premium in in % of the Stop Loss Premium

the Ind. Mod. Binomial Poisson Neg. Binomial

50
60
70
80
90
95
99

448
458
469
482
499
514
543

16.10
11.57
7.70
4.49
1.99
0.88
0.14

0.44
0.61
0.84
1.19
1.80
2.47
4.22

2.46
3.38
4.66
6.56
9.81
13.48
23.18

951.24
1332.18
1999.85
3406.36
7503.74
16554.90
99879.00

TABLE 4

MODIFIED COLLECTIVE MODELS FOR THE 100-FOLD GERBER PORTFOLIO
ERROR OF THE STOP LOSS PREMIUM

(WITHOUT ANY LOADING)

Security Level
of Percentile

Premium

Stop Loss
Point

Stop Loss Error
Premium in in % of the Stop Loss Premium

the Ind. Mod. Binomial Poisson Neg. Binomial

50
60
70
80
90
95
99

448
458
469
482
499
514
543

16.10
11.57
7.70
4.49
1.99
0.88
0.14

0.00
0.00
0.02
0.04
0.09
0.16
0.38

0.00
0.03
0.08
0.17
0.38
0.67
1.51

0.01
0.04
0.12
0.28
0.59
1.05
2.44
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APPENDIX

We start with a selection of results which are contained in a paper written by
VON CHOSSY, R. and G. RAPPL (1983). Let

K
(A.I) 57"

be a random sum where (yj),eN is a sequence of real-valued, independent,
identically distributed random variables, and (Nn)net< is a sequence of integer-
valued random variables, Nn > 0. Nn and (Yj)ieli are supposed to be indepen-
dent for each n e DM. Furthermore, the second moments of Y{ and Nn may exist
in the proper sense (cf. Definition 1.2).

VON CHOSSY, R. and G. RAPPL (1983, p. 252) proved that, in certain cases it
is possible to represent random sums as deterministic sums.

Proposition A.I. Let K be a distribution function on IM0 such that for each

ne IN

(A.2) Nn%K*n.

Further, let

(A.3) P= f F*k K(dk),
J

= f
JN0

Then there exists a sequence (?, , Y2, ...) of independent and, according to F,
indentically distributed random variables with

(A.4) S r ' ^ I % (i.e. f^
i=\ \

for all n e IN.

Definition A.I. The central limit theorem (with standard normalization) is
said to be valid for a sequence of random variable (Sn)neN if

(Sn — ESn)/<J\ar Sn converges in distribution to a standard normal distributed

random variable as n -* oo, i.e. \Fn(x) — <Pn(x)\ >0 uniformly in x with

Fn(x) = P(Sn < x) and <Pn(x) = 0((x-ESn)/<JVai Sn), 0 the standard nor-
mal distribution function.

From Proposition A.I and the classical central limit theorem (cf. FELLER

(1971), p. 515), VON CHOSSY, R. and G. RAPPL (1983, p. 254) deduce
directly:
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Proposition A.2. Under the assumptions of Proposition A.I with Var % > 0,
the central limit theorem is valid for the sequence (S™n - ES^)/yJVat S™1\

Using the standard Berry-Esseen inequality (cf. FELLER (1971), p. 542), both
authors proved, in addition, a Berry-Esseen bound for special random sums.

Proposition A.3. Let the assumptions of Proposition A. 1 be fulfilled; further,
let Var 7, > 0, E\Y{\

3 < oo, ENn
3 < oo. Denote by F™n the distribution func-

tion of 5n
coU and put

(A.5) 0?n(x) = * ( ( * - £ S B
c o U ) / V V a r S™n),

0 the standard normal distribution function. Then, for all n e DM, we have

Furthermore, it holds

(A.7) Var ? , = / / , Var F, + CT2 ( ^ F , ) 2 ,

where

(A.8) //! = j" feAT(dfe), a 2 = [ ( k - ^ f K i d k ) ,

and

(A.9)

f
where

), i = l , 2 , 3 .
J Nn J R

Remark A.I. If Nn is Poisson distributed with parameter nX, X > 0, Proposi-
tion A.I can be applied. The same is true in the case of the binomial
distribution with parameters («, q), q e (0, 1), and in the case of the negative
binomial distribution with parameters (n, q), q e (0, 1) (cf. VON CHOSSY, R. and
G. R A P P L (1983), p . 253). Thus the assertions of Proposition A.2 and
Proposition A.3 are valid for collective risk models with these distribution
functions, if Yx is appropriate.
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Finally, we formulate a Berry-Esseen bound for deterministic sums of
independent, not necessarily identically distributed random variables with finite
absolute third moments (cf. FELLER (1971), p. 544).

Theorem A.I. Let the sequence of Xt be independent variables and EXt = //,-,
fi,)2 = <r2, £|A-,.-/z,.|3 = p i t ie N.

Put mn= 2_, /"/> sn = X a?• r" = X ^' anc* denote by -Fn the distribution
; = i J = I 1=1

n

function of the sum 2_, %i> @n(x) = &((x~mn)snl)> & t n e standard normal

distribution function. Then for all n e IN

(A.ll)

The next two lemmata state some auxiliary results which are needed in
Section 2. Notations and assumptions are such as stated there.

Lemma A.I. Let

(A. 12)

Then we have

(A. 13) AH = O (IK011)<=>< " <Cd =<Cd = O (1) and / C " - / C d = O (1)

fj e T> A. ind ' coll L ind i_ ' coll

Frooi. rut an
z= iin , an = fin , bn = an , bn — an .

"=*.": By applying the mean value theorem we obtain
c — an x — a(A. 14)

where

An = sup

a n e (0 , 1), x e R .

Choose a sequence xn = aK + cfon for any 0 =̂ c e R and replace x by xn. Hence
in view of the assumptions we have

(A. 16) an-a. +
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In addition, we have

xn-an xn-an
(A. 17)

b' b'

b'n-bn a'n-an

c +
b' b^

Consequently, and because An = O(l/b'J, £n->c=fc0, <P'(c)>0, we get
b'H-bn = O(l) and a'n-aH = O(I).
"<=" : Again, by applying the mean value theorem, we have with rn = bn/b'n

(A. 18) An = sup r. + an-a.
b'n

+ (l- x-an

x — an

Therefore, according to the assumptions we have

(A.19) b'nAn = sup an-an ^ (!-«„(! -O

Now the assertion follows from sup \x<P'{x)\ = l/J2ne

Lemma A.2.

(i) Let the central limit theorem be valid for F™A and Z1™". Then for all
a e (0, 1) we have

(A.20)
ind -/C11

_ind _ coll n -> oo *" ' (« ) .

(ii) ^ n d fulfills the Berry-Esseen bound from Theorem A.I, Fn
co" that from

Proposition A.3.
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i n d / c o l l
J« Ia" ir^

Proof.

(i) Put

(A.22) 7«nd(«) = — : — ,y«oll(«) analogously.
ind

Then

(A.23) Find (inf {p 6 [0, oo)|F,Td (p) > a}) — - > a ,

in view of the assumptions; thus y™A(a) • 0 '(a).

The assertion for y^°"(a) follows from a similar argumentation,

(ii) From ^n
i n d(a) = C C d ) ~ ' (a) we obtain

(A.24) sup \Fiad (x) - 0 ' n d (JC) | = sun \y - <P'nd o ( ^ n d ) " l (y)\
x y t^K

where Jt = {y\y = F™(x)}.

Using the mean value theorem, we have with suitably chosen an e (0, 1)

(A.25) v — ^ I n o (Fm ) (v ) = = ^ ° ^

Because of (i),

(A.26) 0'(an0"'(>') + ( l - a n )7 i n d O) ) 7 T ^0 ' o0 - 1 ( j ) uniformly in j .

0 ' o0"1(y)>O and the Berry-Esseen bound now supply

(A.27) 0 - \ y ) - y ^ A
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The same argumentation applied to Fn
co" and <P™n yields

(A.28) 4>~l(y)-7cnon(y) = O(l/ar").

Finally, the assertion follows from the last two bounds taking a™6/<xn
co11 -»1

into account.
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