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NONCOMMUTATIVE CLASSICAL INVARIANT THEORY

YASUO TERANISHI

§ 1. Introduction

Let K be a field of characteristic zero, V a finite dimensional vector
space and G a subgroup of GL{V). The action of G on V is extended
to the symmetric algebra on V over K,

K[V] =K®V®S\V)® - ®i

and the tensor algebra on V over K,

K(V) = K® V® F Θ Θ F Θ .

Here Sn(V) and V®n denote the n-th symmetric power and n-th tensor
power of V respectively.

We denote by iffV]*5 and K(V}G the invariant ring of G acting on
K[V] and K(Vy, respectively. A main result of invariant theory says
that, if G is linearly reductive, iftV]^ is finitely generated. On the other
hand Dicks and Formanek [2] proved that, if G is a finite group and not
scalar, K(V}σ is not finitely generated. Lane [4] and Kharchenko [3]
independently proved that, for arbitrary subgroup G of GL(V), K(V}° is
a free associative K algebra.

In classical invariant theory one deals with the special linear group
SL(ή). Consider the general n-ary form of degree r

/ = Σ — p ^ j-βrx-rX1 •••*;•, rx + . + rn = r ,

with coefficients αrχ,...,rn which are indeterminates over K.
If, for a linear transformation with determinant one, xu , xn un-

dergo a linear transformation xt = ]Γ\ gμ^jy g = (gji) e SL(ή), f is trans-
formed into / of the form f = Σ τ\\rγ\ rn! a'rχ...rn, x?1 ΛC". The
mapping ari...rn *-* g(ari...ri) = a'ri...rn defines a representation of SL(n) on
the vector space spanned by αri...rn's over 2£.
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A homogeneous polynomial J(ari...rn) in the indeterminates is called

an invariant if (*) J(g(ari...rn)) = J(ari...rn) holds for all geSL(ή). Let

K[αri...rn]
SL{n) denote the ring of invariants. The main problem in clas-

sical invariant theory is to determine the structure of K[αrι...rn]
8Lin). In

1890 Hubert proved that K[αri...rJ is finitely generated by using Hubert's

basis theorem and Cayley's Ω process. All invariants of arbitrary M-ary

form are written down by famous Clebsch-Gordan's symbolic method.

But the explicit structure of K[αri...rn]
SL(n) is not known except special

cases ([7], [9]).

Let us consider α r i... r n as noncommutative variables over K. Let

K(αri...rny be the free associative algebra generated by αr i...rn's. A homo-

geneous element J(αrι...rJ of degree d in the noncommutative graded ring

K(αri...rny is called a noncommutative invariant of degree d if it satisfies

(*) for any geSL(n). We denote by K<sαri...rny
SL{n) the ring of noncom-

mutative invariants. For a nonnegatve integer d, we write K(αrχ...rnyiL{n)

for the vector space of invariants of degree d. Let V be a vector space

of dimension n, that is the standard SL(6)-module, and αu , αn be a

basis of V. Then by the mapping αrχ...rn »-> ά[x αr

n

n, K[αrχ...rJ is, as an

SL(τι)-module, isomorphic to K[Sr(V)] and i£<αn...rn> is, as a SL(n)-module,

isomorphic to K(Sr(V)y.

We write c(n, r, d) and c(n, r, d) for dimension of K[αri...rn]%L(n) and

K(αri...rn)%L(n) respectively. In section 2, some notations from representa-

tion theory of the general linear group are introduced and we give com-

binatorial formulas for c{n, r, d) and c(n, r, d). In section 3, we give

explicitly a free generating set of K(αri...rn)
SLin\ The basic idea is to use

the (noncommutative) symbolic method, by which all noncommutative in-

variants are written down explicitly. In section 4 we give dimension

formulas of invariants. In section 5, instead of the usual Hubert series

^ c(n, r, d)td, we shall investigate a formal power series

FnM = Σ <n, r, d)t*r.
reN

We shall prove that, if d ^ 2n — 1, FUίd(t) satisfies the following functional

equation

In the last section we shall investigate the ring of invariants of skew

symmetric tensors.
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NOTATION

N nonnegative integers

Q rational integers

<α>n for aeN, the vector (a, , a) e Nn

\X\ for a set, cardinarity of X.

a I b for a, b eN, a divides 6.

§ 2. Representation of the general linear groups

In this section we summarize the results on the representations of

the general linear group GL(n) which we will use later.

A Young diagram λ with n rows is a nonincreasing sequence of posi-

tive integers (λu λ2, , λn), λ1 ^ λ2 Ξ> ^ λn. We think of λ as a se-

quence of rows of "boxes" of length λu λ2, , λn. For example

λ = (4, 2,1) =

A Young tableau is a numbering of the boxes of a Young diagram

with integers 1, 2, . If a Young tableau has iiΓs, ι'22's, , the se-

quence (ίu i2, •) is called the weight of a Young tableau.

Let V be a vector space of dimension n. There is a 1-1 correspond-

ence between Young diagrams with m boxes and ^ n rows and irreduci-

ble GL(rc)-submodules of V®m. We write [λ] for the irreducible GL(n)-

module in V®m corresponding to λ. Then one dimensional irreducible

GL(n) submodule of V®mn corresponds to the rectangular Young diagram

with n rows and m columns. The following lemma is a special case of

the Littlewood-Richardoson rule [5],

LEMMA 2.1. Let μ be a Young diagram. Then

[μ] = (8) [λ]

where λ ranges all Young diagrams which can be built by the addition of

r boxes to the Young diagram μ, no two added boxes appearing in the

same column of λ.
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A Young tableau Y is called column strict if the entries of Y increase

down columns and do not decrease across rows. Figure 1 gives an ex-

ample of column strict tableau with weight (2.2.3).

1

2

3

1

3

2 3

Figure 1

A rectangular Young tableau Y with n rows is called column strict

Young tableau of degree d if Y is column strict and has weight <r)d.

We denote by K(n, r, d) the set of all column strict Young tableaux of

degree d. By Lemma 2.1, we obtain:

PROPOSITION 2.2.

EXAMPLE 2.3. Figure 2 gives the column strict Young tableau of

degree 4 for (nf r, d) = (2, 2, 4).
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Figure 2

By Proposition 2.2, noncommutative invariants of degree 4 for (n, r) =

(2, 2) has 3 linearly independent invariants.

§ 3. A free generating set of the noncommutative ring
of invariants

In this section we will construct a free generating set of the ring of

invariants K(ari...rn}
SL{n). Let V be an n dimensional vector space and

«i, , α« a fixed basis of V. Consider the SL(n) equivariant isomorphism

φ\ K < Sr(V) > —> K(ari...rn} obtained from the mapping al1 ar

n

n *-»

Gπ ..r« For positive integers ku , &„, and cί, (kx < k2 < * - - < kn <L d,

let <&j, , &n> be the tensor in ®d K[V] defined by
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<*„••-,*,>
9aσ

1 «α(2) ' 1.

Here the sum ranging over all permutations on n letters 1, , n and

aσ(i), , aσ{n) appear in £-th, , £n-th places in the tensor product and

other factors are all 1.

Obviously (ku , kn} is invariant under the action of SL(ή). Let

h

*2

i»

h

•

•

m2

•

be a column strict Young tableau of degree d. Since each number out

of 1, 2, , d appears r times in Y,

is a SL(n)-invariant tensor in ®d Sr(V). We set

F(Y, a) = φ((iίf , in}(ju ••-,;»>••• <^i, , m n » .

Then ^(Y, α) is a noncommutative invariant. We say that F(Y,ά) is an

invariant associated with a column strict Young tableau Y of degree d.

Given two ar and ar (r = (ru , rn), s = (su , sn) eNn with |r | =

\s\ = r), we say that αr is bigger or equal than αs, if r = (r1? , rn) is

lexicographically bigger or equal than s — (s1} , sn). Moreover, given

two noncommutative monomial Mx = αr(1) αr(<£) and M2 = α,α) α,(d),

we say that Λίi is lexicographically bigger or equal than M2, if Mί = M2

or, for the first factors α r ( i ), α,( i) such that arU) Φ asU), ariJ) is bigger or

equal than asU). Suppose that each number i, 1 ^ i <£ d, appears J\ times

in the first row of a given Young tableau Y of degree d and i2 times in

the second row of Y, etc. We set [i] = (il9 , ίn). Then it follows from

the construction of F(Y, a) that the highest term in the monomials of

F(Y, a) is αc<] α r a . For example, in Example 2, the highest terms of

Yl9 Y2 and Y3 are αίoOoa, «2o«π«o2 and a20a02a20a02, respectively. In particular,

different column strict Young tableaux Yt and Y2 have different highest

terms. Gathering up we have proved the following
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THEOREM 3.1. To each column strict Young tableau Y of degree d,

associate the noncommutatiυe invariant F(Y,ά). Then F(Y, α)'s constitute

a free basis of the vector space K(ari...rnyiL{n\

In particular noncommutative invariants associated with all column

strict Young tableaux of degree d (deN) generate the ring of invariants

K(ari...rny
LW.

EXAMPLE 3.2 (Almkvist, Dicks, and Formanek [1]). Consider the binary

form of degree n:

/ = Σ (ϊ)α»*ί*r*

The column strict Young tableau of degree 2 is

Y =

The associated invariant of degee 2 is

F(Y, a) = φ{a, ®

1

2

1

2

•

• •

•

•

1

2

If n is even, say 25, there exist unique column strict Young tableau

of degree 3,

Y =
1

2

•

2

•

3 .

1 2 • 2

3

The associated invariant of degree 3 is

F(Y, a) = ψ{ax ® a2 ® 1 — a2 ® ax ® l)*(tfi ® 1 < a2)
s

V (Λ f^\ sv ίv\ /v/\ \-L vcy Cvi \cy IX2

s s s

= V V V ί - iV+> +

Let Yι and Y2 be column strict Young tableaux of degree dx and d2

respectively. We write Yt φ Y2 for the Young tableau which is obtained

from Y1 and Y2 as follows: after adding the Young tableau Y2 from right
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to Y1? replace each entry, say i, in Y2 by i + du For instance, if

1

2

1

3

2

4

3

4

1

2

1

3

2

3

Y2 is given by

1

2

1

3

2

4

3

4

5

6

5

7

6

7

Obviously Yt 0 Y2 is a column strict Young tableau of degree dί + d2,

and F(Y1 0 Y2, a) = F(Y,, α)F(Y2, α). Since (Y, ® Y2) 0 Y3 = Yt © (Y2 θ Y3),

we may write ^ ® Y2 θ Y3 for (Yx 0 Y2) 0 Y3 or 7, 0 (Y2 0 Y3).

We now find a free generating set of K(ari...rn)
SL(n\ To do so, we

introduce a terminology: a column strict Young tableau Y of degree d is

called decomposable if there are two column strict Young tableaux Yλ

and Y2 of degree dλ and d2 respectively such that Y = Yt® Y2} d = dx + c?2.

A column strict Young tableau is called indecomposable if it is not de-

composable. For example, in Example 2.3, Yι and Y2 are indecomposable

but Y3 is decomposable. A free generating set of the ring K(ari...rn}
SL(n)

is given by the following

THEOREM 3.3. The set of noncommutative invariants associated with

all indecomposable Young tableaux is a free generating set of the noncom-

mutative invariant ring K(ari...rn}
SL(n\

Proof. If a column strict Young tableau is decomposable, the asso-

ciated invariant is a product of two invariants, neither of them are not

constants. Therefore the set of noncommutative invariants associated with

all indecomposable Young tableaux is a generating set of K{ari...rn}
SLin).

It remains to show that this set is free. Assume contrary that some in-

variants F(YU a), , -F(Yfc, α), associated with indecomposable Young

tableaux Yu - , Yk are not free. Let

(*) ctl...ipF(Ytl9 a) F(Yίp, a), cix...ipeK,

be a nontrivial relation among F(YU α), , F(Yk, a). Then we have

>Yi,,α) = O.
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Now without loss of generality we can assume that degrees of YH φ
φ Yip are all equal. Then it is easy to see that, for two column strict
Young tableaux with same degree, Ytl φ φ Yίp and Yjx φ 0 Yjq9

if and only if p = q and Yu — YJt, 1 <^ £ <p. Hence it follows from
Theorem 3.1 that the relation (*) is a trivial relation. This contradicts
to our assumption and hence the theorem is proved.

THEOREM 3.4. The ring of noncommutatίυe invariants K(ari...rn}
SL{n) is

not finitely generated.

Proof. By Theorem 3.3, it is enough to show that there are infinitely
many indecomposable Young tableaux. This is obvious since, for any
positive integer d such that n\rd, the column strict Young tableaux of
degree d given by

s — rd/n,

is indecomposable.
For a GL(τι)-module M, we denote by X(M, ε), ε = (εu , εn), the

character of M. Let, for a Young diagram, denote by m(M, X) the multi-
plicity of the irreducible GL(τι)-module [λ] in the irreducible decomposition:

M = Σ m(M, *)M .

The character of [λ], λ = (λu , ̂ n), is given by the Schur function,

εϊ1 eϊ εΓ1 1

X([λ], ε) = I -" , Vi = Λ + n - £ (1 ^ i ^ n) ,
e υ l . . . c υ» c 7 1 " 1 . . . 1
sn &n tn -1-

and hence we have

1 . . . 1

s + 1 s + 1

•

2 . 2

s + 2 s + 2

•

•

•

s - - s

2s '2s

d ' - d
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Therefore m(M, λ) is the coefficients of ε\x εv

n

n in the expression of

X(M, ε)
... 1

. . . 1

Let, as before, V be the standard GL(n)-module. Then

Z(Sr( V), ε) = Σ ^ * <n, ^ + + rn = r .

For positive integers d and r, let m, Mi, , Md be vectors in iVΛ

If ΉL — ΉL\ + + Via, the set of vectors {mu , md} is called a parti-

tion of m, here no account is taken of the order of the parts. The ordered

sequence (ml9 , mn) is called on ordered partition of m. We will denote

by A(m,d,r) (resp. A(ra, d, r)) the set of all partitions (resp. ordered

partitions) of m into d parts of length r. For instance, A((2, 2, 2), 3, 2)

= 1, A((2,2,2),3,2) = 6.

PROPOSITION 4.1.

fΣ f f sgn σA((drln)n + δ - σ(δ), d, r), if dr/n e N,
(1) c(n9 r,d) = \ .

(0 otherwise

σ sgn σA((dr/n)n + δ — σ(δ), d, r), if dr/n 6 TV,

0 otherwise
(2) c(n,r,d) =

where σ ranges over all permutations on (n — 1, , 0), and δ = (n — 1,

Proof. As is readily seen from the definitions of A(ra, d, r) and

A(m, d, r),

X(K[a]d, ε) = χ(Sd(S"(F), ε) - Σ A(m9 d, r)ε?> e?

and

Z(ϋΓ<α>,, ε) - %(® (S^( V)), ε) = Σ A(m9 d, r)ep ej- .

Since c(n, r, d) (resp. c(7τ, r, c£)) is the multiplicity of the irreducible

module associated with the Young diagram (drlri)n in the irreducible

decomposition of K[a]d (resp. K(a}d), we see that c(n, r, d) is the coeffi-

cient of

(*)

in the expression of

X(K[a]d, ε)

-dr/n+n-l -dr/n+n-2£1 ε2 edr/n

= Σ A{m, d, r)eΓ
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If we take the term sgnσej^'^ <(0) of the second factor we must select

the term A«βrln\ + δ - σ(δ)) f]jβiejr/»+»-*-'(»-« of the first factor in order

to obtain the monomial (*). Thus (1) is proved. By the same way we

can prove (2).

Remark. If n = 2, (1) is the Cayley-Sylvester theorem in the classical

invariant theory of binary forms and (2) is a result of Michel Brion [1].

§5. A functional equation

In this section we shall prove the following

THEOREM 5.1. Let FUtd(t) be the formal power series defined by

FnM = Σ c(n, r, d)t*r.
reN

Then (1) FUid(t) is a rational function.

(2) If d^2n-l,

FUVt) = ( - Dnd-d-ntndFntd(t)

To prove this theorem, we need a result of Stanley [7]. In general

let n and m be positive integers. Let A be an m X n matrix with integer

entries. For a vector b e Zm, set

E(r) :={xeNn, Ax = b),

and

JE(r) : = {xeNn, Ax = - b}, r = 0,1, 2, . .

Let us consider the formal power series:

F(E,t)= Σ\E(r)\t\
reN

and

) Σ \ ( ) \
rQN

THEOREM 5.2. (Stanley [7])

(1) F(E, t) and F(£, t) are rational functions.

(2) Suppose that the system of linear equations Ax = b has a solu-

tion x = (xί9 - , xn) e Qn such that — 1 < xt ^ 0, 1 <; i ^ n. Then

a = n — rank of A, assuming that the system of linear equations Ax = 0 J

has a solution x = (xί9 , xn) e Nn, xt > 0 for all i.
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Proof of Theorem 5.1. For a d X ra-matrix X, let rt(X) be sum of

entries of the i-th row vector of I , 1 <̂  i <Ld, and cό(X) sum of jf-th

column vector of X, 1 <̂  i ^ TZ. Consider, for a permutation σ on the set

{n — 1, , 0}, a system of linear equations Eσ:

= 0, l ^ i ^ j ^ d ,

and

cp(X) - cq(X) = q -p + σ(n - q) - σ(n - p) , 1 <Lp ^q £n.

The number A(m, d, r), m = (m^ , mw), is interpritated as the number

of d X n matrices such that sum of entries of any row is r and sum of

entries of the i-th column is mu 1 <̂  ί <I n. Therefore by Theorem 4, we

have

FnM = Σ c(n, r, d)ί
re v

= Σ Σ sgn αA«dr/^>π + 3 - σ(δ), d, r)^

For a d X π- matrix X, let X denote the d X n matrix obtained from

X by replacing each j-th column vector with the (n + 1 — ;)-th vector of

X> lt^j^n Then if X is a solution of Z?,, we have:

cp(X) - cβ(X) = cn+ί.p(X) - cn+1_q(X)

= p — q + σ(n — p) — σ(n — q) , l<Lp <q <L n

and

1 ^ i ^ j £ n ,

where σ stands for the permutation on the set {n — 1, , 0} defined by

σ(n — p) = n — 1 — σ(p — 1), 1 ^ p ^ 72.

Since, for any permutation of n — 1, , 0, sgn σ — sgn σ, we have

,, dr) = N(βd9 dr) and hence

, ί) = Σ sgn σF(£,, ί ) .

Let Zo be a d X w matrix whose p-th column vector is (g, , g),

g = — (P + o(n — p))ld. If d^>2n — 1, for any σ and p, we have

— 1 ^ £ ^ 0, and obviously Xϋ is a solution of Eσ. Therefore, for any <y,

the system of linear equations Eσ satisfies the assumption of Stanley's

theorem and we have
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= Σ ( - 1)"—' sgnat"dF(£a, t)
a

= ( _ l)**-*-«tndFntά(t).

This completes the proof.

Remark, We record explicit forms of F2yd{t), for d = 3, 4, 5.

' "1 — f^

τr ί*\ _ 1 + 2ί + t

(1 - tj

§ 6. The ring of invariants of skew symmetric tensors

Let Vbe a vector space over K of dimension n with a basis α̂ , , an.

For a positive integer r, r < n, let Λ r V denote the r-times skew sym-

metric product of V. In this section, considering Λ r V as an SL(n)~

module, we shall construct a generating set of the noncommutative ring

K(Λr V)SLW. Let

/ = Σ α*!...*** Λ Λ x<r, 1 ^ ίi < < ir ^ n ,

be the generic skew symmetric tensor of rank r. Here we consider

aiχ...ir as independent variables. If, for any linear transformation with

determinant one, xu , xn undergo a linear transformation

*i = Σ girt > § = (ft<) e SL(n),

/ is transformed into f of the form

the mapping α^...^ •-> ar

ix..,ir defines a representation of SL(n) on the vector

space spanned by aίlmm.ir's over if.

Let K(aίχ...ir)> be the free associative algebra generated by aiι...iJ&.

Then the mapping atι...ir *-+atl Λ - - - Λ aig gives an isomorphisms as SL(n)-

modules between K(aix...iry and KζΛr V). We denote this isomorphism

by φ.

A Young tableau Y is called row strict if the entries of Y do not
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decrease down columns and increase across rows. Figure 3 gives an ex-
ample of row strict tableau of weight (2, 3,1,1).

1

1

2

2

2

3 4

Figure 3

A rectangular Young tableau with n rows is called a row strict Young
tableau of degree d if it is row strict and has weight <r)d. We denote
by R(n, r, d) the set of all row strict Young tableaux of degree d. The
following lemma and proposition are clear.

LEMMA 6.1. Let μ be a Young diagram. Then

[μl® V V

t

= © w,

where λ ranges all Young diagrams which can built by the addition of r
boxes to the Young diagram μ, no two added boxes appearing in the same
row of λ.

PROPOSITION 6.2.

Let iu , ίn, and d be positive integers, ix <I <L ίn <I d. Suppose
the number 1 appears βt times in the sequence (iu , ίn), the number 2
appears β2 times in (ίu , ίn), , and the number d appears βd times in
(ίu , ίn). Let iu - , ίn be the tensor in (g)d K(V) defined by

, in} = Σ sgn σaσ a
σ{βl)

' ' ' aσ(n)
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where a ranges all permutation on {1, , n} and, if a number j does not

appear in (ίl9 , in),

should be 1.

Then (iu , ίn} is invariant under the action of SL(n).

We consider a row strict Young tableau of degree d of the form

h

h

h

h

•

jn

•

•

m2

mn

Then ζiu , ίn)(ju , ^n} is a SL(ra)-invariant tensor in

Let A be the projection operator from K(Vyr onto Λ r V, that is

A{vx ® ® Vr) = ϋj Λ Λ vr. We extend A to the mapping ®d K(V}r

-> ®d Λ r y, denoted also by A. We set

F(Y, a) = p(A<i1, , in>0\, ,Λ> <m1} , m w » .

Then F(Y9 a) is a noncommutative invariant of degree d in K(atl...ir}.

EXAMPLE 6.3. Let n be an even integer, say 2m. There is one row

strict Young tableau Y of degree d of the form

Y =

Then we have
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1, 1, 2, 2, , /n, τn> = Σ s £ n
aσ{z)aσii)

and hence the associated noncommutative invariant of degree m is given

by

F(Y, α) =

In this case F(Y, a) is the (noncommutative) Pfaffian.

EXAMPLE 6.4 (r = 3, n = 6). In this case there are 4 row strict Young
tableaux of degree 4:

1

1

1

2

2

3

2

3

3

4

4

4

J •* 2

1

1

1

3

3

3

2

2

2

4

4

4

v

1

1

1

2

2

2

3

3

3

4

4

4

j •* 4

1

1

1

2

3

3

2

2

3

4

4

4

We have

<1, 1, 1, 2, 2, 3> =

<2, 3, 3, 4, 4, 4> =

and hence we obtain

n σl

<ιV) (2) α 4) /ι(5) /ι(6)

It is known (See p. 81 [6]) that if [Λ3 V]4 contains one invariant and

K[/\ V]2 = +

Then, considering αίJfc(i < j < k) as commutative variables, one sees
that
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is an invariant of degree 4 in the commutative ring K[Λ3 V].

For two row strict Young tableaux Y1 and Y2 of degree d, and d2

respectively, Yλ © Y2 is defined by the same way as in section 3. Yx 0 Y2

is a row strict Young tableau of degree dx + d2 and -F(YΊ0 Y2, α) =

THEOREM 6.5. 27ιe sβί o/ noncommutatiυe invariants associated with

all row strict Young tableaux of degree d is a basis of the vector space

Proof. We define an ordering on the set of noncommutative monomials

in ίΓ<αil...ir) as in the proof of Theorem 3.1. Suppose that each number

j , 1 <ί j <̂  d, appears in the jΊ-th, yVth, and /r-th rows in a row strict

Young tableau Y of degree d. We set [j] = (ju , j r ) . Then the highest

term in the monomials of F(Y, a) is ± aίΏ

= (4, 2),

α M . For example, if {n, r)

1

1

2

3

2

4

4

5

3

5

6

6

is a row strict Young tableau of degree 6 and the highest term in the mo-

nomials of F(Y, a) is ± a12a13aua23a2iau. It is easily seen that, for different

row strict Young tableaux Y1 and Y2 of the same degree, the highest

terms of associated noncommutative invariants are linearly independent.

Therefore combining with Proposition 6.2, the proof is completed.

The notion of decomposable or indecomposable Young tableau is

defined by the same way as in section 3 and the following theorems are

proved in the exactly same way as the corresponding theorems.

THEOREM 6.6. The set of noncommutative invariants associated with

all indecomposable Young tableaux is a free generating set of the noncom-

mutative invariant ring K(ah...iry
SL(n\

THEOREM 6.7. The ring of noncommutative invariants K(aίl...iry
SL{n) is

not finitely generated.
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Remark. Considering aίx...ir as commutative variables, the commuta-

tive ring of invariants K[Λr V]SL(n) is generated by invariants associated

with all indecomposable Young tableaux.
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