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1. Introduction. This paper shows how to construct Galois field extensions of
Hilbertian fields with a given group out of some subclass (called 'semiabelian groups' by
Matzat [2]) of all soluble groups as Galois group. This is done in a fairly explicit way by
constructing polynomials whose Galois groups are universal in the sense that every group
in the above subclass is obtained as a quotient of some of them.

The fact that groups of the type considered here can be obtained as Galois groups
over Hilbertian fields is well known—it follows from the solubility of split embedding
problems with abelian kernel (see [2] for an overview). The aim of this paper is to give an
explicit construction of such extensions.

The paper consists of two sections. In the first one, the relevant class of groups is
defined and studied to some extent, and some technical lemmas concerning wreath
products are established. The definition of semiabelian groups given here differs from
Matzat's, but it is easily seen that both notions agree. The second section gives the main
result, applying the results of the first section to the Galois groups of certain polynomials.

R. W. K. Odoni [4] showed how to realise a multiple wreath product of cyclic groups
as Galois group over a Hilbertian field containing "enough" roots of unity. The new idea
in this paper is to overcome this restriction by adjoining the necessary roots of unity first.

I wish to thank R. W. K. Odoni for his work on the Galois theory of nested
polynomials [3,4], which prepared the ground for the present work, Cornelius Greither
who drew my attention to it and told me to look at the quotient groups, and (last but not
least) Fritz Grunewald with whom I had many pleasant and instructive discussions that
eventually led to the present paper.

2. Semiabelian groups and wreath products.

DEFINITION 1. A group G is called semiabelian, if there exist n e N and abelian
subgroups Au... ,An of G such that G =A} • • • An, and such that At normalizes Aj
whenever i<j. Such a sequence Au... ,An is called an internal resolution of G.

Clearly, every semiabelian group is soluble. The extra condition is that there exist a
composition series whose factors can be obtained as images of abelian subgroups of G.

LEMMA 1. A finite group G is semiabelian if and only if G has a generating set
{*!,... ,xm) such that the normal closure of xt in (xu... ,x,) is abelian.

Proof "^=". Take n = m and At = normal closure of *, in (xu... ,Xi). "^>": Take
generating sets yn,... .y^,. of At and set m = '2mi and (xu... ,xm) =

i
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COROLLARY 1. (a) Every finitely generated 2-step nilpotent group is semiabelian.
(b) Every abelian-by-cyclic group G is semiabelian.

Proof.
(a) In a 2-step nilpotent group the normal closure of every element is abelian.
(b) Let A be an abelian normal subgroup of G with cyclic factor group generated by

the image o f x e G . Then (x),A is an internal resolution of G.

LEMMA 2. Every quotient of a semiabelian group is semiabelian.

Proof. Take the image of an internal resolution under the canonical epimorphism.

In order to treat wreath products concisely, we will consider triples (G, <j), U), where
G is a finite group, U is a finite set, and 0:G—»S(t/) is a (left) action of G on U (S(U)
denotes the group of permutations of U). In this context, G is an abbreviation of
(G, A, G), where A is the left regular permutation representation of G. We will call
(H,if/,V) a quotient of (G,4>,U) if there is an epimorphism TT:G—»// and a map
cr: U^> V such that tyn(g){<r{u)) = cr(<t>(g)(u)) for all g G G and all u e U. Then G' is a
quotient of G in this sense whenever G' is a quotient of G as a group.

DEFINITION 2. The wreath product (G, <f>, U) I (H, ip, V) of (G, <f>, U) and (//,«//, V) is
the triple (G tx Hu, w,UX V), where G acts on the right of Hu by fs(u) =/(</>(g)(«)),
and w(g,f)(u, v) = (<f>(g)(u), tp(f(u))(v)). (Here, Hu denotes the set of all functions

The wreath product is associative in the sense that for 7J = (G;, </>,, f/;) (y = 1,2,3),
(7i I T2) I T3 and 7} I (721 T3) are isomorphic (as groups acting on the set, UiX U2x U3).

LEMMA 3 (quotients of wreath products), (a) If (//', ij/', V) is a quotient of
(H, if,, V), then (G, <f>, U) I (//', f, V) is a quotient of (G, <£, U) I (H, ip, V).

(b) If H is abelian and (G\ <£', £/') is a quotient of(G, cf>, U), then the group compon-
ent of(G', <p', U') I (H, if/, V) is a quotient of the group component of(G, <f>, V) \ (H, tp, V).

(c) If H is abelian, then G x H is a quotient of the group component of G IH.
(d) If G, , . . . , Gn are abelian groups, and G[,... ,G'n are quotients of Gu... , Gn,

respectively, then the group component of G[\.. A G'n is a quotient of the group component
ofG1l...lGn.

Proof, (a) Let nH and aH be the given quotient maps. We take K:GM Hu^>
GKH'U, (g,f)^>(g,nH°f) and a:U XV^U XV, (u,v)^(u,aH(v)). n is clearly an
epimorphism, and an easy calculation shows the compatibility of n and cr.

(b) Let nc and aG be the given quotient maps. We take n:G\xHv-*G' xHu',
(gif)'-^(KG(g),f')> where / ' ( u ' ) = II /(«)• n is a homomorphism because H is

<70(u) = u'

abelian, and clearly surjective.
(c) This follows from b) by taking a one-element set for U'.
(d) This follows from a) and b) by an easy induction.

LEMMA 4. (a) Every split extension with abelian kernel of a semiabelian group is
semiabelian.
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(b) The group component of a wreath product (G,(f>,U)l(H,ij/,V) with G semi-
abelian and H abelian is semiabelian.

Proof, (a) Let 1—>,4-»G-»/ / -» l be split with A abelian and let Au...,Am be an
internal resolution of H. Then G = Ax- • • AmA, and each At normalizes A, hence
Au... , Am, A is an internal resolution of G.

(b) Hu is abelian, hence G K Hu is semiabelian by part a).

THEOREM 1 (characterising semiabelian groups). A finite group G is semiabelian iff
there are k,m eN such that G is a quotient of (the group component of) C'£ (where Cm is
the cyclic group with m elements, and H'k means the k-fold wreath product / / ( • • • ) H).

Proof. By the preceding lemma, every group that is the group component of some
wreath power C* is semiabelian. By Lemma 2, every quotient of such a group is again
semiabelian.

Let G be a finite semiabelian group with internal resolution Au... ,An. We will
show that G is a quotient of (the group component of) A} I • • • \An. This will be done by
induction on n. For n = 1, there is nothing to show. Let n > 1, and let H = A2 • • • An.
Then H is a normal subgroup of G and has the internal resolution A2,..., An. By
induction hypothesis, H is a quotient of A2\ • • • \An. If we can show that G is a quotient
of Al\H, then by Lemma 3,a), G is a quotient of A^\- • -}An. We define a map
7t:A1\H-+G by letting n(a,f) = a U (af(a)a~l). It is easily verified that n is an

epimorphism, whence G is a quotient of A^ I • • • \ An.
It remains to show that Ax \ • • • \An is obtainable as a quotient of some group C*. For

this, let m be a common exponent of all the As, then there are numbers fc, such that At is a
quotient of C% By lemma 3,c), C^ and therefore A,, too, are quotients of Cm'. Now,
Lemma 3,d), shows that A\ \ • • • \An is a quotient of Cm, where k = 2 kj.

i

The preceding lemma and theorem also show that the class of finite internally soluble
groups is the smallest nonempty class of finite groups closed with respect to split
extensions with abelian kernel and quotients. This shows that our semiabelian groups
coincide with those of Matzat [2]. This class of groups is also studied in [1].

We will end this section with a technical lemma that will be useful later.

LEMMA 5. Let (G, i//, Gj X U) = G^ \ (G2, (f>, U), and let H be a finite abelian group
(which we will write additively), on which Gi acts from the left. We let P be the group with
underlying set GxHGiXU that acts on dXUxH by ((g,f),h) • (x,u,v) =
(gx, (j)(f(x))(u), h(x,u) + g • v). Then P with this action is isomorphic with (G,i//, Gj X
U)IH.

Proof. The group multiplication in P is given by

',n,h') = ((g,f)(g',n (xtu)~h{g% Hf'(x))(u)) + g- h'(x, u))

(it is easily verified that this indeed defines a group law). G\KHCiXU is the group
component of (G, t/i, Gj XU)\H. We define the isomorphism 0:P-» G x HCiXU by

B((g,f), h) = ((g,/), (x, u) M. (gx)"1 • h(x,«)).
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Obviously 0 is a bijective map. We have to verify that it is a homomorphism:

O((g,f),h)e((g',f'),h')

= ((g,f),(x,u)^(gx)-1-h0ctu))((g',f'),(x,u)>-*{g'x)-1-h'(x,u))

= «gg',x»f(g'x)f'(x)), (x, u)H*(gg'x)-i • h(g'x, 0(/'(*))(«)) + (g'xy> • h'(x, II))

= ((g,f)(g',f'), (x, u)->(gg'x)-' • (h(g'x, *(/'(*))(«)) + g • h'(x, «)))

',f'), (x, u)^h{g'x, <Hf'(x))(u)) +g • h'(x,«))

In order to show that the two groups are isomorphic as groups acting on a set, we must
produce a permutation p of G\ x U x H such that

P((ig,f),h)(x, u, v)) = 0((g,f), h)p(x, u, v).

If we define p(x, u, v) = (A:, U,x~l • v), this equality holds, as a short computation shows:

= (gx, ^(/(x))(«), (gx)-1 • A(x,«) + X"1 • v)

= d((g,f),h)p(x,u,v)

3. Realising semiabelian groups as Galois groups. Let K be some field, and let
t1,t2,--. denote independent indeterminates over K. We take m BN and assume m prime
to the characteristic of K, unless the latter is zero. Let £ be some primitive wth root of
unity over K, / i ts irreducible polynomial, Ko = K(Q, and Go the Galois group of Ko over
K. We define recursively

fo(X) =f(X) e K[X] and fk+l(X) =fk(X
m - tk+1) e K[tu... , fc+1,*];

^A will denote the splitting field of fk over K(t^,..., ^) .

THEOREM 2. 77ze Galois group Gk of fk over K(tu..., tk) is isomorphic with Go IG^.

Proof (cf. [3]). We proceed by induction on k, proving a little bit more, namely that
we can label the zeros of fk as a(i,j) with / E GO and;' E Ck

m such that the above wreath
product acts on the indices according to its definition, and such that its action on £ is given
by the component in Go. For k = 0, we have only to remark that the action of Go on the
zeros of / is isomorphic with the left regular permutation representation of Go.

Suppose now the assertion true for some k and all fields with characteristic equal to
that of K. Taking K(tk+1) instead of K in the induction hypothesis, we see that the Galois
group of fk over K(tu..., tk+1) is Gol C% (note that Go is also the Galois group of/over
K(tk+i)) and that we can label the zeros offk in Kk(tk+1) as a(i,j) with i E GO and; E Ck

m.
Fixing the mth roots, the zeros of fk+1 in Kk+1 are given as

' /m for i,j as above and lsCm.
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To every a e Gk+^ we associate a = a\Kk e Gk and h^-.GoX Ck
m—*Cm defined by

a(j3(i,y,0)) = j8(i',;', M«./))• Then we have

where gCT denotes the G0-component of <x. Using Lemma 5, we see that we can embed
Gk+i into Gk I Cm as a subgroup with the right type of action on the roots of fk+i.

To show that Gk+i is indeed the full wreath product, we use Kummer theory:
Kk+i/Kk(tk+i) is an m-Kummer extension obtained by taking the /nth roots of #G0 • m

k

elements. We will show that these are all independent, therefore the degree
[Kk+i:Kk(tk+i)] = m*Gam" = #(Gk I Cm)l#Gk, from which the claim follows.

The independence of the mth roots means that in every product

•J

that is an mth power in Kk(tk+1), all the exponents c,y must be divisible by m. Now, the
ring of polynomials R = Kk[tk+i] is a UFD, therefore integrally closed in Kk(tk+i), hence
the product has to be an mth power in R. Since all the (a(i,j) + tk+1) are distinct prime
elements in R, the assertion follows.

COROLLARY 2. Every finite semiabelian group G can be realized as a Galois group
over every Hilbertian field K of characteristic zero or prime to the order of the group.

Proof. The preceding theorem, together with the Hilbert irreducibility theorem
(which holds for Hilbertian fields by definition), implies that for all m (prime to the
characteristic of K if the latter is not zero) and all k, Gol C* is realisable as a Galois group
over K, where Go is some abelian group. By Lemma 3,d), C^ is a quotient of GolC^k,
and by Theorem 1, every finite semiabelian group G is a quotient of some C^ (where m
can be assumed prime to char(/Q if # G is). Using Galois theory, we see that all these
groups occur as Galois groups of some intermediate field of one of the above field
extensions.

This result is quite well known, of course, see e.g. [2] and the references given there.
However, our method of construction gives a new and more direct proof of this.

REMARKS. 1) Examples of Hilbertian fields are finitely generated field extensions of
Q> and of Fp(f) (for any prime p) (see for example [3] and the references given there).
2) It is fairly obvious that the above results can be extended to groups whose order is not
necessarily prime to the characteristic p (at least to those that have an internal resolution
all of whose groups have p -elementary p-part) by using Artin-Schreier equations instead
of Kummer equations.
3) It is easy to give polynomials with Galois groups of the form G0Mi I... lAn, where
the Aj are given finite abelian groups: Just take for m the l.c.m. of the exponents of the

Aj, define /0 and Go as above, and let fk+i = II fk{X ' ~ h+ij), assuming that Ak+i -

Cd] x . . . x Cdrj+i. Then /„ has G0Mi I. •. lAn as its Galois group over K(tkj \ 1 < k <
n , l < ; < ^ ) / 4 + 1

4) For some explicit examples how to get C% as a Galois group over Q, see [5].
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