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Abstract

Conservation laws for partial differential equations can be characterised by an operator,
the characteristic and a condition involving the adjoint of the Frdchet derivatives of this
operator and the operator defining the partial differential equation. This approach was
developed by Anco and Bluman and we exploit it to derive conditions for second-order
parabolic partial differential equations to admit conservation laws. We show that such
partial differential equations admit conservation laws only if the time derivative appears in
one of two ways. The adjoint condition, however, is a biconditional, and we use this to
prove necessary and sufficient conditions for a certain class of partial differential equations
to admit a conservation law.

1. Introduction

In this paper we study conservation laws for second-order parabolic partial differential
equations (PDEs). In particular, given a PDE of the form

uxx-F(u,ux,u,) = 0, (1.1)

we are interested in determining the class of functions F that lead to conservation laws.
Much of the research on conservation laws centres around applications of Noether's
theorem, which requires the existence of a Lagrangian. Recently, however, results
have been obtained for non-Lagrangian systems through a procedure developed by
Anco and Bluman [1,2]. The advantage of this procedure is that, in the Lagrangian
case, it bypasses the actual formulation of the Lagrangian, and more importantly, it
is applicable to non-Lagrangian systems. The results in this section are based on the
work of Anco and Bluman and Olver [4], Although generalisations are available (see,
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for example, Anco and Bluman) we limit our discussion to scalar functions of two
independent variables and scalar PDEs. In this section we introduce some basic results
and notation. The account is intended to be primarily descriptive, and the notation
follows that used by Olver.

L e t / : Q —> K be a function of two independent variables x and t defined in some
region Q c R2, and let u{k) denote the set of k^-order derivatives of u. Thus «(1) =
[ux, u,}, M(2) = [uxx, uxl, «„}, etcetera. We use the notation (x, t, u, «(I), . . . , u(n)) to
denote the vector consisting of x, t, u and all the derivatives of u up to and including
the n^-order derivatives. We shall assume here that u is in the function space C(Q),
where q is some integer sufficiently large so that any partial derivatives required exist
and are continuous.

Recall that the n* prolongation of a function u is defined as

prwu={u,u(X) u(n)};

for example,

pri2)u = {«, M( 1 ) , M( 2 )} = {u, ux, u,, uxx, uxl, «„} .

Let U c C(Q). The /z-jet space associated with M = S2x U will be denoted by M(n).
This space has elements of the form (x, t, u, u(l),..., «(n)), that is, (x, t) x pr(n)u.

Let H : U -> C°(fi) be an n^-order differential operator. The operator H
may also be regarded as a function defined on M(n), and we thus use the notation
H[u] = H{x, t, u, M(1), . . . , «(n)) where convenient. We shall assume that H is
smooth with respect to the variables in M{n). In this section, we are concerned with
conservation laws associated with the PDE

H[u] = 0. (1.2)

Recall that a conservation law for (1.2) is a relation of the form

V-Pt«] = D,/'1t«] + D/A>2[«] = 0, (1.3)

which is satisfied for any solution u to (1.2). Here P = (Pi, P2) represents the
conserved flux and density respectively, and the Pk : U —»• C'(fi) are generally either
partial differential operators or integro-differential operators. In (1.3), Dx and D,
denote the total derivative operators with respect to x and / respectively.

If (1.3) is a conservation law for (1.2), then it can be shown ([4, p. 266]) that there
exists an operator Q such that

VP[u] = Q[u]H[u]. (1.4)

The operator Q is called the characteristic of the conservation law. The characteristic
is said to be trivial if Q[u] = 0 for all solutions to (1.2); otherwise it is called
non-trivial.

https://doi.org/10.1017/S1446181100013407 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013407


[3] Conservation laws for 2nd-order parabolic PDEs 335

Conservation laws are usually determined via Noether's theorem. In order to apply
this result the PDE (1.2) needs to have a Lagrangian formulation and to be reformulated
as a variational problem involving some functional K : U —>• OS of the form

K[u]= / L[u]dxdt. (1.5)
Jn

The operator L is a partial differential operator called the Lagrangian. Noether's
theorem requires the construction of a Lagrangian L such that any solution to (1.2)
corresponds to a stationary value for the functional K. A necessary condition for a
function u e U to yield a stationary value for K is satisfaction of the Euler-Lagrange
equation

E{L[u\) = 0, (1.6)

where E is the Euler operator defined by

Here J is a multi-index that takes arguments such as 0, *, /, xx, xt, tt, xxx et cetera,
with M0 = u, and for J = k\kx • • • km (kj = x or t),

Dj = DklDk2-Dkm

and

The partial derivatives in the definition of E are with respect to the jet space variables.
For example, if L[u] = 1 + uu\ + uj + uxlu,, then

3L 3L dL dL
= -z Dx- D,— + DXD,du dux du, dux,
= u] -2u\ -2uuxx.

Noether's theorem requires the PDE H[u] = 0 to be identified as the Euler-Lagrange
equation for some variational problem.

Noether's theorem connects conservation laws with variational symmetries. These
symmetries are defined as a connected group of transformations with infinitesimal
generators

X = £,(*, t, «)— + £2(*. t, «)— + <Hx, t, «)—,
ox 6t du
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such that the prolongation operator Xpr{"\ defined by

*"<"> = £,(*, t, I I ) / • +b(x,t, n)f
ox at

where \J\ < n, satisfies the equation

() L[u]V-l; = 0,

for all (x, t, u, w(I), . . . , M(n)) € MM. Here f = (£,(*, r, u), f2(x, t, «)). Now if
2 is a characteristic of a variational symmetry, that is, XQ = Q[u]d/du, where
Q[u] = <t>—%\Ux—% 2 «». then Noether's theorem indicates that Q is also a characteristic
of a conservation law. In this manner the determination of conservation laws is reduced
to the determination of variational symmetries. Olver [4] and Bluman and Kumei [3]
discuss Noether's theorem in more depth. The point is that in this formulation one
must first derive a Lagrangian in order to determine the symmetries, and this can
prove computationally awkward. Note that, in general, an operator H need not have a
Lagrangian so that Noether's theorem is applicable to only a special class of operators.

The method developed by Anco and Bluman relies on two results, the proofs of
which can be found in Olver. The first result concerns the role of null-Lagrangians in
the theory. An operator L defined on the space M" is a null-Lagrangian if E(L[u]) = 0
for all u € U. The following theorem indicates that the kernel of the Euler operator is
the space of total divergences.

THEOREM 1.1. An operator L is a null-Lagrangian if and only if there is an operator
P = (P,, p2) such that L[u] = V • F[u],forall u e U.

Suppose now that V • P[«] = 0 is a conservation law for (1.2). Then there is a Q
such that Q[u]H[u] = V • P[w] and since E(L[u]) = 0 for all u e U we have that

E(Q[u]H[u]) = J2(-D)j-£-
au

The last calculation brings to the fore operators corresponding to Frechet derivative ad-
joints. Briefly, the Frechet derivative DH of an operator H acting on some operator Q
is given by
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and the adjoint of DH, denoted by D*H, is given by

For example, if H[u] = H(u, ux, «,, uxt), then

3H dH dH dH

du dux du, dux,
and

DXD,Q

In terms of the adjoints of the Frechet derivatives DH and DQ, the condition

E(Q[u]H[u]) = 0

is equivalent to

* * 0 . (1.7)

Now, it is well-known that if H [u] corresponds to some Euler-Lagrange equation then
the Frechet derivative DH is self-adjoint, that is, DH = D*H, and for this case we
recover the familiar equation

DH(Q) + D*Q(H) = 0, (1.8)

which is a necessary and sufficient condition for Q to be the characteristic of a
variational symmetry (see, for example, [4, p. 333]). The equation governing a
conservation law, however, is (1.7) (not (1.8)) and it is certainly possible that this
equation can be satisfied regardless of whether a Lagrangian formulation is available.
The next result ([4, p. 333]) shows that (1.7) characterises conservation laws.

THEOREM 1.2. An operator Q is a characteristic of a conservation law for the PDE
H[u] = 0 if and only if (1.7) is satisfied for all u e U.

Armed with Theorem 1.2, it is possible to generate conservation laws without
appealing to Noether's theorem directly. Suppose for example Q[u]H[u] represents a
conservation law for (1.2). Then for any solution u to (1.2) we have that D*Q(H[u]) = 0
and consequently the operator Q must satisfy the condition

Dt
H(Q[u]) = 0, (1.9)

for any solution u to (1.2). Note that if DH is self-adjoint, then (1.9) reduces to
the condition that Q is either a point or generalised symmetry of (1.2), though not
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necessarily a variational symmetry. If DH is not self-adjoint we can still use (1.9)
to determine the possible operators leading to characteristics of a conservation law.
As with the self-adjoint case, there is no guarantee that a solution to (1.9) gives a
characteristic to a conservation law because (1.7) must then be satisfied for all u e U
and not just for solutions to H[u] = 0.

Once a characteristic for a conservation law has been identified, there exist for-
mulae for extracting the corresponding conservation law. A general formula based on
homotopy invariance is given in Anco and Bluman [1,2]. In practice, this formula
can prove formidable to implement, but it is often possible to deduce the conservation
law by more elementary means (for example, integration by parts).

Theorem 1.2 is particularly interesting because it is a biconditional. Suppose that
H[u] = 0 has a conservation law V • P[M] = 0. Then there is some characteristic
Q such that V • P[«] = Q[u]H[u]. Now the operators Q and H must satisfy (1.7)
for all u e U by Theorem 1.2. The existence of a conservation law thus places some
restrictions directly on the operator H. In the next section we use this observation
to deduce the forms a second-order parabolic PDE must take in order to have a
conservation law of prescribed order.

2. Parabolic equations

Consider a parabolic PDE of the form (1.1). We assume that F is a function twice
continuously differentiable with respect to the indicated arguments and that

Fu, * 0, (2.1)

so that (1.1) does not reduce to an ordinary differential equation.
Suppose that there exists a conservation law for the PDE and let Q be a corre-

sponding characteristic. At this stage we must place some restrictions on the highest
order derivatives appearing in the characteristic. This restriction limits the highest
order derivatives appearing in the equation V • P[u] = 0. Suppose for definiteness that
we limit our investigation to conservation laws with smooth first-order characteristics.
This means that the operator Q may be regarded as a smooth function of x, t, u, ux and
u, and we thus write Q[u] = Q(x, t, u, ux, «,). We will assume that Q is a non-trivial
characteristic.

The Frechet derivative of H is

DH(Q) = D]Q- FUDXQ- FUlD,Q- FUQ,

so that the associated adjoint operator is

D*H(Q) = D]Q+ Dx(FUi Q) + D,{FUl Q) - FUQ. (2.2)
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Note that in general D*H ^ DH, so that (1.1) is not, in general, an Euler-Lagrange
equation. Similarly,

D*Q(H) = -DAQu.H) - D,(QU,H) + QUH. (2.3)

The operators Q and H must satisfy (1.7), and substituting the above operators into
this equation gives (after a tedious calculation) the relation

Wiuxx + W2ux, + W3u
2
x, + W4un + W5 = 0, (2.4)

which must be satisfied for all u e U. Here

Wi = Qxu, + ux QUUx - Q,u, - u, QUUl +2QU

W2= QXUl + uxQUUl

W3 = QUlU,,

and

Ws = ulQuu + ux (2QXU + (FQ)UUJ + u,(FQ)uu, + Qx

Since (2.4) must be satisfied for all u e U we may regard x, r, u and the derivatives of
u as jet-space variables. Now, the only term in (2.4) containing uxx is Wt uxx and hence
we have that W, = 0. Similar arguments indicate that Wk = 0 for k = 2, 3, 4 and
these equations imply W5 = 0. These five equations place restrictions on Q and F.
Theorem 1.2 implies that satisfaction of these equations is a necessary and sufficient
condition for F to have a conservation law with characteristic Q.

The equation VV3 = 0 implies that Q must be of the form

Q = Au, + B, (2.5)

where A and B are functions of x, t, u and ux. The equations W3 = 0 and VV4 = 0
imply

)u,u, = FUlU, Q + 2FU, QUl + FQu,Ui

and (2.1) and (2.5) imply that this condition is equivalent to

- * * - . (2.6)
Au, + B
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There are two cases to consider. These cases correspond to whether or not Q depends
on u,.

Suppose that A ^ 0 . Since F does not depend explicitly on the variables x and t,
the quotient FUI/FUIUI does not depend explicitly on these variables; hence the quotient
B/A depends only on u and ux. Let C = B/A. Equation (2.6) implies that F must
be of the form

F = -^-p + E, (2.7)
u+ C

where K and E are functions of only u and ux.
Suppose that A = 0. Then

Q = B(x,t,u,ux), (2.8)

and (2.6) implies that FUlUi = 0 so that F is of the form

F = Ru, + S, (2.9)

where R and 5 are functions of only u and ux.

It is of interest to note that if the PDE (1.1) has a conservation law then the derivative
u, can appear in the equation in only two different ways. More formally, we have the
following result.

THEOREM 2.1. If the PDE (1.1) has a conservation law with a non-trivial smooth
first-order characteristic Q then either F is of the form (2.7), in which case Q is of
the form (2.5); or F is of the form (2.9), in which case Q is of the form (2.8).

The above theorem provides a necessary but not sufficient condition for a second-
order parabolic PDE to admit a conservation law. If F is of one of the forms specified
in the theorem, there is no guarantee that the corresponding PDE has a conservation
law since F and Q must still satisfy the remaining equations

W, = QXUx + ux QUUt - QtUi - u,QUUi +2QU + (F(?)„,„ , = 0, (2.10)

W2 = Qxu, + ux QUUi + (FQ)UMKI = 0, (2.11)

Ws = u\Quu + ux (2QXU + (FQ)UUi)

+ u,(FQ)uyi + Qxx + (FQ)XU, + (FQ)lu, - {FQ)U = 0. (2.12)

The above equations place restrictions on functions such as A and B that arise from the
integrations to get the forms for Q and F. If the functions introduced through these
integrations satisfy these equations then Theorem 2.1 shows that the corresponding
PDE has a conservation law. Equations (2.10)—(2.12), however, provide less tractable
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information about the form of Q and F. In fact, the characterisation problem is
underdetermined with regard to the dependence of F on u and u,. There is considerable
freedom in this system. We illustrate this by a simple example.

Suppose that F is of the form (2.7). Suppose that we specify the characteristic as

Q = u, + C,

where C is a given function and that we also specify that E = 0. We will show that
even after these functions are prescribed there exists a K such that the PDE

H[u] = uxx- —^— = 0
u, + C

has a conservation law. Now,

Q[u]H[u] = uXIu, + C(u, ux)uxx - K{u, ux)

= Dx(uxu,) - D,{u2J2) + C(u, ux)uxx - K(u, ux).

The above expression can certainly be written in a divergence form if K is chosen so
that Cuxx — K is a perfect differential. Let MUx = C. We need only to find a function
K so that for Mu = —K/ux the compatibility condition

8C 3_ /K_\
du dux \ux)

is satisfied. Evidently we may choose

f dC
K(u,ux) = -ux I —dux.

For example, if C = uux + u2, then we can choose

/

M3

(ux + 2 u ) d u x = - - ^ - \

Then M = uu2
x/2 + u2ux and the conservation law is

3. A characterisation of parabolic equations

The results of Section 2 can be used to determine certain classes of PDEs that admit
conservation laws. Here, we focus on PDEs of the form

H[u] = uxx - a(u)u, - b(u)ux - c(u) = 0, (3.1)
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where a, b and c are smooth functions of u, but it is clear that the method can be applied
to more general cases. The problem is to find necessary and sufficient conditions on
the functions a, b and c so that the PDE (3.1) has a non-trivial conservation law. We
retain assumption (2.1) so that in this analysis

a(u) jk 0, (3.2)

and we restrict our attention to smooth first-order characteristics.
It is clear that any PDE of the form (3.1) satisfies the conditions of Theorem 2.1

since it is of the form (2.9), where R = a(u) and 5 = b(u)ux + c(u). The PDE (3.1)
has a conservation law with a first-order characteristic if and only if the characteristic
is of the form (2.8), that is, independent of u,, and the functions a, b and c are such
that (2.10H2.12) are satisfied.

Since Qu, •= 0, (2.11) implies ( F 0 M , = (Fu,Q)Ux = a(u)Qu, = 0, and (3.2)
thus implies that QUM = 0, that is, Q = Q(x, t, u). Equation (2.10) implies Qu = 0,
and hence Q = Q(x, t). Equation (2.12) implies that

Ox, + a(u) Q, + b(u) Qx - c\u) (2 = 0. (3.3)

We thus have the following result.

THEOREM 3.1. A PDE of the form (3.1) has a conservation with a non-trivial
smooth first order characteristic if and only if Q = Q(x, t) and the functions Q, a, b
and c are such that (3.3) is satisfied for allx, t and u.

We now study the conditions that (3.3) places on Q, a, b and c in detail. Equation
(3.3) must be satisfied for all x, rand u, and differentiating this expression with respect
to u and dividing by Q gives

Q), + b'(u)(\n Q)x - c"(u) = 0. (3.4)

Differentiating (3.4) with respect to x gives

a'(«)(ln Q)x, + b'(u)(ln Q)xx = 0, (3.5)

and differentiating (3.4) with respect to t gives

« » ( l n Q),, + 6'(ii)(ln Q)xl = 0. (3.6)

Equations (3.5) and (3.6) highlight four cases characterised by whether a'(u) and/or
b'(u) vanish.

Case 1: a'(«) £ 0, b'(u) £ 0. Suppose that a'(u) £ 0 and b\u) / 0. Then (3.5)
and (3.6) imply that either

(In Q)xl = (In Q)xx = (In Q)t, = 0 (3.7)
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or

a'(u) (In Q)xx (In Q)xl

b>(u) (In Q)x, (In Q)tt
(3.8)

Subcase la. Suppose that (3.7) is satisfied. Then In Q must be of the form
In Q = at + fix + y, where a, /5 and y are constants; hence

Q = Te°<+f>*t (3.9)

where T is a nonzero constant.
Equation (3.4) implies

aa'(u) + pb\u) - c"(u) = 0,

that is,

aa{u) + Pb(u) •= c'(u) + 8,

where S is a constant of integration. Equation (3.4) shows that 8 = 0 and therefore

= d{.u). (3.10)

Subcase lb. Suppose that (3.8) is satisfied. Since a and b depend only on u and Q
depends only on x and t there is a constant Aj such that

Equations (3.5) and (3.11) imply

d- = A,(In Q), + (In Q)x, (3.12)

and consequently there is a constant A2 such that

Hence for this case the functions a, b and c satisfy the relations

a(u) = A,b(u) + ku (3.14)

+ k2. (3.15)

We can obtain the characteristic by noting first that (3.12) and (3.13) imply

, + ( l n 0 x = A2. (3.16)
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Equations (3.3), (3.14) and (3.15) imply

+ ^ - (A,(In 0 , + (In Q)x - A2) = 0;

hence, by (3.16),

Qxx + k1Q, + k2Qx=0. (3.17)

The Qt term in the above PDE can be eliminated using (3.16) and thus

Qxx+^Qx + X2Qx=0, (3.18)

where Xx = —kx/K\, X2 = k2 — A 2 /Ai . Hence, assuming that X\ — AX2 ^ 0,

Q(x,t) = A(t)e»>x + B(t)e™, (3.19)

where the constants /X* are the (possibly complex) roots of /u.2 + XXfx + X2 = 0.
Substituting expression (3.19) into (3.17) gives

e*" (fc.A'(f) + <JJL* + k2)A{t)) + e^ (Jk,B'(*) + (ji\ + k2)B(t)) = 0,

which must be true for all x and t. Since /X] ^ /x2, we have

*' and B(t) = p2e"

where )8y are constants. Note that if X\ - AX2 = 0, so that \i\ = /x2, we could still
determine Q using the basis functions e^x andxe"".

Case 2: a'(«) ?& 0, b'(u) = 0. Suppose that a'(u) ^ 0 and b(u) = b = constant.
Equation (3.4) implies that there is a constant A such that

c"/a' = Ai(ln 0), = A; (3.20)

hence

c'(u) = Aa{u) + k, (3.21)

where it is a constant. Equation (3.5) indicates that In Q is of the form

In Q = hl(t) + h2(x),

and (3.20) shows that h\(t) = At + r), where r\ is a constant. The characteristic is
thus of the form

Q = YeA'+/l2(*>, (3.22)
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where T is a non-zero constant. Substituting this expression into (3.3) and using
relation (3.21) gives the Riccati equation

h"2(x) + (h'2)
2 + bh'2 - * = 0, (3.23)

which, assuming b2 + 4k ^ 0, has the general non-trivial solution

h'Jx) =

Here cij are arbitrary constants (not both zero) and fa are the (possibly complex)
solutions to the equation /32 + bfi - k = 0. (If b2 + 4k = 0, then /?, = ft and we
can replace the function e^x with xe^x and its derivative to get a general solution.
If k = 0 then the trivial solution h = 0 is a possibility, but even this solution leads
to a non-trivial characteristic.) In any event, the characteristic is determined up to
integration constants by (3.22) and (3.23).

Case 3: a'(u) = 0, b'(u) ^ 0. Suppose that a(u) is a non-zero constant a and that
b'(u) 56 0. The calculations for this case are similar to those for Case 2. For this case
we have

c'(u) = Ab(u) + k, (3.24)

where A and k are constants, and it can be shown that the characteristic must be of
the form

Q = Te<*-A2)'/a+A^ (3.25)

where T is a non-zero constant.

Case 4: a'(u) = 0, b'(u) = 0. Suppose that a(u) = a and b(u) — b where a and b
are constants with a ^ 0. In this case (3.4)-(3.6) are satisfied and place no restrictions
on Q. Equation (3.3), however, shows that d\u) = 0 so that c must be of the form
C(M) = k]U + ki, where kt and k2 are constants. Equation (3.3) also implies that any
non-trivial solution Q to the linear PDE

Qxx+aQ, + bQx-kiQ = 0 (3.26)

corresponds to the characteristic of a conservation law.
The analysis of the above cases indicates that in all but Case 4, the characteristics

are determined up to integration constants and that they can be determined explicitly.
If we distil the conditions on the functions a, b and c from the above calculations we
see that there are in fact only two possibilities. These conditions are summarised in
the following theorem.

https://doi.org/10.1017/S1446181100013407 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013407


346 B. van Brunt, D. Pidgeon, M. Vlieg-Hulstman and W. D. Halford [14]

THEOREM 3.2. The PDE (3.1) has a conservation law with a non-trivial first order
characteristic if and only if there exist constants a, fi, y and S such that either the
equation

oa(ii) + 0b(u) = c'(u), (3.27)

or the system

fffl(u) = b(u) + Y (3.28)

C'(M) = pb(u) + S, (3.29)

is satisfied for all u e U.

We finish this section with some examples that recover well-known results and
illustrate the above analysis.

EXAMPLE 1. Any equation of the form uxx — a(u)u, — b(u)ux — c = 0, where c
is a constant, has a conservation law. We can choose a = fi = 0 so that (3.27) is
satisfied. Indeed, we can construct the conservation law directly without appealing to
the analysis, namely, V • (ux — N(u) — ex, —M(u)) = 0, where N'(u) = a(u) and
M'(u) = b(u).

EXAMPLE 2 (Fisher's Equation). Fisher's equation is uxx — K(U, — u + u2) = 0,
where K is a non-zero constant. Here a(u) = K, b(u) = 0 and c(u) = (—u + U2)K.
Since d{u) — (2M — \)K there is no choice of constants or and ft such that (3.27) is
satisfied for all u. Since b(u) — 0 and d is not a constant, there are no constants to
satisfy (3.29). Hence Fisher's equation cannot have a conservation law with a first
order characteristic.

EXAMPLE 3 (Burgers'Equation). Burgers' equation is uxx — K(U, + uux) = 0,
where K is a non-zero constant. Here a(u) = K, b(u) = KU and c(u) — 0. We know
from Example 1 that certainly one conservation law is the equation in divergence
form, that is, V • (ux — KU2/2, —KU) = 0. Burgers' equation corresponds to Case 3,
and we can glean more information from the characteristic. Specifically, since d = 0
we know from (3.24) that A = k = 0. This means that the characteristic Q must be
constant ((3.25)). The relationship (1.4) thus implies that the only conservation law
for Burgers' equation with a first-order characteristic is the equation in divergence
form.

EXAMPLE 4 (The Heat Equation). Consider the heat equation uxx — u, = 0. Clearly
this equation has the conservation law

V(ux,-u) = 0 , (3.30)
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but, in contrast with Burgers' equation, there are many other possibilities. The heat
equation is included in case 4 and any solution to the PDE

Qx, + Q, = 0 (3.31)

will produce a characteristic for a conservation law. The special choice Q = constant
gives the conservation law (3.30). For the general case, if Q is a solution to the PDE
(3.31) and u is a solution to the heat equation then

= V(Qux-Qxu,-Qu) = 0, (3.32)

so that we can readily derive the conservation law given the solution Q.

Steinberg and Wolf [5] studied conservation laws for the heat equation and derived
the PDE (3.31) as a condition for the functional J[u] = f^ Q(x, t)u(x, t) dx to be
constant in time under the boundary conditions

(G«x-Qr«)|!°oo = 0. (3.33)

Given this restriction on the solutions u and Q the invariance of J with respect to
time follows immediately from integration with respect to x of the conservation law
(3.32), assuming that the order of differentiation and integration can be interchanged.
For instance, the solution Q = x produces the first moment J[u\ = f^xu^x, t) dx,
which is constant in time for all solutions to the heat equation satisfying the boundary
conditions (JCM* — K)|!°OO = 0. A more general class of solutions to the PDE (3.31) is
given by the "heat polynomials"

Q(x, t) = vn(x, -t) = f'2Hn (^

where Hn denotes a Hermite polynomial. Each of these solutions produces a distinct
conservation law, and linear combinations of these solutions produce yet more. Stein-
berg and Wolf [5] arrive at the relationship between conserved densities and the heat
polynomials by exploiting symmetry operators of the heat equation. They use the
resulting conservation laws to characterise the time dependence of all the moments of
solutions to the heat equation.
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