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NONSMOOTH INVEXITY

THOMAS W. REILAND

The concept of invexity is extended to nondifferentiable functions. Characteri-
sations of nonsmooth invexity are derived as well as results in unconstrained and
constrained optimisation and duality. The principal analytic tool is the generalised
gradient of Clarke for Lipschitz functions.

1. INTRODUCTION

The needs of optimisation theory have served as the catalyst for the development
of an important new class of functions known as invex functions. In inequality con-
strained optimisation the classical Kuhn-Tucker necessary conditions are also sufficient
for optimality if the functions delimiting the problem are convex or satisfy certain gen-
eralised convexity properties such as pseudo-convexity or quasi-convexity. The concept
of invexity generalises the notion of convexity and is particularly interesting from an
optimisation viewpoint since it provides a broader setting in which the Kuhn-Tucker
conditions are sufficient for optimality. Hanson [9] was the first to define the concept
which would eventually be termed invexity when he considered a differentiable function
f:Rn—*R{or which there exists Tf(x, u) £ Rn such that

(1) /(*)-/(«)>[V/(«)]T iK*, i0;

note that if / is convex, then 77(2, u) = x — u can be chosen to satisfy (1). The utility
of functions satisfying (1) was quickly established when Hanson showed that if the
objective and constraint functions of a nonlinear programming problem satisfy (1) for
the same 77, then weak duality and the sufficiency of the Kuhn-Tucker conditions still
hold. Applications to optimisation were advanced further when invex functions were
shown to have the following fundamental property, first shown by Craven and Glover [7]
in an infinite-dimensional setting (for a simple proof in finite dimensions, see Ben-Israel
and Mond [1]):

THEOREM 1. The function f is invex if and only if every stationary point is a
global minimum.

Hanson's initial results inspired a great deal of subsequent work which has greatly
expanded the role of invexity in optimisation. Craven [4, 5] and Mond and Hanson
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[17] extended (1) to include cones. Craven [5] also coined the term invex (for invariant
convex) when he showed that / satisfies (1) when / = h o <f>, where h is convex
and <f> is differentiate with <j>' having full rank (convexity is not preserved in this
situation), and provided second order sufficient conditions for invexity. Conditions
necessary or sufRcient for cone-invexity were given in Craven [5] and Hanson and Mond
[11] while Craven and Glover [7] characterised cone-invex functions defined on abstract
spaces in terms of Lagrange multipliers and presented classes of cone-invex functions.
Other forms of invexity have also been introduced; Martin [15] defines Kuhn-Tucker
invexity and weak duality invexity, while Jeyakumar [14] speaks of strong and weak
invex functions. Hanson and Mond [10] formulated a type of generalised convexity by
introducing a sublinear functional on the right-hand side of (1) and used it to establish
duality between a nonlinear programming problem and its Wolfe dual; Egudo and
Mond [8] subsequently used Hanson-Mond generalised convexity to establish duality
between a nonlinear programming problem and its Mond-Weir dual (Mond and Weir
[18]). Hanson and Mond [11] define Type / and Type //functions and obtain results
concerning optimality conditions, duality, and converse duality for a primal problem
and the corresponding Wolfe dual.

For the most part, the study of invexity has been in the context of differentiable
functions. Exceptions are Craven and Glover [7], where invexity for quasi differentiable
functions is characterised in terms of Lagrange multipliers and optimality and duality
results are obtained, and Craven [6], where a generalised invex condition is imposed on
a (not necessarily differentiable) Lipschitz function to obtain a weak duality result.

In this paper we further extend invexity to the nondifferentiable setting by defining
invexity for Lipschitz functions. We generalise many of the results concerning properties
of invex functions, optimality conditions and duality that have been established in the
differentiable case. Our principal analytic tool is the generalised gradient of Clarke [2],
the salient features of which are reviewed in the next section. In Section 3 we present
properties of invex Lipschitz functions and study unconstrained optimisation, while in
Section 4 we investigate constrained minimisation problems and duality.

2. TECHNICAL PRELIMINARIES

In this section we introduce the generalised gradient of a Lipschitz function and
related concepts; the results needed in the sequel are presented without proof. For
a more complete treatment of the theory, motivation, and application of generalised
gradients and extensive references we refer the reader to Clarke [3].

Let XQ be an open subset of Rn; the function / : Xo —» R is Lipschitz on X$ if
there exists a positive constant k such that

k \\xi - x2\\ for all x1} x2 G Xo.
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DEFINITION 1: If / : Xo —» R is Lipschitz on Xo, the generalised directional
derivative of / at x £ Xo in the direction v G i i " , denoted f(x; v), is given by

/ " ( * ; • ) = l imsupA-M^y + At;) - f(y)].
p-»as
HO

By the Lipschitz condition it follows that | / ° (z ; «) | ^ k \\v\\, so / ° ( z ; v) is a well-
defined finite quantity. As a function of v, f°(x; v) is Lipschitz on Xo, subadditive,
that is, / ° (z ; «i -f-t^) ^ fix; Vi) + / " ( * ; tfj), and positively homogeneous, that is,
f(x; Aw) = A/°(z; V) for A ^ 0. The latter two properties permit the following
definition of the generalised gradient.

DEFINITION 2: The generalised gradient of / at x 6 Xo , denoted df(x), is denned
as follows:

df{x) = {teRn : f°(x; v) > £Tv for all v € Rn}.

If z G Xo is such that 0 G d / ( z ) , then z is said to be a stationary point of / .
The following theorem summarises some of the fundamental results concerning df(x).

THEOREM 2 . (Clarke [3]) (a) df(x) is a nonempty, convex, compact subset of
Rn and \\(\\ s£ Jb for every ( € df{x).

(b) For any v 6 Rn,

f{x; v) = maxtf T» : ( € df(x)}.

(c) If f is continuously differentiable at x 6 Xo, then df(x) = { V / ( z ) } . If f is
convex, then df(x) = dcf(x), where de denotes the sub differential of convex analysis.
For all Lipschitz functions f, df(x) - def(x; 0).

(d) d(—f)(x) — —df(x); if g: XQ —* R is Lipschitz on XQ, then

d(f + g)(x)Cdf(x) + dg(x).

(e) Let Df be the set of points in Xo at which f is not differentiable (by
Rademacher's Theorem (Stern [20]J Dx has Lebesgue measure zero) and let S be
any other set of measure zero in Rn. Then

df(x) = co{ Urn V/(zt): ** -» *• ** t SUDf};
k—»oo

that is, df(x) is the convex hull of all points of the form limV/(a;t), where {z*} 1S

any sequence which converges to x and avoids S U Df.

(f) For Df and S as in (e),

f(x; v) = limsup{[V/(y)]Tt, : y £ SUDf}.
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For / : Rn —> R, f'[x\ v) denotes the directional derivative of / at x in the
direction v, where

/ ( ; ) [/(

when this limit exists. If a Lipschitz function / has a directional derivative, it is not
necessarily true that f'{x; v) = f°(x; v); if for all v the directional derivative f'(x; v)

exists and equals f°(x; v), the Lipschitz function / is said to be regular at x. If
g: Xo —» R has a directional derivative at x for each x G X o , g is quasidifferentiable

if there exists a convex compact subset M(x) of Rn such that for each x 6 XQ and
every v 6 Rn,

g'(x; v) = max{£r
V : £ G M{x)}.

If g: Xo —» R is quasidifferentiable and the multifunction M(-) is upper semicontinu-
ous, then g is a regular Lipschitz function on Xo with M(x) — df(x) (Clarke [2]).

3 . NONSMOOTH INVEXITY AND UNCONSTRAINED OPTIMISATION

DEFINITION 3: Let / : Xo —* R be Lipschitz on Xo, where Xo is an open subset
of Rn; then / is invex on Xo if there exists a function T) : Xo x Xo —» R such that

(2) f(x) - / ( u ) ^ / ° (u ; T,(X, «)) for all x, u € Xo.

Craven and Glover [7] define invexity for a quasidifferentiable function by substi-

tuting / ' ( u ; r](x, u)) for / ° (u ; r)(x, u)) in (2). Note that if / is quasidifferentiable and

the multifunction M(-) is upper semicontinuous, then if / is invex according to Craven

and Glover it is invex according to Definition 3.

The next theorem extends to the nondifferentiable case a result found in Ben-Israel

and Mond [1] and Craven and Glover [7].

THEOREM 3 . Let f: Xo —* R be Lipschitz on Xo with Xo Q Rn open. For each

u G Xo, assume that for every x 6 Xo the convex cone

(3) K. = (J (Afl/(«) x {A(/(x) - /(«))})

is closed. Then f is invex on Xo if and oniy if every stationary point is a global

minimum of f over Xo •

PROOF: (=>) Suppose / is invex and 0 6 df(u); then /°(tt; v) ^ 0 for all v 6 Rn

by definition of df(u), which implies f(x) — / (u ) ^ 0 for all x 6 X o .

(«=) Suppose every stationary point is a global minimum of / over Xo. If 0 6

df(u), choose T](X,U) = 0 in Definition 3. Suppose 0 ^ df(u). If x — w, then
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(0, - 1 ) <£ Kx; if x ^ u and (0, - 1 ) G Kx, there exists A ^ 0 such that 0 G \df(u)
and A ( / ( x ) - / ( « ) ) = - 1 . If A > 0, then 0 G 0 / (u ) , which contradicts 0 £ 9 / (« ) ,
and if A = 0, then 0 = - 1 . Thus (0, - 1 ) £ Kx for all x G X o , and by Theorem 2(c)
and a theorem of the alternative, [6, Theorem 7], there exists ij = 77(35, u) such that
f(x) -/(«)>/"(«; V(x, «)). D

COROLLARY 1 . Let f: Xo -> R be invex on Xo. Then u e Xo is a global
minimum of f over Xo if and only if 0 G df(u).

PROOF: Since Xo is open, necessity follows. Sufficiency follows directly from the
first part of the above proof. D

COROLLARY 2 . If f: XQ —* R has no stationary points and the convex cone Kx

is closed, then f is invex on Xo .

Straightforward extensions of (2) can be made as follows:

(4) / V ; V{x, u)) > 0 =* /(*) - /(«) > 0,

and

(5) /(x) - /(«) < 0 => /°(u; , (* , «)) ^ 0.

Functions satisfying (4) and (5) for all z, u G Xo will be said to be, respectively, pseudo-
invez on Xo and quasi-invex on Xo- Choosing T/(S;, u) = 1 - u in (4) shows that the
pseudo-convex functions in Reiland [19] are pseudo-invex. The pseudo-invex and quasi-
invex functions of Hanson [9] defined for the differentiable case are special cases of (4)
and (5), respectively. If / : Xo —* R is invex on XQ then / is both pseudo-invex and
quasi-invex on XQ. Conversely, if / is pseudo-invex on Xo and satisfies (3), then by
Theorem 3 / is invex on Xo since if u is a stationary point of / , (4) implies u is a
global minimum of / over XQ . Thus, for the class of (Lipschitz) functions satisfying (3),
pseudo-invex and invex on Xo are equivalent. Another special case of pseudo-invexity
is the concept of semi-convex, defined by Mifflin [16] for regular Lipschitz functions
/ : Xo —* R as follows: / is semi-convex at u G Xo if for every d G Rn such that
u + d G Xo, / ' («; d) ^ 0 => /(u + d) ^ /(«)• If / is semi-convex at u for every
u G Xo , then choosing d = x — u, where x € XQ , shows that / is pseudo-invex on Xo
with 7](x, u) = x — u.

We conclude this section with a result that gives a sufficient condition for invexity.

THEOREM 4 . If f: XQ —* R is Lipschitz on Xo and for each x, u G Xo there

exists a neighbourhood N(u) of u and r/(z, u) G Rn such that

+ AT7(a!, «)) s$ A/(x) + (1 - A)/(y), for all y G N{u) and 0 < A ̂  1,
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then f is invex on Xo .

PROOF: Let \~1[f(un +\nri(x,u)) — /(«„)] be a sequence converging to
f°(u;r](x, u)) = l imsupA- 1[ / (y + A»j(x, «)) - / (y) l , where An is a positive sequence

of real numbers converging to 0 and {«„} —» «. Then

/"(«; V(x, «)) = Urn A;1[/(«n + Xnr,{xt «)) - / (un)]
n—+oo

< lim {/(*)-/(«„)}
n—*oo

REMARK. If / is differentiate then the hypothesis in the above theorem can be weak-
ened to / ( « + XTI(X, U)) < A/(x) + (1 - A)/(u), 0 < A < 1, and the result is then
identical to Theorem 2 in Ben-Israel and Mond [1].

4. CONSTRAINED OPTIMISATION AND DUALITY

Consider the inequality constrained nonlinear programming problem

(P) Min f(x) such that g{(x) < 0, i = 1, . . . , m,

where Xo C i?n is open and / , gi: XQ —* R, i = 1, ... ,m, are Lipschitz on Xo. A
point a G Rn is feasible for (P) if a G Xo and </j(a) < 0, t = 1, . . . , m. If Xo G Xo is a
local minimum for (P) and a constraint qualification is satisfied, then by Hiriart-Urruty
[12, Theorem 6] the following generalised form of the Kuhn-Tucker conditions hold:

m

(5) o

(6) Xigi(xo) = 0,i = l,...,m;

(7) A< > 0, i = 1, . . . , m.

The following theorem shows that if the functions delimiting (P) are invex with respect
to a common ij, then (5)—(7) are also sufficient for optimality.

THEOREM 5 . Suppose x0 is feasible for (P) and that the Kuhn-Tucker conditions
(5)—(7) are satisfied at x0 • If f and </<,* = 1, . . . , m , are invex on Xo for the same
T], then x0 is a global minimum of (P).

PROOF: Let z be any other feasible point for (P); then

by feasibility of x and (6),
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by (5) there exists £ £ 9f(x0) and & € dgi(x0), i = 1, . . . , m , such that
m m

£ + Yl Ai& = 0. Therefore, f(x) — f(x0) > ^T»7(a:, *0) + ^, ^\(Tv{x> xo) =
t=X »=1

T

V(x, x0) = 0. D

REMARK. The point xo at which the Kuhn-Tucker conditions are satisfied is a local
minimum of (P) if / and gi, i = 1, . . . , TO, are t'nvez at xo for a common T;, where
invex at x0 means that (2) is satisfied for all x in a neighbourhood of xo. The proof
is essentially the same as above.

Hiriaxt-Urruty [13, Theorem 4.1] obtained improved necessary optimality condi-
tions for x0 to be a local minimum of (P) by substituting

(5') ^

for (5) with (6) and (7) unchanged. Theorem (d) implies that (5) is a stronger require-
ment for z0 than (5), hence Theorem 5 holds when (5') is substituted for (5). In fact,
when (5') is substituted for (5), we can weaken the invexity assumption in Theorem 5.

THEOREM 6 . Suppose x0 is feasible for problem (P) and Kuhn-Tucker conditions
m

(5'), (6), and (7) are satisfied at xo. If f + $^ A;<7J is invex on Xo, then xo is a global
»=i

minim-am for (P).

PROOF: Let x be any other feasible point for (P); then by (6) and (7)

/ («) - /(*o)

> 0, by (5). Q

REMARK. The invexity assumption in Theorem 6 is weaker than the invexity assump-
tion in Theorem 5. Indeed, if f,gi:X0 —> R are invex on Xo for the same -q, then
since the lim sup of a sum is bounded above by the sum of the lim sups, for y £ Rm,
y ^ 0, we have

t = l /
i
V

m \

E y i f f i
i = l
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hence f / + J£ y.ffi 1 is invex on Xo.

Consider the following duals related to problem (P):

1 such that 0 e df(x) + ^ yidgi(x),

and

p2)
such that 0 G 91(„!„.>,

y< > 0,» = 1, . . . , m .

By Theorem 2(d) the feasible region for (Dj) is larger than the feasible region for (Dj),
hence the optimal value of the objective function in (D i) will be larger than the optimal
value in (D2 ). Weak duality between (P) and (D1) thus requires a stronger assumption
than weak duality between (P) and (D2).

THEOREM 7 . (Weak Duality) (a) Ufor any fixed y G Rm, y ^ 0, ( / + £ ViQi J

is invex on Xo, then weak duality holds between (P) and (D2). (b) If f and g,,
i = 1, . . . , m, are invex on Xo for a common TJ, then weak duality holds for (P) and

PROOF: (a) Let x and {x1, y') be feasible for (P) and (D2), respectively. Then

f{x) - fix1) -
t=l i=l

since y' ^ 0 and ~x is feasible for (P),

0, since 0 G d(f + f^y'.g,]{x').
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(b) Let x and (a:*, y*) be feasible for (P) and (D x ) , respectively. Then

f(x) - f{x*) - f>?*(**) > f(x) + £>?*(*) - fix') - f>?# (O,
i=l i=l i=l

since y* ^ 0 and ie is feasible for (P),

> fix*; r,ix, x*))

since (a;*, y*) is feasible for (Di), there exist £ € dfix*) and £,• 6 3</j(x*) such that

0 = £+£y t t , hence
i=i

m TO

/•(*•; ,(5, x*)) + 5>?0?(x*; 1,(5, x*)) ̂  £TT?(X, x*) + ̂ y ^ x , *')
t=i t=i

)

= 0.

a
THEOREM 8. (Strong Duality) (a) Assume that f + ]T) yj(/i is invex on Xo for

i-l

y £ Rm, y> 0- Ifxis optimal for (P) and Kuhn-Tucker conditions (5'), (6) and (7)
are satisfied at (:c, y), then (D2) is maximised at (x, y) and the optimal values of (P)
and (D2) are equal, (b) Assume that f and gi, i — 1, . . . , m, are invex on Xo for the
same TJ . If x is optimal for (P) and Kuhn-Tucker conditions (5)—(7) are satisfied at
(x, y), then (Di) is maximised at (x, y) and the optimal values of (P) and (Di) are
equal.

PROOF: (a) Since (x, y) satisfies (5') and (7), (x, y) is feasible for (D2). By (6)
TO TO

and weak duality, /(z) + £ Vi9i{x) — f{x) > /(x) + 2 Vi9i{x)> f°r aU (x> y) feasible
i = l i-l

for (D2). Thus (aT, y) is optimal for (D2 ) and the optimal values of (P) and (D2 ) are
equal.
(b) In the proof of part (a), substitute (5) for (51) and (Dt) for (D2). D
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