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1. Introduction 

High resolution implies that we obtain some information on spectral line shapes. 

In late-type stars, we need to measure velocities of a few km/sec to accomplish this. 

Increasing the spectral resolution and the signal to noise ratio allows us to progress 

step by step toward deeper physical understanding. The steps we take often lead to 

good debate and "stimulate" our lives. I am sometimes amused at the urgency we feel to 

press on to the next step. We rarely seem to pause and enjoy the completion of previ

ous steps. Perhaps this is because we always see shortcomings in completed work. Quite 

typically one will "discover" the importance of some physical phenomenon (It makes 

little difference how many others already know about it.), and in his eyes everything 

done previously becomes wrong because this phenomenon was not included. We used to 

hear how Milne-Eddington or Schuster-Schwarzschild model atmospheres were inadequate -

we had to use instead properly computed depth dependence. We used to hear how LTE mo

dels were no good - we had to use more detailed physics. Now we talk about line analy

ses being inadequate because it has not included velocity fields. The curious thing 

is that we believe that including our pet phenomenon gives the correct models. We ig

nore all those other phenomena as yet unseen! (Is this a mechanism for maintaining 

sanity?) I think it really amounts to a statement of what we are able to measure, 

compute, or understand. 

Observationally, I view the situation in steps of "toughness", i.e. how difficult 

it is to obtain certain types of information from spectral line shapes. Roughly these 

can be grouped into 

1) line widths - typically a half width is measured but we get no information 

about what causes the broadening. 

2) line broadening - where shapes as well as widths are measured and we begin to 

discern the characteristics of broadening resulting from rotation or macro-

turbulence . 

3) the details - we see line asymmetries or other structure; we measure true 

central line depths. Questions concerning the physical mechanisms for turbu

lence can be tackled, T(x) derivations become possible, and non-LTE effects 

can be disentangled. 

https://doi.org/10.1017/S0252921100075230 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075230


76 

Generally, each degree of toughness involves higher spectral resolution and better 

signal to noise. The detrimental effects of line blends also become more bothersome 

as we progress to a tougher category. 

I will concentrate on the second and third categories of toughness and largely 

omit the first one. Part of line analysis is knowing how good the data is. We now 

consider modern capabilities in stellar spectroscopy. 

2. Observational Considerations 

The number of stars available for high resolution studies is restricted in prac

tice by photon rate limitations. Typically 20 mA/pixel is appropriate for work on late-

type stars for a resolution of -50 mS (-3 km/sec). A 20 iS slice is pretty tiny when 

it comes to building up good photon statistics. Everyone knows that signal to noise 

,/, 
goes as N but also recall that the time required to collect a given number of pho

tons varies as the cube of the resolution (or if multielement detectors are used and 

the size of the field is not of interest, then as the square of the resolution) . In 

the resolution regime I am considering here, even 3-4 magnitude stars begin to look 

faint. Large telescopes are important for bright star work. 
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I have recently compared line measurements made with four totally different sets 

of equipment in order to see what errors exist with modern measurements. As you know, 

past comparisons have shown errors of 10-20% to-be common (e.g. Wright et al. 1964, 
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Conti and Frost 1977). Fig. 1 shows Fe I X6253 in Arcturus as measured by M. Smith 

using a Reticon on the McDonald 2.71 m telescope coude and by myself using a Digicon 

on the U.W.O. 1.22 m telescope coude. After allowances for differences in scattered 

light, the average deviation over ±0.4 A is 0.7%. Fig. 2 shows a similar comparison 
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for Fe I A6065 in Arcturus. The measurements of Wynne-Jones were done using the 2.50 m 

Herstmonceux telescope to feed a Michelson interferometer. The average deviation here 

is 0.8%. Fig. 3 shows a comparison of photographic measurements made by Griffin with 

mine. The average deviation is 1.0%. A more detailed discussion of this material is 

being published in the P.A.S.P. 

I conclude that line shapes can currently be measured with errors <1%. This is 

still not as good as in solar work, but it is good enough to start doing some physics. 

Caution though. We still have a range of up to 5% in zero-level (scattered light?) 

differences. This is a crucial point for T(T) derivations because there we need line 

center residual fluxes. Relatively large uncertainties in zero level is one reason why 

I place the measurements of central line depths in toughness category 3. 

3. Analysis in the Fourier Domain 

a) Basic Concepts 

The general discussion of line analysis in the Fourier domain is available in 
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several places (e.g. Gray 1976, 1977, 1978; Smith and Gray 1976) and I will assume 

that you are somewhat familiar with the process. 

First, I wish to show you fig. 4. It is 

a reconstructed profile - or rather two ver

sions of a reconstructed profile - with 

slightly different Fourier noise filters. 

The noise level in the original data is about 

2% (not bad by stellar standards). Both fil

ters are reasonable and possible choices. I 

think you will agree that differences in 

these reconstructions are uncomfortably 

large. In principle it is possible to get 

"better" data, i.e. data with lower noise 

and higher resolution. But that is costly in 

observing time and may be impossible in prac

tice. Rather, one can avoid the noise filter 

problem by performing the analysis in the 

Fourier domain. 

A basic point of what happens is illus

trated in fig. 5. Here several common trans

forms are compared. Clearly, in order to 
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distinguish between them, it is necessary 

to measure high enough in frequency and 

with low enough noise to resolve the dif

ferences where they occur. 

Fig. 6 emphasizes the signal/noise 

behavior. For a noise level n , only the 

top of the main lobe can be seen. As 

higher photon counts are reached, the 

high frequency, low amplitude structure 

is revealed - the details we need to do 

the science. Notice that the signal/noise 

is a strong function of a and that the 

signal is concentrated to limited a bands, 

e.g. the first sidelobe. 

It was with these tools that I at

tacked the classical problem of separating 
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macroturbulence from rotation. If we think way back, we recall that most people used 

to assume isotropic Gaussian macroturbulence, and it was repeatedly stated that one 

could not distinguish macroturbulent from rotational broadening except in a statisti

cal sense. Fig. 5 already showed why this was the case and what needed to be done to 

•solve the problem. At low spectral resolu

tion, the two broadeners look the same. It 

was necessary to push the observations to 

the region where they are unique. That has 

been done. Further, under certain assump

tions, it is possible to allocate a certain 

fraction of the line's macrobroadening to 

macroturbulence and the remainder to rota

tion. Obviously this process has meaning 

only within the context of its basic assump

tions - no different than any other opera

tion in science. 

b) Convolutions and Disc Integrations 

Initially I used the convolution ap

proximation to combine the effects of macro

turbulence and rotation. This is a valid ap

proximation for some types of macroturbu

lence and the classical treatment of rota

tion. But as more involved models come into 

use, it was necessary to do integrations 

over the disc (rather costly). The convolu

tion approximation can be used if the func

tions are independent of position on the 

disc (9). Otherwise integration over the 

disc cannot be avoided. Still, as a thinking tool, the convolution approximation can 

be very useful. 

Numerical experiments also show that in many applications the full convolution 

approximation is good to a few per cent. If, for example, we replace the G(X)*M (X) 

convolution, where G(A) is the rotation profile and M (X) is the radial-tangential 
Kl 

macroturbulence profile, with a disc integration, we gain the inclusion of limb dark

ening and a more rigorous treatment of the macroturbulence broadening which is 6 de

pendent. Assuming equal weighting of radial and tangential components, the disc inte

grations turn out to give 6 to 

ulation. This is almost exclusively a result of limb darkening reducing the broadening 

of the tangential component. 

In addition, we should include the center to limb variation in the I profile for 

a complete and proper disc integration. For the solar case, where we can measure this 

i i i i i i i 11 _ i i ' i i i 1 1 1 

a (sec/ km] 

F-tg. 6. The wacie level can o{ten ofa-
iawie. the. AjiioHmaXA.on contained -in the. 
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larger values for £ than does the convolution form-
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change, it is small enough so that neglecting it still gives reasonable results for 

?RT and v sin i (Gray 1977). For other stars, we do not know the 8 dependence so we 

cannot put it into the disc integrations even if we want to. We may, of course, pos

tulate a model which gives the 6 dependence and then the complete integration can in

deed be done. The postulated model will have to produce a substantial 6 dependence 

to have much of an effect on the analysis. 

Another basic uncertainty exists in the 1^(9) profile. That is the depth depend

ence of modeled broadening parameters, e.g. microturbulence dispersion, ?. It is pos

sible to postulate such large gradients in 5 that virtually any shape can be manufac

tured for 1^(6) profiles. It quickly becomes a numerical exercise reminiscent of epi

cycles. Fortunately in many cases the Iv(e) profile is significantly narrower than 

the macrobroadening. 

c) Precision in Fourier Analysis 

Now let me be somewhat more specific 

in discussing the precision involved once 

a model has been adopted. We expect quite 

generally that the greatest precision will 

be obtained for the dominant component of 

broadening. If we apply the micro-macro-

turbulence plus rotation model to K giant 

analyses, then macroturbulence dominates, 

rotation comes next, and microturbulence is 

smallest. In fact it is even surprising that 

any information can be obtained on micro

turbulence in the presence of the two larger 

broadeners. But we are fortunate in this 

case because the first zero and the side-

lobe structure of the transform are sensi

tive to the saturation of the line. 

If classical depth independent micro

turbulence of dispersion £ is introduced 

into the calculation, it is possible to fix 

5 to within 0.1 km/sec (fig. 7). Larger er

rors appear in the observed position of the 

first zero making the errors in £ more typi

cally ±0.1 km/sec. 

Systematic errors can also come in here 

because the derived value of £ depends on 

T(T) and non-LTE effects. In a recent com

parison (Gray and Martin 1979) of SMR K giants 

with normal K giants, where temperature differences of up to 180 °K occur near log 

_i i i i I i 
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x = -3, the derived values of £ change by 0.2 to 0.3 km/sec which is about 20% 

of the value of. £. 

The toughest part of the K giant line broadening analysis though is choosing the 

ratio v sin i/C„m(fig. 8). Errors in this ratio lead to modest errors in C , typi-
RT RT 

cally ±0.3 km/sec (about 7% of c ) but significantly greater errors in v sin i, typ-
RT 

ically ±0.5 km/sec (>20% of v sin i) . The leverage is good for macroturbulence but 

poor for rotation. The leverage will be reversed in early type stars where rotational 

broadening dominates. 

Some idea of external consistency can 

t>e gained by a comparison of results between 

workers. For four stars measured by both M. 

Smith and by me, the average deviation from 

a 
S 
< 
DC 
UJ 

cc 

o 

0.01 J_ 

the mean in £ was 6%. Rotation values 

0.1 1.0 
a in sec/km 

were only consistent to -35%. 

d) Versatility of Transform Analysis 

As you can see, the ideas of Fourier 

transforms are very useful in conceptual

izing data collection and analysis. Curi

ously enough, I received a manuscript not 

long ago from a competent theoretician in 

which he spoke of "overcoming" the most 

serious "flaw" that exists in present 

Fourier-analysis techniques. By this he ap

parently meant that he preferred his own 

models over those used in the past. From my 

point of view this is an asset not a flaw. 

We can incorporate new modeling into the 

Fourier analysis at will. The classical 

micro-macroturbulence-rotation model is only one of several possibilities and the value 

of the Fourier domain is in no way restricted to this model. 

The Fourier analysis is particularly suited for discerning small systematic dif

ferences in profile curvature where measurements over the whole profile can be brought 

to bear. (This is exactly the case for macroturbulence vs. rotational broadening.) In 

some other instances it will be more suitable to use the profile itself. 

F-cg. $. The. izpa/icution ofa macAotu/ibu-
Itnce. ^hom lotcutcon de.pendi on ahooi-Lng 
one 0(5 tkue. auAvej, Ifiom the e.niemble. on 
the. bcu,<L& o& it* ihape. {{torn Ghay 1.977). 

Analysis in the Wavelength Domain 

It is pretty hard to see the central depth of a line in the Fourier domain. More 

generally, if we seek source function information, we will want to use the profile it

self. I am thinking of the Eddington-Barbier relations and their generalization in 

terms of contribution functions. We are then forced to live with the uncertainty of 
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the noise filter and the observations become tougher. 

A typical wavelength domain analysis consists of synthesizing the theoretical 

line profile and comparing it to the observations. If significant Fourier noise fil

tering has been made on the data, then the same filter should be applied to the theor

etical profile. 

But rather than dissipate my remaining time discussing various innuendoes of pro

file fitting, I will concentrate on one interesting case where profiles tell more than 

their transforms, namely the measurement of line asymmetries in photospheric lines of 

late-type stars. One might expect that the imaginary component of the Fourier trans

form would be the appropriate tool since it is a measure of asymmetry in functions. 

But it turns out that the imaginary component is too sensitive to small blends and 

noise in the continuum. Furthermore, the asymmetries in these lines involve only a 

fraction of the whole profile (unlike UV lines in early type stars) which effectively 

removes one of the leverages of the Fourier analysis. Using the profile against its 
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mirror image produces a result like the one in fig. 9. These are solar flux measure

ments taken from the atlas of Beckers et al. (1976). The process shows very well the 

familiar red shifted core but neglects the small red shift of the far wings which can 

be seen only with difficulty. 

The traditional measure of asymmetry is the line bisector. It has been used fre

quently in solar work but is less appropriate in the stellar case. To use it, one 

needs oversampling of the data and excellent signal to noise. The bisector allows us 

to compare small sections of the profile with each other. The profile reflection scheme 

of fig. 9 reduces the subdivision of the profile to the point where we are comparing 

the core to the wings. The amplitude and width of the difference curve is used to 

parameterize the asymmetry. 

Another example is given in fig. 10 where we see the asymmetry in a profile of 

Arcturus. Here the core is blue shifted. 

Notice that the accuracy of the spectrophotometry must be v2 times better than 

the amplitude of the difference curve just to detect the effect. Difference curve amp

litudes are 2-3%. (Details are being published in the Ap.J.) In addition, one has to 

worry about spectrograph focus errors and aberrations which can make the instrumental 

profile asymmetric. These are reasons for placing line asymmetry measurements in tough

ness category 3. 

5. Summary and Comments 

High resolution observations (~3 km/sec) with photometric errors of Sl% can be 

made and are capable of giving physical information about stellar turbulence. There 

is no one technique for analyzing such data. We can use the advantages of the wave

length domain or the Fourier domain or other transformations yet to be invented ac

cording to which of them proves to be the most suitable for the job at hand. 

Details of Fourier analysis philosophy and application illustrate the versatil

ity and power in separating line shapes. Uncertainties in modeling remain the biggest 

obstacle to complete analysis. Adoption of the microturbulence-macroturbulence-rotation 

model of the broadening allows precision of a few per cent in determining the size of 

the largest broadener (macroturbulence for late-type stars). 

Line asymmetries in late-type stars are more readily measured in the wavelength 

domain than in the Fourier domain. Examples of asymmetries as seen in Arcturus and 

the solar flux spectrum are given. 

We are in a reasonable position for identifying physical mechanisms responsible 

for stellar line broadening. It is important that theoretical calculations based on 

various models be explicit in tagging features which are distinct for that model. 

Then if these features can be observed, they will serve as discriminatns between the 

physical mechanisms now lumped together under the name turbulence. I am optimistic 

as I look toward future possibilities. 
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