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Abstract

It is shown that if every nilpotent 2 x 2 matrix over a ring has nilpotent transpose, then the
commutator ideal must be contained in the Jacobson radical, thus generalizing a result of R. S.
Gupta, who considered the division ring case. Moreover, if the nilpotent elements form an ideal
or if the ring satisfies a polynomial identity, then the above property of the transpose implies that
in fact the commutator ideal must be nil.

Gupta (1970) showed that a division ring D must be commutative if every
nilpotent 2 x 2 matrix over D has nilpotent transpose. Here we show that the
same result extends to semisimple rings; that it does not hold for arbitrary
rings may be seen by considering a noncommutative nilpotent ring. Thus we
turn our attention to the commutator ideal and are able to generalize the
above result on semisimple rings by showing that if every nilpotent 2 x 2
matrix over a ring R has nilpotent transpose, then the commutator ideal of R
is contained in the Jacobson radical. We are unable to show that in fact the
commutator ideal must be nil, except in special cases—for example, whenever
the nilpotent elements form an ideal, or whenever the ring satisfies a
polynomial identity.

We shall use the following notation:
Rn = the ring of n x n matrices over R;
A' = the transpose of the matrix A in Rn;
C(R) = the commutator ideal of R, that is, the ideal generated by all

commutators [x, y ] = xy — yx;
J(R) = the Jacobson radical of R ;
N(R) = the Kothe radical of R, that is, the sum of all nil ideals of R.
An element x in a ring R will be called left singular if and only if yjc = 0

for some nonzero element y in R ; otherwise x is called left regular. It will be
convenient to label several properties of a ring R as follows:
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(N) Every nilpotent 2 x 2 matrix over R has nilpotent transpose.
(S) Every nilpotent 2 x 2 matrix over R has left singular transpose.

— jcy — vxy \7 J is nilpotent.
x yx I y

(S1) For all x and y in R the matrix ( ) is left singular.
\ x yx I

Properties (AT') and (S') are inspired by the fact, as observed by Gupta,
— xv x \

is always nilpotent. Thus we have (N) => (S) =>- yxy yx) ' v \ > \ >
(S1) and (N) => (N') => (S'). Furthermore, property (N1) has the advantage
of being inherited by subrings and homomorphic images.

THEOREM 1. Suppose R satisfies (S') and x and y are in R. If x is left
regular, then yx2y — xy2x is left singular.

PROOF. Let x and y be in R with x left regular. If in (S') we replace y by
— x 2 y — x y x 2 y \

is left singular. Hence there
x xyx / 6

exist c and d in R, not both 0, such that

cx2y — dx = 0,

cxyx2y - dxyx = 0.

Thus cxyx2y = dxyx = cx2y2x, whence

cx(yx2y — xy2x) = 0.

If yx2y - xy2x is left regular, then ex =0 with x left regular and hence c = 0.
But then dx =0 and so d = 0, a contradiction. Thus yx2y - xy2x must be left
singular.

COROLLARY 1. / / R satisfies (S') and has no zero-divisors, then R is
commutative.

PROOF. It follows from Theorem 1 that R satisfies the polynomial
identity xy2x = yx2y, and since R is semiprime, it must be commutative by
Awtar (1973).

THEOREM 2. If R satisfies (N1), then C(R)CJ(R).

PROOF. If R is a division ring, then Corollary 1 and the fact that
(N') => (S') imply that R must be commutative. Now suppose that R is
primitive but not a division ring. Then there exists a division ring D such that
D2 inherits property (N'). Using property (N') with x = e12 and y = e2i in D2,
we get
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A _ xy
X

i — e

0

T. P. Kezlan

- y*y^ / -
yx ) \

0 \
en-ej'

en

en
- e2l

e22

and A"= ( I, contradicting the fact that A must be nilpotent. Thus a

primitive ring satisfying (N') must be commutative. A semisimple ring R
satisfying (AT) is a subdirect product of primitive rings, each of which also
satisfies (N') and is therefore commutative; hence R is also commutative.
Finally, if R is an arbitrary ring satisfying (N'), then R/J(R) is semisimple
and satisfies (N') and is therefore commutative, whence C(R)CJ(R).

As mentioned before, we do not know whether property (N'), or even
the (apparently) stronger property (AT), implies that C(R) is nil. If the
nilpotent elements form an ideal however, this implication does hold.

THEOREM 3. // the nilpotent elements of R form an ideal and R satisfies
(N'), then C(R) is nil.

PROOF. We first consider the case in which R has no nonzero nilpotent
elements. By Theorem 2 of Andrunakievic and Rjabuhin (1968), R is a
subdirect product of rings Ra without zero-divisors. Each Ra inherits
property (IV') from R and so by Corollary 1 and the fact that (N1) => (5'),
each Ra, and therefore R, is commutative.

For general R we let R = R/N(R); from the hypothesis R has no
nonzero nilpotent elements and satisfies (N'), whence R is commutative.
Thus C(R)CN(R) and hence C(R) is nil.

We now determine some classes of rings which necessarily satisfy (N).

LEMMA 1. If R is any ring and Au • • •, Ak are in Rn, then

{A,A2---Aky-Al •••A2A[

is in C(R)n.

PROOF. For n x n matrices At, A2, • • •, Ak over a commutative ring it is
well known that

{AiA2---Ak)
l=Al---A^A[.

But R = R/C(R) is commutative. Since Rn/C(R)n = Rn and the isomor-
phism preserves transposes, the result follows.

THEOREM 4. If C(R)2 is nil, then R satisfies (N).
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PROOF. Let A G R2 be nilpotent, say Ak = 0. Using Lemma 1 with
A, = A2= • • • = Ak = A, we have

(A ' ) "=(A ' ) k - (A k ) ' eC( /? ) 2

and hence (A')\ and therefore A', is nilpotent.
Since a matrix ring over a locally nilpotent ring is locally nilpotent, as a

corollary of Theorem 4 we have

COROLLARY 2. If C(R) is locally nilpotent, then R satisfies (N).

COROLLARY 3. If R satisfies a polynomial identity, then R satisfies (N) <£>
R satisfies (N1) <=> C(R) is nil.

PROOF. We already have (N) >̂ (AT). Suppose C(R) is nil. Then C(R),
as a nil P.I.-ring, is locally nilpotent by Jacobson (1964, p. 232), and hence R
satisfies (AT) by Corollary 2. We now have C(R)nil => (N) ^ (AT); to
complete the proof we assume R satisfies (AT). To show that C(R) is nil, it
suffices to assume that R is an algebra over a field, using a standard technique
(see, for example, Drazin (1955), Herstein (1963), Kezlan (1966)). Let
c(EC(R). Then

where the nt are integers and the r>, sh «,, «f, xh and yf are in R where
Zj = [XJ, y,]. Let Ro be the subalgebra of R generated by the rt, s*, etc. Then Ro

is a finitely generated algebra satisfying a polynomial identity, whence J(R0)
is nil by Amitsur (1957). Since Ro also satisfies (AT), we have c e C(i?0) C
J(Ro) and so c is nilpotent.

To conclude we give an example to show that Theorem 2 cannot be
strengthened by replacing (N1) with (S1) or even (S) and that Corollary 3
cannot be strengthened by including either (S') or (S) as a property
equivalent with those given there.

LEMMA 2. The group algebra of a locally finite group over any field
satisfies (S).

PROOF. Let G be a locally finite group, F a field, and A/0 a nilpotent
2x2 matrix over F[G], say Ak = 0. To show that A' is left singular, it suffices
to show that (A')k is left singular. There exists a finite subgroup H of G such
that A E (F[H])2. By Lemma 1 with At = A2 = • • • = Ak = A, we get
(A')k <= C(F[H])2. Let (A')k = (av) where the a>, are in C(F[H]). Then
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where each z, is a (ring) commutator of two elements of H and where the rj/(
and % are in F[H]. Using hz: = [h, z,] + Zih, we may assume without loss of
generality that

Let b = J.h(BHh; then bh = hb = b for all h & H, whence bz, = 0 for all /. Thus
baa = 0 for all i and/, and letting B = beu we have B(A')k = 0 with B/0.

EXAMPLE. Let G be a finite non-Abelian group and F a field of
characteristic 0; thus F[G] is semisimple by Maschke's Theorem. F[G]
satisfies (S) by Lemma 2; however the conclusion of Theorem 2 cannot hold
since C(F[G])CJ(F[G]) = (0) implies F[G] is commutative, a contradiction.
Thus we cannot replace (N1) with (S) in Theorem 2. Moreover, F[G], being a
finite-dimensional algebra over a field, satisfies a polynomial identity; how-
ever F[G] satisfies (S) but not (N), so (S) cannot be included in Corollary 3.
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