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Abstract

The theory of isogeny estimates for Abelian varieties provides 'additive bounds' of the form 'd is at
most B' for the degrees d of certain isogenies. We investigate whether these can be improved to
'multiplicative bounds' of the form 'd divides B\ We find that in general the answer is no (Theorem 1),
but that sometimes the answer is yes (Theorem 2). Further we apply the affirmative result to the study of
exceptional primes t in connexion with modular Galois representations coming from elliptic curves: we
prove that the additive bounds for I of Masser and Wiistholz (1993) can be improved to multiplicative
bounds (Theorem 3).

1991 Mathematics subject classification (Amer. Math. Soc): primary 11G10 (14K02), 11G05.

1. Introduction

Let k be a number field, and let A be an Abelian variety defined over k. Since the
ground-breaking work [F] of Faltings, it is known that there exists a quantity b(k, A)
with the following property. Suppose A* is another Abelian variety defined over k
which is isogenous over k to A. Then there is an isogeny from A* to A, defined over
k, whose degree does not exceed b(k, A). In particular there are only finitely many
Abelian varieties, up to isomorphism over k, which are defined over k and isogenous
over k to A.

In [MW3] (see Theorem II, p. 6 and the last paragraph of p. 23) we obtained an
upper bound for b(k, A) of the form

(1.1) c(max[[k : Q], h{A)})K,

where h(A) is the logarithmic absolute semistable Faltings height of A, and the
constants c, K depend only on the dimension of A.
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[2] Multiplicative isogeny estimates 179

In [MW2] we applied this bound to obtain similar results relating to Tate's Conjec-
ture. For example, we proved (see Corollary 2, p. 213 and the last paragraph of p. 222)
that for every Abelian variety A as above, there exists M, also bounded by something
like (1.1), such that whenever t is a prime number not dividing M, the kernel Ae of
multiplication by I is a semisimple module over the absolute Galois group Gal (£/£).

So in this application the ordinary upper bound or ' additive upper bound' for degrees
of isogenies leads to a similar 'multiplicative upper bound' for the exceptional primes
t\ namely t divides M. It is perhaps natural to ask whether one may obtain such
multiplicative upper bounds for degrees of isogenies themselves; these bounds are
referred to in our title as 'multiplicative isogeny estimates'.

In general, if we have a set of quantities, each with an additive upper bound B,
then we may obtain in a trivial way a multiplicative upper bound BQ. For example,
we can take the product, or, slightly better, the lowest common multiple of all positive
integers up to B. But both of these grow at least exponentially in B. Therefore if B
has the form (1.1), the new bound Bo will not have this form.

In the present note we shall show indeed that there do not exist multiplicative
isogeny estimates of the form (1.1) for arbitrary Abelian varieties A. But on the other
hand we shall show that such estimates do exist in a number of significant special
cases. These have applications to Galois groups for elliptic curves, in the style of
[MW1]; we shall in fact improve all the results of [MW1].

Our negative result is as follows.

THEOREM 1. Let n be a positive integer. Then there do not exist constants c, K,
depending only on n, with the following property. For an Abelian variety A of
dimension n over a number field k, there is a positive integer

bo(k, A) < c(max{[* : Q], h(A)}f

such that if A* is an Abelian variety over k which is isogenous over k to A, there is an
isogeny over k from A* to A whose degree divides bo(k, A).

In other words, multiplicative isogeny estimates do not always exist, at least with
the 'polynomial' bounds (1.1).

Our positive result is as follows. Let us say that the Abelian variety A is a TM-
product over k (standing for Trivial Multiplication) if it is isomorphic over k to a
product A\' x • • • x A]', where Au ... , A, are simple over k, mutually non-isogenous
over k, with trivial endomorphism rings over k. Apart from the field of definition, this
is the condition that appears in [MW1, p. 248, Lemma 2.2].

THEOREM 2. Let n be a positive integer. Then there exist constants c, K , depending
only on n, with the following property. Suppose A is a TM-product of dimension n
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over a number field k. Then there is a positive integer

bo(k, A) < c(max{[A: : Q], h{A)}f

such that if A* is an Abelian variety over k that is isogenous over k to A, there is an
isogeny over kfrom A* to A whose degree divides bo(k, A).

In other words, multiplicative isogeny estimates exist for TM-products, with the
polynomial bounds (1.1).

This fact enables all of the additive upper bounds of [MW1] for elliptic curves to
be improved to multiplicative ones of the same order of magnitude. For example, let
E be an elliptic curve denned over a number field k, and for a prime number t let pL

be the standard representation of F = Gd\(k/k) in the general linear group GL(£f) as
in [MW1]. A fundamental result of Serre in [Se2] (see also [Sel]) says that if E has
no complex multiplication then pt is surjective for all I sufficiently large; this is more
or less equivalent to the assertion that Pt{T) contains the special linear group SL(£t)
for all t sufficiently large.

THEOREM 3. There exist absolute constants c, K with the following property. Sup-
pose E is an elliptic curve defined over a number field k, with no complex multiplication
over k. Then there is a positive integer

M < c(max{[Jt : Q],h(E)})K

such that Pi(T) contains SL(£^) whenever I does not divide M.

The main result of [MW1] implies this for all 'large" t > M. As pointed out in
[MW2, p. 213], the multiplicative version allows us to extend this both to certain
'very small' primes £ (of order log M) and to 'almost all* primes t < M (the number
of exceptions is of order (log M)/(log log M)). But we are still far from any uniform
results: for example it is asked in [Se3, p. 199] if £ > 37 suffices for k = Q
independently of the elliptic curve.

Actually one can define the representation pm of F in GL(£m) for any positive
integer m. Then Theorem 3 implies (see Section 9) that

(1.2) [SL(£ffl) : SL(£m) n pm(T)] < M1

for all square-free m. It would be interesting to have an estimate for arbitrary m not
necessarily square-free; this would quantify the most general assertion (1) of [Se2,
p. 259].

The arrangement of this paper is as follows: We start with the proof of Theorem 2.
This requires some additional properties of the class index introduced in [MW3],
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[4] Multiplicative isogeny estimates 181

which we record in Section 2. Next in Section 3 we eliminate the second Abelian
variety A* by considering instead Galois submodules of the first Abelian variety A.
This enables us to decompose everything into primary factors. Then in Section 4 we
prove Theorem 2 by re-introducing A*.

The proof of Theorem 1 is given in Section 6, using counterexamples that are
essentially elliptic curves. The necessary preparations are carried out in Section 5.

The proof of Theorem 3 requires an elementary number-theoretic lemma that we
give in Section 7. This is used in Section 8 to establish Theorem D, which is a
uniform generalization of Theorem 2 to field extensions of bounded degree. Finally
in Section 9 we give the proof of Theorem 3. We also prove multiplicative versions
of all the other results of [MW1].

2. Class index

Let G be an order as in [MW2]. Thus G is a ring, containing a multiplicative
identity, which is torsion-free and finitely generated as an additive group. Tensoring
over I, we obtain an algebra E = Q <g> G over Q. When E is semisimple, we define
the class index i(G) as the smallest positive integer / with the following property. If
J( is any left ^-module contained in E, also finitely generated as an Abelian group
with the same rank as G. then there is pi in M such that the index \Ji : G\i\ of G^L
in M is at most / .

In [MW2, p. 214, Lemma 2.1] we noted that the class index behaves nicely with
respect to products. Namely

(2.1) i(G{ x G2) < i(Gl)i(G2)

for orders G\, G2
 m semisimple algebras. For the present note we need an analogous

result for matrix rings. Let e be a positive integer. An order G in an algebra E then
gives rise to an order MC(G) in the algebra Me(E) of matrices of order e with entries
in E.

LEMMA 2.1. Suppose (7 is an order in a division algebra. Then i(Me(G)) <

PROOF. Write D = Q ® G for the division algebra. Let nx,... ,ne denote the
additive group homomorphisms from Me(D) to D" obtained by taking the 1st, . . . , et\\
rows of a matrix respectively. Let Ji be an arbitrary left Me(G)-module contained in
Me(D), finitely generated as an additive group, with the same rank as Me(G). Then
JT = (it\,... , 7Tf) gives an additive group monomorphism from ^ to n\ (./#) x • • • x
7re(^#). But if Mi,. . . , //, are the diagonal matrices in Me(G) with zero entries except
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for the entry 1 in the 1st , . . . , eth rows respectively, we have an identity

) , . . - , 7te(xe)) = 7t(UiXi -\ h UeXe)

for X i , . . . , xe in Me(D). This shows that n is actually surjective, and therefore an
isomorphism.

Furthermore, since row interchanges can be effected by left multiplication by
elements of Me{G), we see that n\{^) = • • • = ne(^() = JV, say. This Jf is a
finitely generated additive subgroup of De, with the same rank as Ge'.

But t/K is also a left ^"-module, as we see by considering the action of diagonal
elements of Me(&) on jft'. So its rank over G must be e.

For this situation we defined in [MW3, p. 8] the generalized class index ie(G). It
shows that jV contains a free ^-submodule J/§ of index / < ie(G), which we can
write as a direct sum G/J.I © • • • © G[ie for / ^ j , . . . , fj.e in De.

It follows that Jt = ii~x{jVe) contains ^#0 = n~\^Q
e) of index Ie. Further

^ 0 = Me{G)ii for/x = n~l(fiu . . . , ixe).

Since <dt was arbitrary, we conclude that

However, [MW3, p. 10, Lemma 2.2] implies that ie(G) < {i(G))e, and the inequality
of the present lemma follows at once. This completes the proof.

3. Galois modules

Let A be an Abelian variety defined over a field k. For each positive integer m the
kernel Am of multiplication by m is a Galois module £

LEMMA 3.1. Suppose r and s are coprime positive integers. Then for every Galois
submodule G of Ars there are Galois submodules H of Ar and J of As such that
G = H ®J.

PROOF. It is clear that Ars = Ar © As. Let H and / be the images of the projections
from G in Ars to the factors Ar and As respectively. These are Galois modules. We get
in the usual way (Goursat's Lemma) a group isomorphism between X = H/(G n A,)
and Y = J/(G n As). But X is killed by r, and Y is killed by s. Since r and s are
coprime it follows that X = Y — 0, which leads to G = H © J in the usual way.
This completes the proof.
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[6] Multiplicative isogeny estimates 183

Let End A denote the ring of endomorphisms of A defined over k. For <p in End A
and a positive integer m write kerm cp for the intersection of Am with the kernel ker tp
of (p. For a Galois submodule G of Am we define

fm(G) = min [kerm (p : G]

where the minimum is taken over all tp in End A with G c kerm <p. This is a better
version of the definition in [MW2, p. 222].

LEMMA 3.2. Suppose r and s are coprime positive integers, and H and J are
Galois submodules of A,, As respectively. Then

frs(H®J) = fr(H)fs(J).

PROOF. There are xfr, x in End A with

H c ker,. yjf, i c ker, x

and

/ , ( / / ) = [ker,. yj, : H], fs(J) = [kers x : J].

Using the Chinese Remainder Theorem we can easily find (p in Endi4 such that (p — ty,
cp — x are in r. End A, 5. End A respectively. It follows that

H c ker,. i/f = ker,. cp c ker,s <p,

J c ker5 x = kers y) c ker,s (p.

Therefore G = H © J c kerri ^, and

< [ker,, p : G] = [ker, <p © ker, ^ : G] = / , ( / / ) / , ( / ) .

To get the opposite inequality we note that there is <p' in End A with G c kerr

[kerr j^ ' :G]. So

/ / C ker,. q>', / c ker, cp'

and

/,(/ /) < [ker, <p' : / / ] , /s(7) < [kers <p' : / ] .

Therefore

frs(G) = [ker, ̂ ' © kers <p' : G] = [ker, ^)' : H][kers <p' : J]

which is at least / , ( / / ) / , ( / ) . This completes the proof.
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Now assume that k is a number field, so that the quantity b(k, A) of Section 1
exists.

LEMMA 3.3. For any positive integer m and any Galois submodule G of Am we
have fm(G) < b(k, A).

PROOF. This is by now very standard. Since A* = A/G is defined over k, there is
an isogeny f3 from A/G to A, also defined over k, of degree b < b(k, A). Composing
with the canonical map from A to A/G we obtain (p in End A with G c kerm <p. Also
keryS = (ker^>)/G, so

fm(G) < [kerm <p : G] < [ker^ : G] = b < b(k. A).

This completes the proof.

We can now define
bo(k, A) = max/m(G)

where the maximum is over all positive integers m and all Galois submodules G of
Am. Thanks to Lemma 3.3 we have

(3.1) bo(k, A) < b(k, A).

The following is the crucial step from 'additive upper bounds' to 'multiplicative
upper bounds'.

LEMMA 3.4. Suppose m is a positive integer and G is a Galois submodule of Am.
Then fm(G) divides bo(k, A).

PROOF (compare [MW2, P. 222]). Fix a prime t and consider the fq(Ge) as q runs
over all powers of I and Gt runs over all Galois submodules of Aq. It is clear that
these are all powers of £. Hence each one divides their maximum; call this maximum

be-
We now show that the infinite product f ] be, taken over all primes I, converges to

b0 = bo(k, A). It suffices to prove

(i) Every finite product f~[ bt is at most b0,
(ii) Some finite product J~[ bt is divisible by b0.

For (i) we note that every finite product has the form J~[ fq (Ge). But by Lemma 3.2
this has the form /m(G) < b0.

For (ii) we note that bo is some fm(G). By Lemma 3.1 we can write G as a direct
sum of Gt, and then once again from Lemma 3.2 we see that fm(G) = r j fq(Gt).
And this latter product divides the corresponding product \\ bt.
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Therefore (i) and (ii) are true, and the infinite product f ] bt does indeed converge

Finally choose any fm(G). The argument used in (ii) shows that fm(G) divides
some finite product f] bt. This in turn divides b0, and the proof is complete.

4. Proof of Theorem 2

Let A be an Abelian variety defined over a number field k, and let 6 = End A be
the ring of endomorphisms defined over k. This is an order in a semisimple algebra,
and therefore has a class index i(£7) in the sense of Section 2. Let bo(k, A) be as in
the previous section.

LEMMA 4.1. Suppose i(&) = 1. Then if A* is an Abelian variety defined over k,
which is isogenous over k to A, there is an isogeny over k from A* to A whose degree
divides bo(k, A).

PROOF. There is an isogeny a over k from A to A*\ let m be its degree. Then
G = ker a is a Galois submodule of Am. So there is <p in & with G c kerm <p and
fm(G) = [kerm<p:G].

Consider the left ^-module Jt = 6m + &<p. Since i(0) = 1, there is <p in 6 with
Jt = 6<p. It follows immediately that kerm <p = ker<£>.

We can now reverse the arguments of the proof of Lemma 3.3. We have G c ker<p,
and so q> factorizes through the canonical quotient map from A to A/G. We get an
isogeny ft from A/G to A with ker ft = (ker<p)/G. Thus fi has degree [ker<p : G] =
fm(G). Finally fm{G) divides bo(k, A) by Lemma 3.4, so the isogeny ft does what is
required, since A/G and A* are isomorphic over k. This proves the present lemma.

It is now an easy matter to deduce Theorem 2. If A is a TM-product then & = End A
is a product of matrix rings Me(Z). By Lemma 2.1 each of these has class index 1, so
i(6) = 1 by (2.1). And by (3.1) bo(k, A) is bounded above by an expression of the
form (1.1). This completes the proof of Theorem 2.

5. Elliptic curves

Let p be a prime congruent to 1 modulo 4, let k0 = Qi^—p), and let 6 be the
ring of integers of &0- There is a complex number co ^ 0 such that the elliptic curve
E = E(p) — C/cotf is defined over the field Q(j) for the value j = j ( V - p ) of the
modular function. Then 6 is the ring of all endomorphisms Endc E of E.
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Let Jt be any non-zero ideal in G, and write Ej( for the finite subgroup of x in E
such that [ix = 0 for all /z in Jt. Define the elliptic curve EM = E/E^\ it is clearly
isogenous to E.

LEMMA 5.1. Let /3 be any isogeny from E-^ to E. Then there is an ideal Jt' in
G', belonging to the ideal class inverse to that of' Jt', such that the degree of fi is the
norm N(Jt') of Jt'.

PROOF. The map f3 composes with the canonical map from E to EM to give <p in
G. So as usual E^ c kerip and ker/3 = (ker <p)/E_#. The first inclusion leads easily
to ((p)Jt~[ c G for the principal ideal (<p). It follows that (<p) = JtJt' for some
ideal Jt'. Now the degree of fi is the cardinality of (tp)~x / Jt~x, or just N(Jt'). This
completes the proof.

For a positive integer n let x (n) be the number of positive integer divisors of n. For
any e > 0 it is well known (see for example [HW, p. 260, Theorem 315]) that there
exists c, depending only on e, such that

(5.1) T(n)<cn(

for all n. Henceforth we use c,, c2, • • • also for positive constants depending only on
e.

LEMMA 5.2. For any € > 0 and any positive integer N there are at most C\N(

ideals Jt in G with N(JK) = N.

PROOF. This is also well known, but we give a short proof in order to clinch the
uniformity in the quadratic field k^. Let N = /?,' • • • p'1 be the prime factorization.
Since every prime in Z has at most two prime ideal divisors in G, it follows easily that
the principal ideal (N) has at most (e, + I)2 • • • (e, + I)2 = (T( /V)) 2 ideal divisors.
Since N{Jf) = N, the ideal Jt must be one of these, and the lemma now follows
from (5.1). This completes the proof.

We now regard the elliptic curve E above as denned over the field k = ko(j).

LEMMA 5.3. For any € > 0 we have [k : Q] < c2p
1/2+( and h(E) < c3p

l+e.
Further the class number of G is at least c^1 px/2~(.

PROOF. It is well known (see for example [Si2, p. 122, Theorem 4.3(b)]) that the
class number is [k : k0]. Siegel's Theorem (see for example [L, p. 328, Corollary])
now gives the required field estimates (with ineffective c4).
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Next j satisfies the non-trivial equation Fp(j, j) = 0 for the modular polynomial
FP(X, Y) of degree p + 1. According to [C, p. 390, Corollary] this polynomial
has rational integer coefficients of absolute values at most pCiP. Therefore so has
FP(X, X), and by standard estimates (see for example [W, p. 21, Lemme 1.1.12]) so
has any irreducible factor. It follows from equally standard estimates ([W, p. 20])
that the logarithmic absolute Weil height h(j) is at most c6p log p. Finally from
[Sil, p. 258, Proposition 2.1] we see that h(E) < c^plogp as well (recall that h(E)
is defined with reference to a field with respect to which E is semistable). This
completes the proof.

Presumably we even have h(E) < c3p1/2+f, but we do not need this.

6. Proof of Theorem 1

We start with the case n = 1. We shall assume Theorem 1 false and obtain a
contradiction. Thus there are absolute constants c, K with the following property. For
an elliptic curve E defined over a number field k, there is a positive integer

bo(k, E) < c(max{[k : Q], h(E)])K

such that if E* is an elliptic curve over k which is isogenous over k to E, there is an
isogeny over k from E* to E whose degree divides bo(k, E).

We choose e > 0 sufficiently small, and again we use C\, c 2 , . . . for positive
constants depending only on e. To get our contradiction we take E = E(p) for a
large prime p as in Section 5, with field of definition k = Q.(^/—p, j{~J~p))- It then
follows from Lemma 5.3 that

(6.1) B = bo(k,E) <c{p
lK.

We consider E* = EM as Jt runs over a complete set of ideal class representatives
of 6. Clearly each such EM is isogenous to E over k, so we obtain for each such ̂ #
an isogeny {} from E-* to E whose degree divides B. By Lemma 5.1 we know that
this degree has the form N {M') for some ideal jtf' in the inverse class. So we end
up with different ideals Jt[,... , Jt'h, where h is the class number of 6, such that the
norms

(6.2) N(JK[),...,N(JK'h)

all divide B.
Now these norms might not be all different. But from Lemma 5.2 there are at least

h/(c2B
e) different numbers among them. We therefore have r(B) > h/(c2B

e). On
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the other hand (5.1) gives r (B) < c3B% and therefore (6.1) and Lemma 5.3 lead to
pi/2-f < C4p4«-f p o r e s m a u enough and then p large enough this is impossible. Such
a contradiction establishes Theorem 1, at least for n = 1.

These arguments may easily be extended to arbitrary n > 1. For example, we
can find n — \ elliptic curves E{2), ... , E(n), defined over Q, mutually non-isogenous
over Q, and with trivial endomorphism rings over Q. We then consider the Abelian
varieties A = E x A' and A* = E^ x A' for A' = Ea> x • • • x E(n\ noting that
h{A) = h(E) + h(A') and that every isogeny a from A* to A comes from an isogeny
from EM to E whose degree divides the degree of a. This completes the proof of
Theorem 1.

Underlying these arguments is the following algebraic fact. Since the group-
theoretic index is multiplicative, it might have seemed slightly more natural in Sec-
tion 2 to define the class index as the smallest positive integer / for which all the
indices [^# : Gfi] divide / . However, this 'multiplicative class index', in contrast to
i{@) itself, cannot be estimated polynomially in the discriminant of 6, as in the Class
Index Lemma of [MW3, p. 8]. Indeed the orders 6 above provide counterexamples,
as the argument following (6.2) easily shows.

7. Lowest common multiples

Suppose we have a set of quantities together with additive upper bounds for each
member, of similar orders of magnitude. Then we may obtain a comparable 'simul-
taneous' bound simply by taking the maximum.

Of course this procedure fails for multiplicative upper bounds. We can rescue it in
our particular circumstances by using the following elementary result.

LEMMA 7.1. Let B > 1, C > 1 be real numbers, and let SS be a set of positive
integers. Suppose that for each integer t > 1, any t elements of 2 have lowest
common multiple at most OB. Then the lowest common multiple of all elements of
3S is finite, and does not exceed 4eC Bl+io^c.

PROOF. For each prime number I let B(£) be the largest power of t dividing any
element of 88. Taking t = 1 in our hypothesis, we see that 8$ is a finite set and
therefore B{1) is finite. Now let t > 1 be arbitrary, and let £, I, be different
primes. Then B(t\), ... , B{t,) all divide elements of 88, and so the lowest common
multiple of these elements is at least B(l\) • • • B(£.,). So our hypothesis implies

(7.1)

https://doi.org/10.1017/S1446788700001683 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001683


[12) Multiplicative isogeny estimates 189

Since B(t) = 1 or B(l) > £, there are only finitely many B(l) > 1; suppose there
are exactly s of these, and list them in order of size as

1 < Bx < B2 < ••• < B s .

Write b for the integer part [log B]. Suppose first that s < b. Then by (7.1) the
lowest common multiple of all elements of £8 is

B\ •••Bs < CSB < Bi+iogC

and our lemma is proved.

Otherwise, suppose s > b. Then (7.1) gives not only

(7.2) Bs_fc+1 • • • Bs < ChB < B1+1°8C

but also

{Bs.h)
h+X < B s ^ b - B s < C h + x B .

Therefore

Bs-b < [CBl/ib+l)] < N

for N = [eC]. Thus B{ • • • Bs_h is at most the lowest common multiple of 1 , . . . , N.
This latter is well known not to exceed AN (see for example [RS, p. 71, Theorem 12],
or the less computational [N, p. 128, Corollary]) and so from (7.2) the lowest common
multiple of all elements of & is at most 4NB1+iogC as claimed. This completes the
proof.

For applications it is important that the dependence on the parameter B in the
conclusion of the above result should be polynomial. This does not hold under
slightly weaker hypotheses. For example, if 38 is the set of positive integers up to
A' — exp(2Vlog B), the lowest common multiple of any t elements is at most N',
which is itself at most e' B. But the lowest common multiple of all elements grows
exponentially in N, and so cannot be polynomial in B.

8. Extensions of bounded degree

Let A be an Abelian variety defined over a number field k. We define as in Section 3

bo(k, A) = max fm(G)
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where the maximum is over all positive integers m and all Galois submodules G of
Am. By Lemma 3.4 we know that every fm(G) actually divides bo(k, A).

Now let A' be a finite extension of k. Since every Gal(&/£)-module is also a
)-module, it follows that

(8.1) bo(k,A) divides bo(K,A).

The following result provides a simultaneous multiplicative upper bound for the
bo(K, A) as K runs over all extensions of k of bounded degree, at least if A is a
TM-product in the sense of Section 1. For better comparison with Theorem 2 we state
it in terms of isogenies.

THEOREM D. Let n and D be positive integers. Then there exist constants c(D),
K(D), depending only on n and D, with the following property. Suppose A is an
Abelian variety of dimension n over a number field k, and suppose also that A is a
TM-product over every finite extension ofk. Then there is a positive integer

bo(k, A; D) < c(D)(max{[k : Q], h(A)})KiD)

such that if A* is an Abelian variety, defined over an extension K of k of relative
degree at most D, that is isogenous over K to A, there is an isogeny over K from A*
to A whose degree divides bo(k, A; D).

PROOF. Let SB be the set of bo(K, A) as K runs over all extensions of k of relative
degree at most D. We are going to apply Lemma 7.1. Consider therefore any t
elements bo(Ku A), ... , bo(K,, A) of SB. Then by (8.1) they all divide bo(L, A)
for the compositum L of K\,... , K,. This latter field has degree at most D'd for
d = [k : Q], and so Theorem 2 provides the estimate

bo(L, A) < c(max{D'd, h})K < CB

for

(8.2) h = h(A), C = DK, B = c(max{d, h})K

and constants c, K depending only on n. Thus we can indeed apply Lemma 7.1, and
we find that every element bo(K, A) of SB divides some

bo(k, A; D) < 4eCB]+[ogC.

In view of (8.2) this completes the proof of Theorem D. Note that the dependence on
the parameter D is not polynomial, although this will not matter for our applications,
because D will be absolutely bounded (by 60).
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9. Proof of Theorem 3

We will follow the proof in [MW1], and we will end up with the number M =

2M\M2, where

M, = bo(k, E)bo(k, E; 2)bo(k, E\ 60)

and

M2 = bo(k, E x E)bo(k, E x E; 2)bo(k, E x E; 60).

More careful arguments would probably give M = 2bo(k, E x E\ 60) by itself.
To begin with, since £ is a TM-product, our Theorem 2 shows that the integer b

in the proof of [MW1, p. 249, Lemma 3.1] must divide bo(k, E). It follows that if the
prime I does not divide bo(k, E), then the group pe(F) (which in [MW1] we called
4>i(G)) does not fix any one-dimensional subspace of Ee.

Similarly since E x E is a TM-product, the integer b divides bo(k, E x E) in the
proof of [MW1, p. 249, Lemma 3.2]. It follows that if I does not divide bo(k, E x E)
and Pe(F) is commutative then it is contained in the multiplicative group F£.

As in the first paragraph of Section 4 of [MW1] we may assume that if t does
not divide bo(k, E) then I does not divide the order of Pi{T). This yields the three
possibilities (i), (ii), (iii).

Case (i) is eliminated again if t does not divide bo(k, E) or bo(k, E x E). If t
does not divide 2 then we reduce case (ii) to case (i) over an extension K (which in
[MW1] we called k0) of k of relative degree at most 2. So this is eliminated if £ does
not divide bo(k, E; 2) or bQ(k, E x E\ 2). Finally we reduce case (iii) to case (i) over
an extension field K of k of relative degree at most 60, which is eliminated if I does
not divide bo(k, E; 60) or bo(k, E x £ ; 60).

So we see precisely the above factors of M turning up, and now Theorem 3 follows
from the estimates in Theorem D. This completes the proof.

Actually, if k and E are given, there are only finitely many possibilities for the
quadratic extension K of k occurring above. For by [Se2, p. 295, Lemme 2], the
extension is unramified. However, this observation does not seem to be very helpful
in our context; the number of possible such extensions would seem to depend on the
discriminant of k and not just on its degree.

The upper bound (1.2) of Section 1 follows easily by breaking the left-hand side
into factors

ft = [Sh(Ee) : SL(££) n pe(D]

for each prime divisor I of the square-free integer m. Clearly ft is at most the
cardinality l(l2 — 1) < €3 of SL(£^), and by Theorem 3 we have ft = 1 if £ does
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not divide M. So \\ fe is at most the product n ^ o v e r aH ^ dividing M, which is at
most A/3.

In a similar way we can establish a multiplicative version of [MW1, p. 251,
Proposition l(a)]. We omit the details of the proofs, and give only the results.
Denoting the number M above by b\{k, E), we find for two elliptic curves E and £"
the multiplicative upper bound

b2{k, E, E') = 6bi(k, E)bt(k, E')bo(k, E x E')bo(k, E x £'; 2)

(note that E x E' is a TM-product, and that the arguments of Section 5 of [MW1]
require t not to divide 6). Then for n elliptic curves EiU,... , E(n) we find the
multiplicative bound

(9.1) M(n) = Y\b2(k, Euu\

where the product is taken over all i, j with 1 < / < j < n. Thus the conclusion in
Proposition l(a) is valid whenever I does not divide M(n), and this M{n) is bounded
above by an expression of the form (1.1), with for example A = E(1) x • • • x E{n).
Thus the new constants c, K may depend on n, thanks to (9.1); whereas in Proposition
l(a) the analogous constants c, y were absolute.

Finally we can establish a multiplicative version of [MW1, p. 253, Proposition 2].
If Pi, . . . , Ps are linearly independent points of the group E (k) of points of E defined
over k, we find the bound

(9.2) MP = 6bbl(k,E)

where b = b(k, E\ F,, . . . , Ps) is the product of all primes t for which Px,... , Ps

become linearly dependent modulo l.E(k). Thus the conclusion in Proposition 2
holds for all I not dividing MP. Of course MP now depends also on the Neron-Tate
heights q(P\), • • • , q(Ps)- To estimate it efficiently we use the following result.

LEMMA 9.1. We have b(k, E; Pu ... , Ps) < (s2Q/q0)
s/2, where Q = max{<7(/>,),

. . . , q(Ps)} and q0 is the smallest non-zero value of q on E(k).

PROOF. The same bound for the individual primes I is well known (see for example
the reference on [MW1, p. 254]), and a simple modification of the standard argument
extends this to their product. For we can use the Chinese Remainder Theorem to
combine the linear relations modulo t into a single linear relation a, F, + • • •+ as Ps —
bP, for integers a , , . . . , as and b = b(k, E; P\,... , Ps) with highest common factor

(9.3) (au...,as,b) = l,
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and some P in E{k). Then the Box Principle provides in the usual way an integer t
with

(9.4) 0 < t < b

together with integers tu ... ,ts such that the

a. = ta, - btj (1 < / < s)

satisfy \a.\ <b{s-l)ls. Thus

a\P, + • • • + a'sPs =bP'

again for some P' in E(k). Now if b > (s2Q/q0)
s/2 comparison of heights forces P'

to be torsion and therefore a\ = • • • = a's = 0. But this latter is ruled out by (9.3) and
(9.4); and so the proof is complete.

It follows easily from the discussion in [MWl, p. 254] that the quantity MP in (9.2)
satisfies MP < (s2MQY2, where M is bounded above by an expression of the form
(1.1) with A = E. Notice the extra factor s2, which we mistakenly omitted from
[MW1, Proposition 2].
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