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Abstract. An L-isomorphism between inverse semigroups S and T is an
isomorphism between their lattices L(S) and L(T) of inverse subsemigroups. The
author and others have shown that if S is aperiodic – has no nontrivial subgroups –
then any such isomorphism � induces a bijection φ between S and T . We first
characterize the bijections that arise in this way and go on to prove that under relatively
weak ‘archimedean’ hypotheses, if φ restricts to an isomorphism on the semilattice of
idempotents of S, then it must be an isomorphism on S itself, thus generating a result
of Goberstein. The hypothesis on the restriction to idempotents is satisfied in many
applications. We go on to prove theorems similar to the above for the class of completely
semisimple inverse semigroups.

2000 Mathematics Subject Classification. Primary 20M18, secondary 08A30.

Over the past quarter-century, several authors have investigated the extent to which
an inverse semigroup S is determined by its lattice L(S) of inverse subsemigroups
(see the survey [8] and the monograph [12]): given an L-isomorphism, that is, an
isomorphism � : L(S) →L(T) for some inverse semigroup T , how are S and T
related? It is easily seen that since � restricts to an L-isomorphism between their
respective semilattices of idempotents, ES and ET , it induces a bijection φE between
them. Following the lead of Goberstein [4] we focus here on the situation where φE is
an isomorphism (see below for a rationale for this simplification).

It has long been known that φE extends to a bijection φ : ES ∪ NS → ET ∪ NT ,
where NS denotes the set of elements that belong to no subgroup of S. In the aperiodic
(or ‘combinatorial’) case where, by definition, all subgroups are trivial, φ is then a
bijection between S and T . In turn, φ induces � in the obvious way. In this note we
first characterize the bijections so obtained, in Theorem 2.3, and then in Theorem 4.3
find a general sufficient condition in order that this bijection should be an isomorphism,
improving on some results of Goberstein [4].

Since groups are not generally determined by their subgroup lattices, proving
lattice determinability of nonaperiodic inverse semigroups must involve either some
assumptions on the lattice determinability of the subgroups or some structural ‘tying-
in’ of the subgroups into the overall form of the semigroup. It was shown by Ershova
(see [12]) that as long as each nonaperiodic D-class contains at least two idempotents
(essentially a statement about the principal factors) then the partial bijection φ can
be extended to a bijection θ between S and T . If S is also completely semisimple, θ

again induces �. Again, we characterize the bijections that can arise in this way, in
Theorem 2.5. We go on to show in Theorem 4.5 that, under similar hypotheses to the
aperiodic case, θ is again an isomorphism. However, we shall see that assuming that �
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induces isomorphisms on both the semilattice of idempotents and the principal factors
does not suffice to induce an isomorphism on the semigroup itself, without the extra
hypothesis of Theorem 4.5.

The assumption that φE be an isomorphism is satisfied in many circumstances.
For instance this occurs whenever S is simple or is E-unitary with a greatest J -class
which is nontrivial [7]. It also arises from external conditions. For instance, Goberstein
showed (loc. cit.) that “most” isomorphisms between the inverse semigroups of partial
automorphisms of two inverse semigroups induce an L-isomorphism of this type.
In [2], [3], K. H. Cheong and the author studied Co-isomorphisms between inverse
semigroups – isomorphisms between their lattices of convex inverse subsemigroups
(which are not generally sublattices of the lattices of all inverse subsemigroups) –
and reduced their study to those that induce an isomorphism between the respective
semilattices of idempotents. In the completely semisimple case, they showed that Co-
isomorphisms with this property are equivalent to L-isomorphisms of the same type.
This equivalence is not true in general.

The two theorems on the bijections that induce L-isomorphisms were inspired by
Cheong’s initial work on the corresponding problem for Co-isomorphisms.

1. Preliminaries. The lattice L(S) of inverse subsemigroups of an inverse
semigroup S has as its zero the empty inverse subsemigroup. If U, V ∈L(S), their
join is denoted U ∨ V and is the same as their join as subsemigroups. If A ⊆ S, we
denote by 〈A〉 the inverse subsemigroup that it generates. The idempotents of S form a
semilattice, denoted ES. An inverse subsemigroup of S is full if it contains ES. The filter
[ES, S] in L(S) is denoted LF(S). Note that for a group G, LF(G) coincides with the
subgroup lattice but the empty inverse subsemigroup must be adjoined to obtain L(G).

The natural partial order on an inverse semigroup S is defined by a ≤ b if a = aa−1b;
various useful equivalent properties may be found in [11], along with such basic
semigroup concepts as Green’s relations, ideals and principal factors. The notation
a‖b means that a and b are incomparable with respect to that order. An inverse
subsemigroup U is convex if a ∈ S, u, v ∈ U and u ≤ a ≤ v imply that a ∈ U . The
convex inverse subsemigroups form a lattice Co(S) which is not, in general, a sub-
lattice of L(S). See [2], [3] for a comprehensive study of that lattice, with applications
of the results contained herein.

An inverse semigroup is aperiodic, or combinatorial, if all of its subgroups are
trivial; S is completely semisimple if each principal factor is completely 0-simple or is a
group (equivalently, S contains no bicyclic subsemigroup – see below for the definition
of the latter); S is E-unitary if whenever a ≥ e ∈ ES then a ∈ ES.

We review the basics of L-isomorphisms of inverse semigroups. For surveys see
[8] and [12]. Let � : L(S) →L(T) be an isomorphism. Since ES�= ET , � restricts to
an isomorphism L(ES) →L(ET ). It also follows that � restricts to an isomorphism
LF(S) →LF(T).

AnyL-isomorphism � between semilattices E and F induces a bijection φ : E → F
by the rule 〈eφ〉= 〈e〉�, e ∈ E, and is in turn induced by φ, in the sense that A�= Aφ

for every subsemilattice A. The bijection φ is characterized by the weak isomorphism
property: if e, f ∈ E then e‖ f if and only if eφ‖ f φ, in which case (ef )φ = eφ f φ.

If � is an L-isomorphism between inverse semigroups S and T , we shall denote the
weak isomorphism between ES and ET by φE . Note that the class of groups is closed
under L-isomorphisms, since groups are characterized among inverse semigroups by
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the property that their semilattices of idempotents are trivial, and φE is bijective. Hence
if e ∈ ES then � restricts to an L-isomorphism between the maximal subgroups He and
HeφE . In particular, if S is aperiodic, so is T .

Let NS denote the set of elements of S that do not belong to a subgroup. For
each a ∈ NS, by [7] there is a unique element b of T such that 〈a〉�= 〈b〉, (aa−1)φE =
bb−1 and (a−1a)φE = b−1b. Rephrasing this statement, setting {b, b−1} = {aφN, a−1φN}
yields choice functions φN : NS → NT that are bijections (since the same process may
be applied to �−1), and satisfy a−1φN = (aφN)−1, {aa−1, a−1a}φN = {aφN(aφN)−1,
(aφN)−1aφN} and 〈a〉�= 〈aφN〉 for every a ∈ NS. Since φE also satisfies the above
properties, its union with any φN yields a bijection φ : ES ∪ NS → ET ∪ NT with the
same properties. The uniqueness of b implies that any bijection that induces � is of this
type. Note that by always choosing aφN to be b itself, the partial bijection φ will then
uniquely preserve L and R. We follow [12] in terming this the ‘base partial bijection’.
While it will be convenient to make that assumption when necessary, we shall not
always do so. We summarize the above discussion.

RESULT 1.1. Let � be an L-isomorphism between inverse semigroups S and T. There
is a bijection φ : ES ∪ NS → ET ∪ NT , unique up to possible interchange of aφ and a−1φ

for each a ∈ S, such that φ restricts to a weak isomorphism from ES to ET , 〈a〉�= 〈aφ〉
and {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every a ∈ ES ∪ NS.

There is a unique choice of φ that preservesL andR, namely the base partial bijection.

If S is aperiodic, φ becomes a bijection of S upon T that induces �, the properties
of which we now summarize. The final statement below is a compilation of results of
Ershova and the author that may be found in [12, Section 42].

RESULT 1.2. Let S be an aperiodic inverse semigroup. Any L-isomorphism � from
S to a (necessarily aperiodic) inverse semigroup T is induced by a bijection φ : S → T,
unique up to possible interchange of aφ and a−1φ for each a ∈ S, such that φ restricts to
a weak isomorphism from ES to ET and {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every
a ∈ S. There is a unique choice of φ that preserves L and R, namely the base bijection.
That choice of φ restricts to an isomorphism 〈a〉 → 〈aφ〉 for each a ∈ S.

We now turn to the nonaperiodic situation, keeping in mind the remarks in
the introduction. Ershova showed (see [12, Section 43.7]) that the base partial
bijection φ : ES ∪ NS → ET ∪ NT may be extended to a bijection θ : S → T as long
as each nonaperiodic D-class contains at least two idempotents, as follows. For each
idempotent e in such a D-class, choose an element re of NS ∩ Re. Each a ∈ He may be
expressed uniquely in the form a = res−1 for some s ∈ Hre ; put aθ = reφ(sφ)−1. (Define
θ = φ on NS.) It follows from the construction that since φ preservesL andR, so does θ .
It was also shown that if � is induced by an isomorphism κ : S → T , then κ = θ . Again
following [12], when θ is defined it is termed the base bijection associated with �.

We conclude these preliminaries with some further background on inverse
semigroups.

According to [11, Theorem IX.3.11], each monogenic inverse semigroup is
defined by exactly one of the following relations, where k, l are positive integers:
(i) ak = a−1ak+1; (ii) aka−1 = a−1ak; (iii) ak = ak+l; (iv) a = a. Each has a type associated
with it: those in (i) are of type (k,∞+) and possess a bicyclic kernel (least ideal); those
in (ii) are of type (k,∞) and have an infinite cyclic group kernel; those in (iii) are of type
(k, l) and have a finite cyclic group kernel; that in (iv) is free. In the first three cases, if
k = 1 then the semigroup itself is bicyclic, infinite cyclic or finite cyclic, respectively. If
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k ≥ 2, then it is an extension of its kernel by the quotient of the free monogenic inverse
semigroup modulo the ideal generated by ak (the quotient being a semigroup of type
(k, 1)).

A semigroup is group bound, or an epigroup, if some power of each element belongs
to a subgroup. From the classification above, it can be seen that a monogenic inverse
semigroup is group bound if and only if its semilattice of idempotents is finite. In
general, therefore, an inverse semigroup is group bound if and only if it contains no
free monogenic nor bicyclic inverse subsemigroup. All periodic inverse semigroups are
group bound.

We review from [11, page 47] the construction of retract ideal extensions. Let
B be an inverse semigroup and A an inverse semigroup wih zero. Put A∗ = A − {0}.
Suppose ψ : A∗ → B is a partial homomorphism, that is, aψa′ψ = (aa′)ψ whenever
a, a′, aa′ ∈ A∗. Then the set S = A∗ ∪ B becomes an inverse semigroup under the
operation that extends that in B; extends the partial operation in A∗; is given by
aa′ = aψa′ψ when a, a′ ∈ A∗ but aa′ = 0 in A; and by ab = aψb when a ∈ A∗, b ∈ B, and
similarly for ba. It is the retract (and ideal) extension of B by A defined by ψ . (Taking
the union of ψ with the identity map on B yields a retraction of S.)

2. Characterizing the induced bijection.

LEMMA 2.1. Let S and T be inverse semigroups and suppose φ : S → T is a
bijection that induces an isomorphism LF(S) →LF(T). If a, b ∈ S, b �∈ ES and b < a
then bφ ≤ (aφ)n for some nonzero integer n.

Proof. If b < a then b = bb−1a ∈ ES ∨ 〈a〉, the full inverse subsemigroup of S
generated by a, so bφ ∈ ET ∨ 〈aφ〉. Since ESφ = ET , if b �∈ ES then bφ �∈ ET . Thus bφ

can be expressed as the product of an idempotent and a nonzero power of aφ, that is,
bφ ≤ (aφ)n for some nonzero integer n.

Following the terminology of [9], a product ab in an inverse semigroup is restricted
if a−1a = bb−1, in which case aRabLb.

The following lemma is well known, in that it may also be deduced from the
standard constructions of the multiplication on an inverse semigroup by way of the
restricted products and the partial order (for example, see [9]).

LEMMA 2.2. Let S be an inverse semigroup. A subset A of S is an inverse subsemigroup
if and only if (a) it is closed under restricted products and inverses, (b) EA is a subsemilattice
of ES and (c) if b ∈ S, bb−1 ∈ A and b < a ∈ A, then b ∈ A.

Proof. Necessity of (a) and (b) is obvious; that of (c) follows from the equation
b = bb−1a. To prove sufficiency, let a, b ∈ A. Then ab = (abb−1)(a−1ab), where the
product on the right hand side is restricted. It suffices, then, to show that a−1ab ∈ A
(that abb−1 ∈ A follows dually – observe that condition (c) is actually self dual, since
the natural partial order respects inverses). Now a−1ab ≤ b ∈ A and (a−1ab)(a−1ab)−1 =
(a−1a)(bb−1) so it remains by (c) to show that (a−1a)(bb−1) ∈ A. The product a−1a is
restricted, so a−1a ∈ A, and similarly for bb−1. Then (b) implies that the product belongs
to A.

THEOREM 2.3. Let S and T be aperiodic inverse semigroups. Any L-isomorphism �

from S to T is induced by a unique bijection φ : S → T satisfying
(1) φ restricts to a weak isomorphism from ES to ET ;
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(2) φ preserves L and R;
(3) if b < a in S, b �∈ ES, then bφ ≤ (aφ)n for some integer n, and similarly for φ−1.
Conversely, any bijection φ : S → T that satisfies (1), (2) and (3) induces an L-

isomorphism from S to T.
The condition (3) can be replaced by (3′): φ induces an isomorphism of LF(S) on

LF(T).

Proof. The existence of the unique bijection φ : S → T satisfying (1) and (2) was
shown in § 1. Clearly, since φ induces �, it induces the restriction of � to LF(S). Thus
(3) follows from Lemma 2.1.

To prove the converse, assume (1), (2) and (3) hold. (The final statement
is immediate from Lemma 2.1.) It follows that (aφ)−1 = a−1φ for all a ∈ S. It is
easily seen that φ−1 also satisfies (1) and (2). Hence, by symmetry it suffices to
show that if A ∈L(S) then Aφ ∈L(T). We apply Lemma 2.2. Clearly Aφ is closed
under inverses. Since weak isomorphisms are precisely the bijections between semi-
lattices that induce L-isomorphisms between them, EAφ is a subsemilattice of ET .
Let a, b ∈ A, with (aφ)−1aφ = bφ(bφ)−1, so that aφRaφbφLbφ. Then since φ

preserves L and R, a−1a = bb−1, so aRabLb and therefore aφR(ab)φLbφ. By
aperiodicity, aφbφ = (ab)φ ∈ Aφ. So Aφ is closed under restricted products. Finally,
suppose b ∈ S, a ∈ A, with bφ(bφ)−1 ∈ Aφ and bφ < aφ. Since φ preserves R,
bφ(bφ)−1 = (bb−1)φ, so bb−1 ∈ A and by (3), applied to φ−1, b ≤ an for some integer n.
But an ∈ A so, by Lemma 2.2, b ∈ A and bφ ∈ Aφ, as required.

By the observations preceding Result 1.1, the condition (2) can be replaced by
(2′) {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every a ∈ S as long as uniqueness of φ is
replaced by uniqueness up to possible interchange of aφ and a−1φ for each a ∈ S. This
result then characterizes the bijections that can induce an L-isomorphism between
aperiodic inverse semigroups.

We now turn to the nonaperiodic situation and characterize the bijections that
induce L-isomorphisms. In general, of course, an L-isomorphism between groups is
not induced by a bijection. To obtain a complete analogue to the previous theorem we
shall need to assume that, in the semigroups under consideration, every nonaperiodic
D-class contains at least two idempotents, so that an L-isomorphism � from S to T
induces the base bijection θ : S → T defined in Section 1.

It seems that little is known of the properties of θ outside the completely semisimple
situation. However, it was shown in [12, Lemma 44.5] that if S is a Brandt semigroup
that is not a group with zero, then θ induces � and the question was raised when
this occurs in general. We may extend the lemma to all completely semisimple inverse
semigroups of the appropriate type, without difficulty. It is known [7] that the class of
such semigroups is closed under L-isomorphisms.

LEMMA 2.4. Let S be a completely semisimple inverse semigroup in which each
nonaperiodic D-class contains at least two idempotents. If � is an L-isomorphism from
S to an inverse semigroup T then it is induced by the base bijection θ : S → T.

Proof. Let a ∈ S. If a ∈ ES ∪ NS then 〈a〉�= 〈aφ〉 = 〈aθ〉. So suppose a ∈ He, a �∈ ES,
e ∈ ES. Put r = re, a = rs−1 and aθ = rφ(sφ)−1 ∈ Heφ . Following the same argument
as in the lemma cited above, based on the fact that the principal factor associated
with e is a Brandt semigroup (see [12, Exercise 7b, page 126]), 〈a〉 = 〈r, s〉 ∩ He and
〈aθ〉 = 〈rφ, sφ〉 ∩ Heφ = 〈r, s〉� ∩ He�= (〈r, s〉 ∩ He)�= 〈a〉�. Hence θ induces �.
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THEOREM 2.5. Let S and T be any completely semisimple inverse semigroups. An L-
and R-preserving bijection θ : S → T induces an L-isomorphism � between S and T if
and only if

(1) θ restricts to a weak isomorphism from ES to ET ;
(2) if b < a in S, b �∈ ES, then bθ ≤ (aθ )n for some integer n, and similarly for θ−1;
(3) for each e ∈ ES, θ induces an L-isomorphism between the subgroups He and Heθ ;
(4) if ab is a restricted product in S and a, b ∈ NS then (i) if ab ∈ NS then

(ab)θ = aθbθ and (ii) otherwise (ab)θ and aθbθ generate the same subgroup of T.
If each nonaperiodic D-class of S and T contains at least two idempotents, then

any L-isomorphism between them is induced by a unique L- and R-preserving bijection,
namely the base bijection θ .

Proof. The last statement follows from Lemma 2.4. Otherwise, we follow the
general outline of the proof of the previous theorem. Necessity of (1) has already been
noted. That of (2) follows from the same argument as in the previous theorem. Since �

restricts to an L-isomorphism between He and HeφE = Heθ , (3) is immediate. To prove
(4) we shall need to use complete semisimplicity in a similar manner to that of the
proof of Lemma 2.4.

If x ∈ NS then 〈x〉 ∩ Dx consists of the four distinct elements x, x−1, xx−1, x−1x
(since its principal factor is a Brandt semigroup). Similarly, if ab is a restricted product
in S and a, b, ab all belong to NS, then since ab ∈ Ra ∩ Lb, 〈a, b〉 ∩ Da = (〈a〉 ∪ 〈b〉 ∪
〈ab〉) ∩ Da. (See [12, Exercise 7(a), page 126].) Since θ preserves L and R, the product
aθbθ is also restricted in T and aθ, bθ, aθbθ ∈ NT . Hence 〈aθ, bθ〉 ∩ Daθ = (〈aθ〉 ∪
〈bθ〉 ∪ 〈aθbθ〉) ∩ Daθ . Since 〈a, b〉θ = 〈aθ, bθ〉, and since (ab)θ ∈ Raθ ∩ Lbθ then, in view
of the description of 〈x〉 ∩ Dx given above, this element belongs to 〈aθbθ〉 and is H-
related to aθbθ . Applying that same description, we obtain (ab)θ = aθbθ .

Suppose ab is a restricted product where a, b ∈ NS but ab �∈ NS. In that case a ∈ Hb−1

and ab ∈ Hf , where f = aa−1 = b−1b. Since θ induces anL-isomorphism between Hf and
Hf θ , 〈(ab)θ〉 = 〈ab〉θ . Because the principal factor containing a is a Brandt semigroup,
〈ab〉 = 〈a, b〉 ∩ Hf (see [12, Exercise 7(b), page 126]). Because θ induces �, (〈a, b〉 ∩
Hf )θ = 〈aθ, bθ〉 ∩ Hf θ . Finally, since θ preserves L and R, 〈aθ, bθ〉 ∩ Hf θ = 〈aθbθ〉,
similarly.

To prove the converse, assume (1) – (4) hold. It is again easily seen that θ−1 also
satisfies these conditions. Hence it suffices to prove that if A ∈L(S) then Aθ ∈L(T).
That Aθ satisfies (b) and (c) of Lemma 2.2 proceeds as in the proof of the previous
theorem. It therefore remains to show that it is closed under inverses and restricted
products. To show the former property, let a ∈ A. If a �∈ NS, then (aθ )−1 ∈ 〈aθ〉=
〈a〉θ ⊆ Aθ , using (3). If a ∈ NS then a−1 ∈ NS and the product aa−1 is restricted. By
(1)(ii), 〈aθa−1θ〉= 〈(aa−1)θ〉= {(aa−1)θ}= {aθ (aθ )−1}, whence since θ preserves L and
R, (aθ )−1 = a−1θ .

Now suppose aθbθ is a restricted product in Aθ . Since θ and θ−1 preserve L and R,
ab is a restricted product in A. There are various cases to consider. Suppose a, b ∈ NS.
That aθbθ ∈ Aθ is immediate from the two cases of (4). If neither a nor b belongs to
NS then since a−1a = bb−1, both lie in a subgroup He, e ∈ ES, say, and the requisite
conclusion follows from (3).

If a �∈ NS, a ∈ He, say, and b ∈ NS then aRb and abHb, so that the product
(ab)b−1 is restricted, with ab, b−1 ∈ NS. Similarly, aθ ∈ Heθ , bθ ∈ NT and aθbθHbθ . Let
c = (aθbθ )θ−1Hb. Then the product cb−1 in S is restricted, with cb−1 ∈ He. By (4)(ii),
〈(cb−1)θ〉= 〈cθb−1θ〉 in Heθ . Now since b ∈ NS, b−1θ = (bθ )−1, as proved above. Thus
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〈cθb−1θ〉 = 〈aθbθ (bθ )−1〉 = 〈aθ〉. But from (3), 〈aθ〉 = 〈a〉θ and 〈(cb−1)θ〉= 〈cb−1〉θ ,
so 〈a〉 = 〈cb−1〉. Therefore cb−1 = an for some integer n and c = anb ∈ A. Hence
aθbθ = cθ ∈ Aθ . The case where a ∈ NS, b �∈ NS is dual.

Similar comments to those following the previous theorem apply, regarding the
condition that θ be L- and R-preserving.

Remark: the second paragraph of the proof is essentially that of the corresponding
case of Lemma 4.4 below, and of the result of Ershova cited there (see [12, 44.6.3(a)]).

3. Archimedean properties. In this section we treat the appropriate hypotheses
under which we shall eventually prove that every L-isomorphism induces an
isomorphism. Goberstein [4] introduced the notion of a ‘shortly connected’ inverse
semigroup and proved (Theorem 5) that any L-isomorphism between such semigroups,
with the property that the weak isomorphism φE is actually an isomorphism, is induced
by a unique isomorphism. He also introduced a slightly stronger property, ‘shortly
linked’, which is more natural and more easily verified. (He showed in the sequel
[5] that these two properties are distinct.) For that reason, we prefer to work with
generalizations of the latter property.

An inverse semigroup S is shortly linked if for any idempotent e of S and any
element a of S such that e < aa−1, the set Fe,a = { f ∈ E〈a〉 : e < f ≤ aa−1} is finite.
(Goberstein actually introduced this property in a different form, then showed it to
be equivalent to the above in [4, Proposition 3].) Many inverse semigroups turn out to
be shortly linked in one of two ways: by virtue of the property that they contain only
finitely many idempotents above any given one; or by virtue of being group bound.

PROPOSITION 3.1. (1) An inverse semigroup is shortly linked if and only if no
idempotent is strictly below infinitely many idempotents of any monogenic inverse
subsemigroup;

(2) every group bound, and hence every periodic and every finite inverse semigroup,
is shortly linked;

(3) every free inverse semigroup and monogenic inverse semigroup is shortly linked.

Proof. (1) Let S be an inverse semigroup and e ∈ ES, a ∈ S. Since every idempotent
of 〈a〉 is below either aa−1 or a−1a, { f ∈ E〈a〉 : e < f } = Fe,a ∪ Fe,a−1 , from which the
stated equivalence is clear.

(2) A group bound inverse semigroup is characterized by the property that each
of its monogenic inverse subsemigroups has finite semilattice of idempotents.

(3) By [10] every free inverse semigroup S is “finite J -above”, that is, for any x ∈ S
there are only finitely many elements y such that SxS ⊆ SyS. Hence no idempotent can
be strictly below infinitely many others. A similar argument applies to each monogenic
inverse semigroup.

An inverse semigroup S is pseudo-archimedean if no idempotent of S is strictly
below every idempotent of a free monogenic or bicyclic inverse subsemigroup.
Clearly, by (1) of the proposition, every shortly linked inverse semigroup is pseudo-
archimedean. If an idempotent is below infinitely many idempotents of a bicyclic
subsemigroup then it must be below all of them. However, this is not obviously so
for the free monogenic inverse subsemigroups and we now quote an example to show
that the pseudo-archimedean property is strictly weaker than that of being shortly
linked.
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EXAMPLE 3.2. [3, Example 3.11]. There is an aperiodic, E-unitary, pseudo-
archimedean inverse semigroup that is not shortly linked. The semigroup is generated
as an ideal by a single nonidempotent.

We may weaken the pseudo-archimedean hypothesis still further. Let us call S
faintly archimedean if whenever an idempotent e of S is strictly below every idempotent
of a bicyclic or free monogenic inverse subsemigroup 〈a〉, then e < a. Adjoining a zero
to a free monogenic inverse semigroup yields a faintly archimedean inverse semigroup
that is not pseudo-archimedean. (K. H. Cheong [1] called S weakly archimedean if
this implication is required to hold for all monogenic inverse subsemigroups 〈a〉. She
showed that any inverse semigroup whose lattice of convex inverse subsemigroups is
lower semimodular has this property. The term ‘archimedean’ alludes to its use in
earlier work by the author [6].)

Note that if a monogenic inverse subsemigroup 〈a〉 is of type (k,∞+) for some
positive integer k, then ak+1a−k generates its bicyclic kernel, where ak+1a−k ≤ a. Thus
S is faintly archimedean if and only if whenever e is below every idempotent of 〈a〉,
where E〈a〉 is infinite, then e < a.

While this property will be an adequate hypothesis in the aperiodic case, it needs to
be strengthened slightly to cover the general situation. Let us call S quasi-archimedean
if whenever an idempotent e is (not necessarily strictly) below every idempotent of 〈a〉,
where a ∈ NS, then e < a.

PROPOSITION 3.3. The following are equivalent for an inverse semigroup S:
(1) S is quasi-archimedean;
(2) if a ∈ NS, b < a and bb−1 is below every idempotent of 〈a〉, then b ∈ ES;
(3) S is faintly archimedean and 〈a〉 is aperiodic for each a ∈ NS;
(4) for each a ∈ NS, 〈a〉 is aperiodic and whenever b < a, bb−1 < ana−n and b−1b <

a−nan for every positive integer n, then b ∈ ES.

Proof. Throughout the proof, e denotes an idempotent of S and a an element of
NS.

(1) ⇒ (2) With a, b as stated, then by (1), bb−1 < a. Thus b = bb−1a = bb−1.
(2) ⇒ (3) If e is strictly below each idempotent of 〈a〉 then b = ea < a and bb−1 = e.

So by (2), bb−1 = b < a. In particular, this holds whenever 〈a〉 is bicyclic or free. Now
if 〈a〉 has no least idempotent then from the discussion in Section 1 it is aperiodic. In
the alternative case it has a group kernel with identity e, say, which is clearly below
every idempotent of 〈a〉 and so is below a. Again setting b = ea, by a similar argument
to the above we obtain b ∈ ES. But the kernel is generated by b and so is trivial, that is,
〈a〉 is aperiodic.

(3) ⇒ (1) Suppose e is below every idempotent of 〈a〉. On the one hand, if E〈a〉
is infinite then, by hypothesis, e < a. On the other hand, if E〈a〉 is finite, then 〈a〉
is aperiodic and its least idempotent is an+1 = an for some positive integer n. Then
e ≤ an = ana < a.

(2) ⇒ (4) Under the assumption of (4), bb−1 = b(b−1b)b−1 ≤ a(a−nan)a−1 ≤
a−(n−1)an−1 for n > 1, so in fact bb−1 is below every idempotent of 〈a〉 and (2) applies.
Aperiodicity follows as in (2) ⇒ (3).

(4) ⇒ (3) Suppose e is below every idempotent of 〈a〉, where 〈a〉 is bicyclic or
free. Let b = ea. Then b < a, bb−1 = e < ana−n and b−1b = a−1ea < a−1a−nana for every
positive integer n. By (4), ea ∈ ES, that is, e = ea < a.
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COROLLARY 3.4. An aperiodic inverse semigroup S is quasi-archimedean if and only
if it is faintly archimedean.

4. L-determinability. In this section we generalize the result of Goberstein, cited
earlier, on aperiodic inverse semigroups, and prove a similar result on completely
semisimple nonaperiodic inverse semigroups.

LEMMA 4.1. Let S and T be inverse semigroups and suppose φ : S → T is a bijection
that induces an isomorphism LF(S) →LF(T), restricts to an isomorphism on ES and
satisfies {aa−1, a−1a}φ = {aφ(aφ)−1, (aφ)−1aφ} for every a ∈ S. If a ∈ S, e ∈ ES and e < a,
then eφ < aφ.

Proof. Since the conclusion is unaffected by interchanging aφ with a−1φ, we may
assume that φ preserves L and R. Now e < aa−1, so that since φ restricts to an
isomorphism on ES, eφ < (aa−1)φ = (aφ)(aφ)−1. Thus eφReφaφ and so if we put
c = (eφaφ)φ−1, then cRe. Hence eφaφ ∈ ET , that is, eφ < aφ. For otherwise, applying
Lemma 2.1 to φ−1 yields c ≤ ak for some nonzero integer k, so that c = eak = e, a
contradiction.

LEMMA 4.2. Let S be any quasi-archimedean inverse semigroup and suppose that
φ is a bijection of S upon an inverse semigroup T that (i) restricts to an isomorphism
on ES, (ii) preserves L and R, (iii) restricts to an isomorphism on 〈a〉 for each a ∈ NS

and (iv) induces an isomorphism of LF(S) upon LF(T). Then whenever b < a in S and
a ∈ ES ∪ NS, bφ < aφ.

Proof. Since φ restricts to an isomorphism on ES, the conclusion holds if
a ∈ ES, so assume a ∈ NS. If b ∈ ES then Lemma 4.1 applies. Otherwise, according
to Lemma 3.3(4), either there is a greatest positive integer n such that bb−1 < ana−n

or the (left-right) dual of that statement holds. In the latter case, a dual argument
applies, so consider the former possibility. Note that in conjunction with b < a, the
stated inequality is equivalent to b < ana−(n−1). By Lemma 2.1, bφ ≤ (ana−(n−1))kφ for
some nonzero integer k.

Suppose first that k = 1. Since φ restricts to an isomorphism on 〈a〉, (ana−(n−1))φ =
(aφ)n(aφ)−(n−1) ≤ aφ, yielding the desired conclusion.

Next suppose k > 1. Then by a simple inductive argument, (ana−(n−1))k =
an+k−1a−(n−1). Hence (bb−1)φ≤((an+k−1a−(n−1))(an+k−1a−(n−1))−1)φ=(an+k−1a−(n+k−1))φ.
Now φ is an isomorphism on ES, so bb−1 ≤ an+k−1a−(n+k−1). Since, for k > 1,
an+k−1a−(n+k−1) ≤ an+1a−(n+1), the maximality assumption on n yields bb−1 =
an+1a−(n+1). From b < a we then obtain b = an+1a−n and so bφ = (aφ)n+1(aφ)−n ≤ aφ,
as required.

Finally, suppose k < 0. Now, by similar arguments, b−1b ≤ an−k−1a−(n−k−1) ≤
ana−n whence, since b < a, bb−1 ≤ an+1a−(n+1) once more and the concluding argument
of the preceding case applies.

4.1. Aperiodic inverse semigroups.

THEOREM 4.3. Let S be any aperiodic, quasi-archimedean (equivalently, faintly
archimedean) inverse semigroup and let � be an L-isomorphism from S to an inverse
semigroup T such that the weak isomorphism φE : ES → ET is actually an isomorphism.
Then � is induced by a unique isomorphism, namely the base bijection φ defined in
Section 1.
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Proof. Let φ : S → T be as stated. According to [9, Theorem 3.1.5], if a mapping
between two inverse semigroups is order preserving, restricts to a homomorphism
on the semilattice of idempotents and preserves restricted products, then it is a
homomorphism.

Let ab be a restricted product. Then since φ respects Green’s relations, aφbφ is
also such a product and the resulting element is H-related to (ab)φ, whence equal, by
aperiodicity.

Since φ induces �, it induces its restriction LF(S) →LF(T). By Lemma 4.2, it is
order preserving. Hence it is an isomorphism.

In [4, Proposition 9], Goberstein constructed nonisomorphic aperiodic, completely
semisimple inverse semigroups S and T whose partial automorphism semigroups,
and hence their lattices of inverse subsemigroups, are isomorphic. It follows from
his construction that the induced bijection restricts to an isomorphism between their
semilattices of idempotents.

As discussed in the introduction, the restriction that the weak isomorphism φE :
ES → ET be an isomorphism is not a strong one. As remarked there, if S is E-unitary,
then φE is an isomorphism on the idempotents of any ideal generated by a nontrivial
J -class. We may apply this fact to the semigroup in Example 3.2, which is E-unitary
and is generated as an ideal by a single nonidempotent. Recalling that every pseudo-
archimedean inverse semigroup is faintly archimedean, we may apply Theorem 4.3.

Other applications, some of which were noted by Goberstein, are to new proofs
of determinability of free inverse semigroups and of simple inverse semigroups whose
lattices of full inverse subsemigroups are modular.

4.2. Nonaperiodic, completely semisimple inverse semigroups. For Brandt semi-
groups with exactly two nonzero idempotents it is apparently unknown whether
the base bijection θ is always an isomorphism (see [13, Problem 7.11]). However,
Ershova proved the remarkable result [12, Theorem 44.6] (see also [13, Corollary 2.7])
that for Brandt semigroups with at least three nonzero idempotents, θ is always an
isomorphism. In a similar fashion to the proof of the above lemma, this result may
be incorporated into a result for completely semisimple inverse semigroups by noting
that since θ preserves L and R, if ab = 0 in a Brandt semigroup then aθbθ = 0 in
the image semigroup. The products that are nonzero are then precisely the restricted
ones (those for which a−1a = bb−1) and the proof that (ab)θ = aθbθ for such products in
Brandt semigroups can simply be interpreted in the appropriate completely semisimple
inverse semigroups, as follows. (Another proof may be obtained by inducing a lattice
isomorphism between the corresponding principal factors of S and T .)

LEMMA 4.4. Let S be a completely semisimple inverse semigroup with the property
that each nonaperiodic D-class contains at least three idempotents. If � is an L-
isomorphism from S to an inverse semigroup T then the bijection θ : S → T preserves
restricted products.

THEOREM 4.5. Let S be any completely semisimple, quasi-archimedean inverse
semigroup in which each nonaperiodic D-class contains at least three idempotents, and
let � be any L-isomorphism from S to an inverse semigroup T such that the weak
isomorphism φE : ES → ET is actually an isomorphism. Then � is induced by a unique
isomorphism, namely the base bijection θ defined in Section 1.
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Proof. By Lemma 4.4, θ preserves restricted products and since it extends φ, it
restricts to an isomorphism on ES. According to the first paragraph of the proof of
Theorem 4.3, to prove it is an isomorphism it remains to show it is order preserving.

By Lemma 2.4, θ induces � and so induces an isomorphism LF(S) →LF(T); and
by Proposition 3.3, 〈a〉 is aperiodic for each a ∈ NS, so the restriction of θ agrees with
φ thereon and is therefore an isomorphism. Hence, if b < a in S and a ∈ ES ∪ NS, then
bφ < aφ, by Lemma 4.2.

To conclude the proof, suppose b < a, with a �∈ ES ∪ NS, a ∈ Hf , f ∈ ES. Put
e = bb−1 < aa−1 = f . Since Da is nonaperiodic, Rf contains an element r of NS and
a = rr−1a = r(a−1r)−1, where a−1r ∈ Hr ⊂ NS (similarly to the definition of θ in § 1).
Then b = eb = ef b = err−1b = (er)(b−1r)−1, where this last product is easily verified to
be restricted. According to the first sentence of the proof, bθ = (er)θ (b−1r)−1θ =
(er)θ ((b−1r)θ )−1. But er < r ∈ NS and b−1r < a−1r ∈ NS, so applying the previous para-
graph we obtain (er)θ < rθ and (b−1r)θ < (a−1r)θ , whence ((b−1r)θ )−1 < ((a−1r)θ )−1.
Hence bθ < rθ ((a−1r)θ )−1 = aθ (reversing the previous argument), as required.

We now give an example to show that the quasi-archimedean hypothesis is
necessary for the above theorem to hold. We first provide a general construction
of certain L-isomorphic semigroups.

PROPOSITION 4.6. Let B be an inverse semigroup and A an inverse semigroup with zero.
Let S, S′ be retract extensions of B by A, via partial homomorphisms ψ,ψ ′ that satisfy
〈aψ〉 = 〈aψ ′〉 for all a ∈ A∗. Then the identity map I : L(S) →L(S′) is an isomorphism.

Proof. Let U ∈L(S). Let U ′ denote the set U , considered as an inverse
subsemigroup of S′. In both S and S′, A∗ and B are closed under the inverse operation
and under restricted products, since each is a union of D-classes. By hypothesis, ψ and
ψ ′ agree on the idempotents of A∗, so EU ′ ∼= EU . Finally, let u, v ∈ S′, with vv−1, u ∈ U ′.
If both u, v belong to either B or A∗ then since the operations on U, U ′ coincide there,
v ∈ U ′. The remaining case is where v ∈ B and u ∈ A∗. Now v < u in S′ if and only if
v ≤ uψ ′ in B. Since 〈uψ ′〉 = 〈uψ〉, uψ ′ ≤ (uψ)n for some (without loss of generality)
nonzero integer n. Now if un ∈ A∗ then (uψ)n = unψ ; if not, (uψ)n = un. In either event,
v ≤ un ∈ U in S and so u ∈ U in S, that is, u ∈ U ′ in S′. By Lemma 2.2, U ′ ∈L(S′).

By symmetry, this map yields an order isomorphism between L(S) and L(S′).

Now let A = 〈a : a5 = a2〉 and let B be the Brandt semigroup M0(X, G, X, I),
where G = 〈g : g3 = 1〉 and X = {1, 2, 3} (see [11] for this construction). Mapping a to
g induces a partial homomorphism ψ : A∗ → G; a partial homomorphism ψ ′ may be
defined similarly by mapping a to g2. Here 〈aψ〉= G = 〈aψ ′〉. Since G is isomorphic to
the maximal subgroup H(1,1,1) of B, we may regard ψ and ψ ′ as mapping into B. The
hypotheses of the proposition having been met, the identity map is an L-isomorphism
between the two semigroups S, S′ defined there. Since the induced partial bijection
φ is just the identity map it follows from the construction of θ (and the fact that
the copies of B in S and in S′ are isomorphic, by construction) that θ is also the
identity map. However the identity map between S and S′ is not an isomorphism, since
a2 = (aψ)2 = g2 in S whereas a2 = (aψ ′)2 = g4 = g in S′. As noted above, if � is induced
by any isomorphism, that mapping must be θ . Hence we have exhibited the following.

EXAMPLE 4.7. There exist two finite inverse semigroups, in each of which every
nonaperiodic D-class possesses at least three idempotents, and an L-isomorphism
between them that induces an isomorphism φE between their semilattices of
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idempotents and is induced by a bijection (namely θ ) that preserves restricted products,
but which is not induced by any isomorphism between the semigroups themselves. (In
particular, the base bijection θ is not an isomorphism).
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