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Abstract

In the twenty-first century, machine learning and deep learning have been successfully used to find hidden
information from coarse-grained data in various domains. In Computer Vision, scientists have used neural networks
to identify hidden pixel-level information from low-resolution (LR) image data. This approach of estimating high-
resolution (HR) information from LR data is called the super-resolution (SR) approach. This approach has been
borrowed by climate scientists to downscale coarse-level measurements of climate variables to obtain their local-scale
projections. Climate variables are spatial in nature and can be represented as images where each pixel denotes a grid
point where the variables can bemeasured.We can apply the deep learning-based SR techniques on such “images” for
statistical downscaling of such variables. This approach of downscaling can be termed as deep downscaling. In this
work, we have tried to make HR projection of the Indian summer monsoon rainfall by using a novel deep residual
network called ResDeepD. The aim is to downscale the 10� 10 low LR precipitation data to get the values at 0.250�
0.250 resolution. The proposed model uses a series of skip connections across residual blocks to give better results as
compared to the existing models like super-resolution convolutional neural network, DeepSD, and Nest-UNet that
have been used previously for this task. We have also examined the model’s performance for downscaling rainfall
during some extreme climatic events like cyclonic storms and deep depression and found that the model performs
better than the existing models.

Impact Statement

The weather and climate system of a country have great impact on its local business and agriculture. Hence, it is
utmost important to have local-scale projections of the climate variables. In India, the summer monsoon rainfall
(ISMR) plays a vital role in agricultural productivity and well-being of people. However, this rainfall is not
uniform throughout the country. Thus, it is significant to understand, analyze, and forecast the spatial variability
of the Indianmonsoon rainfall and find out the local-scale projections of this rainfall. In this proposedmethod, we
have attempted to make high-resolution (HR) projections of ISMR from the low-resolution (LR) data through a
deep downscaling technique.We have used historical climate observations to learn a LR to HRmapping with the
help of residual networks, with a scaling factor of 4. The proposed model has multiple residual blocks and skip
connections between similar kinds of convolutional layers. The proposed model uses bilinear interpolated input
to produce the required output. It is found that the residual structure of the model helps to overcome the problems
associated with stacking the super-resolution convolution neural networks. The results obtained by the proposed
model are compared with the existing models, and it is found that the proposed model performs better than the
existing models.
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1. Introduction

India is primarily an agriculture-based economy,wheremuch of the irrigation is based on rainfall. Farmers
plan their crop calendars based on forecasts of rainfall. Hence, making short-term rainfall forecasts at
localized spatial scales is very important. However, India has a diverse weather and climate system due to
its physical features. Therefore, the task of accurate weather forecasts is extremely complex and
challenging in this region. Due to the complexity of the atmospheric processes, physical process models
including dynamical and numerical models are unable to predict rainfall with sufficient accuracy, and they
are also computationally expensive. An alternative is statistical modeling, but they generally do not work
well at high resolutions. To get local projections at high resolutions, downscaling methods are used on the
low-resolution (LR) projections obtained from global or regional models for weather prediction or
simulation. Downscaling techniques are used to get climate projections at finer spatial scales (Burger,
1996). These methods are also used to predict the monsoon streamflow at river basin (Ghosh and
Mujumdar, 2008) and cyclonic storms (Kaur et al., 2020).

Broadly, there are two classes of techniques used for downscaling, that is, statistical and dynamical
downscaling. The dynamical downscaling uses partial differential equation-based regional climate
models (RCMs) that use boundary conditions of coarse resolution global circulation models (GCMs)
for its operation (Tiwari et al., 2018). TheRCMs are sensitive to their boundary conditions and have a high
computational requirement that limits the use of multi-model and multi-initial condition ensembles for
reliable projections. On the other hand, statistical downscaling (SD) aims to learn a statistical relationship
between LR and high-resolution (HR) observations of climate variables and it helps to get reliable local-
scale projections.

SD has a rich and expansive history in the field of climate informatics. Most of the earlier SD are
regression-based techniques (Rummukainen, 1997; Tiwari et al., 2018). One such approach is the
automated statistical downscaling (ASD) which presents a traditional framework for downscaling
(Hessami et al., 2008). In ASD, a classification model is first used to identify the rainy days and then a
regression method is used to estimate the precipitation on a local scale for the rainy day. Another widely
used approach is the bias correction spatial disaggregation method, which begins by bias correcting a
GCM tomatch the distribution of the HR observed dataset followed by interpolation and spatial scaling to
correct the local biases (Thrasher et al., 2012). Apart from the earlier regression-based models, some
neural network-based models were also introduced in the downscaling procedure (Kumar et al., 2021).

The task of SD is quite similar to that of the super-resolution (SR) approaches used for image resolution
enhancement. Most of the SR approach uses convolutional neural networks (CNNs) to generate the HR
images from LR data. Recently, some researchers have employed these SR techniques for SD (Kumar
et al., 2021).

In this study, we propose residual deep downscaling (ResDeepD)—a new residual-based model for
deep downscaling to get fine-grained estimates of precipitation from the coarse-grained data of monsoon
rainfall over India. This newmodel aims to improve the predictive capability of the stacked convolutional
layers by introducing skip connections.

2. SR-Based Deep Downscaling

Avariety of deep learning methods have been applied to tackle SR tasks on images. These methods range
from the CNN-based method (Dong et al., 2014) to the SR approaches using generative adversarial nets
(GANs) (Ledig et al., 2017). Thesemethods differ from one another by their architecture, framework, loss
function, and upsampling point (Wang et al., 2021). Based on the upsampling operation and their location
in the model, there are different frameworks such as pre-upsampling SR (Dong et al., 2014; Tai et al.,
2017), post-upsampling SR (Dong et al., 2016; Shi et al., 2016), progressive upsampling SR (Wang et al.,
2018), and iterative up-and-down sampling SR (Haris et al., 2018). Researchers have also employed
different type of networks in SR task. Out of these networks, recursive network, residual network, and
dense network are popular among the researchers (Huang et al., 2017; Wang et al., 2021).
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Climate variables like precipitation are spatio-temporal by nature. The spatial distribution of such a
variable is analogous to a single-channel image. Each pixel of the image corresponds to a location and its
intensity to the value of the variable in question. Hence, we can treat the spatial distribution of coarse-
grained precipitation data (climate variable) as LR image and its local-scale projections asHR image in the
resolution enhancement task. In recent years, the adaption of deep learning-based SR techniques on the
spatio-temporal climate variables gives rise to deep downscaling methods. The researchers (Vandal et al.,
2017, 2018) have introduced the augmented stacked version of super-resolution convolutional neural
network (SRCNN) (Dong et al., 2014) to downscale the precipitation data. They have used the LR
precipitation and HR topographic features as input to predict the HR precipitation. This approach is also
used by Kumar et al. (2021) to downscale the Indian summer monsoon rainfall (ISMR) data. Researchers
have also used UNet-based architectures (Sha et al., 2020) to perform SD. Some researchers have also
used GAN-based SR models for downscaling of climate variables (Ji et al., 2020 and Singh et al., 2019).
To check the capability of neural networks to downscale different climate variables, Medina et al. (2020)
have carried out a comparative analysis of deep neural networks to downscale the temperature and
precipitation data over Europe. Vaughan et al. (2021) have also tried to downscale temperature and
precipitation over Europe with the help of convolutional conditional neural processes. In recent findings,
researchers have identified the usefulness of residual networks in image SR (Zhang et al., 2019; Lan et al.,
2021). These findings motivated us to use residual-based network in deep downscaling.

3. Dataset and Pre-processing

For this work, we have collected the daily precipitation data over India for the period 1990–2019 (only
ISMR period, i.e., June–September). The data are collected from the climate data service portal of the
India Meteorological Department. The ISMR daily precipitation data from 1990 to 2012 are used for
training the models, and the data from 2013 to 2019 are used to test the models. We have used the
precipitation data over the landmass of India at two different spatial resolutions. The LR data (Rajeevan
et al., 2008) which are in the spatial resolution of 10 � 10 are used as input to the model, and the 0.250 �
0.250 spatial resolution data (Pai et al., 2014) are used as ground truth for verification. The dimension
(latitude� longitude) of the collected LR data is 33� 35, and for HR data, it is 129� 135. Since we are
interested to downscale the precipitation in the mainland of India, we set the precipitation value outside
themainland to 0.We have also applied 0 padding across the borders of the data tomake it a squarematrix.
With this padding, the shape of each LR data becomes 35� 35 and the shape of each HR data became 140
� 140.

Apart from the precipitation data, we have also used the topographic information of India in one of the
models. So we have collected the static topographic land elevation data of India from the Global 30 Arc-
Second Elevation Dataset (GTOPO30) provided by the USGS. For DeepSD model, we have normalized
both the precipitation and elevation data by MinMaxScaler method so that the values will lie in the range
of 0–1.

4. Methodology

4.1. SRCNN

The SRCNN is a three-layer CNN architecture (Figure 1). It is designed to learn the functional mapping
between the LR and the HR image. The three layers of the model are dedicated for three different
operations. The first layer of this model is termed as patch extraction layer, and it is responsible for
extracting overlapped patches from the input image, representing them as high dimensional vector. The
next layer performs nonlinear mapping of the high dimensional vector to another high dimensional vector.
The last layer of the model is the reconstruction layer that generates HR image by aggregating the high
dimensional patches.
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In the convolutional operation of SRCNN, the image size decreases depending on the filter size.
Hence, the training labels are cropped to meet the required shape of the predicted output during training.
Similarly, during testing the test LR images are padded with symmetric or replication padding before
applying convolution operation on it. It ensures that the size of prediction corresponds to the ground truth
size. In our implementation of the SRCNN, we have used the same architecture as suggested by Dong
et al. (2014) and Vandal et al. (2017). The first layer of the network has 64 filters with 9� 9 kernels. The
second uses 1 � 1 kernels to generate 32 feature maps, and the output layer uses a 5 � 5 kernel. The
network is trained using Adam optimizer with a learning rate of 0.0001.

4.2. DeepSD

Another alternative approach to deep downscaling uses the DeepSD model (Vandal et al., 2017). It is
an augmented stacked SRCNNmodel (Figure 2). Here, each SRCNNmodel is responsible to increase
the resolution by a scaling factor of 2. The model takes LR precipitation and HR land elevation data as
input to produce the HR precipitation data. We have employed two SRCNN models to create the
DeepSD model. In DeepSD, each SRCNN is trained independently with its respective inputs and

Figure 1. Layered structure of SRCNN model.

Figure 2. Downscaling with DeepSD model.
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labels. The intermediate data (0.50 � 0.50) for this model are prepared by bilinear interpolation of the
0.250 � 0.250 HR data. The input precipitation for each SRCNN is prepared by bilinear interpolation
of the respective LR precipitation data. Then, the corresponding land elevation matrix is appended to
each precipitation sample to make it a two-channel input sample. Similarly, the labels are prepared by
the HR precipitation data.

During testing, the models are stacked together. The LR test image along with its associated HR
elevation is used to predict the first resolution enhancement. The next resolution enhancement is estimated
from the previous layer’s estimate and its associated HR elevation. This method uses the progressive
up-sampling approach.

4.3. Nest-UNet

The Nest-UNet is a UNet-based architecture proposed by Sha et al. (2020) for SD. This network
contains multiple convolutional blocks in a layer and has skip connections between them. It is a nested
architecture of UNet. In our experiment, we have used it for a resolution enhancement (downscaling) by
4�.We set the number of hidden layer channel to [16,32,64] for the three stages/layers of themodel, and
we have used upsampling method in the expansive path. We set the last convolutional layer of Nest-
UNet as a single-channel layer to get the final result. We have used LR precipitation as the single input
for the model.

4.4. ResDeepD

The proposed ResDeepD model is a pre-upsampled model and is comprised of two basic residual blocks
with skip connections. This model takes LR precipitation data as input and enhances its resolution for a
scaling factor of 4. The LR image is first upscaled to the same size as the HR image using bilinear
interpolation. The architecture of the basic residual blocks used in this model is shown in Figure 3 and the
proposed ResDeepD model is shown in Figure 4.

The first basic residual block of ResDeepD is Block-B0. This block contains three convolutional
layers. The first two convolutional layers have ReLU activation, and the last layer has linear activation.
Moreover, this block is quite similar to the SRCNN model, but it has an identity connection. The
cumulative output of Block-B0 can be written as,

C3
0 ¼ O3

0þ IUP (1)

Figure 3. Basic residual blocks.
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where O0
3 is the output of the third convolutional layer with linear activation and IUP is the pre-upsampled

input data. The O0
3 value can be treated as a function of the input IUP. Let the function that converts input

IUP to output O0
3 be R0(IUP). Then, the cumulative output of this block can be represented as,

C3
0 ¼ R0 IUPð Þþ IUP (2)

The second block of the network is Block-B1. The input of the first convolutional layer of Block-B1 is the
cumulative output C0

3 of its previous block (Block-B0). Similarly, the input of other convolutional layers
(layer-k) in Block-B1 is the cumulative output of its previous layer represented as C1

k-1. Mathematically
C1

k-1 can be formulated as,

Ck�1
1 ¼ Ok�1

1 þCk�1
0 (3)

where O1
k-1 is the output of layer-(k-1) in Block-B1 and C0

k-1 is the cumulative output of layer-(k-1) in
Block-B0.

In this model, the input image is first upsampled by bilinear interpolation, and then it is passed through
the residual blocks. The output O1

3 of the last residual block is added with the upsampled input IUP to
generate the cumulative output C1

3. This cumulative output is passed through a ReLU activation function
to produce the final result. Mathematically, the final HR output (IHR) of this model can be represented as,

IHR ¼ max C3
1, 0

� �
(4)

If U(x) represents the upsampling function and Bi(x) represents the input to output mapping of the ith

residual block, then the above equation can be expressed in terms of the input ILR as,

IHR ¼ max B1 B0 U ILRð Þð Þð ÞþU ILRð Þð Þ, 0ð Þ (5)

5. Results and Discussion

The models are trained and tested with the precipitation data, as mentioned in Section 3. The prediction
results of these models are compared to check their ability to provide credible projections. We have used
four measures to evaluate the model performance. These performance measures are selected from the
domain of SD and image processing. We have used root mean square error, peak signal to noise ratio,
mean structural similarity index measure, and correlation coefficient (R) as the performance evaluators.

Before calculating the performance, we have masked the predicted results to concentrate on the Indian
landmass only. The comparative analysis of these performance measures for different models is shown in
Table 1. To visualize the model’s predictive capability, a sample plot of the predicted results for Indian
landmass along with the input and ground truth is shown in Figure 5. The results show that the proposed
ResDeepD model performs better than other downscaling approaches when the scaling factor is 4.

We have also analyzed the effect of downscaling on the daily mean rainfall across India through scatter
plots (Figure 6). These plots indicate that the proposed pre-upsampled residual network has better
prediction capability than the existing models.

The performance of the proposed residual network is also examined for the extremeweather events like
cyclonic storms and deep depressions that occurred in the ISMR period. For this analysis, we have used

Figure 4. ResDeepD model architecture.
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the predicted results and the ground truth data of the extreme rainfall events (i.e., cyclonic storms, deep
depressions, and depressions) that occurred over the North Indian Ocean region between 2013 and 2019
in the ISMR period (Annual RSMC Report, 2013–2019, IMD, Govt. of India). Since we are dealing with
the precipitation values over Indian landmass only, we have considered only those extreme events that
have some effect on the Indian landmass. It is observed that the proposed network can effectively
downscale the precipitation data during extreme events, and it shows better performance than other
models on all the measures. The performance measures obtained while examining the extreme precipi-
tation events are shown in Table 2.

6. Conclusion

Downscaling the climate variables has a significant impact on regional decision-making. Our proposed
network can make local-scale projections of ISMR data with less error and better similarity to the ground

Table 1. Comparison of predictive ability between deep downscaling techniques.

SR technique/Model
Root mean
square error

Peak signal to
noise ratio

Mean structural
similarity index measure Correlation coefficient

Bilinear interpolation 7.5473 40.7380 0.9490 0.5885

SRCNN 5.9372 42.8221 0.9608 0.7355

DeepSD 6.3129 42.2893 0.9576 0.7074

Nest-UNet 6.0422 42.6699 0.9631 0.7260

ResDeepD (Proposed) 5.8375 42.9692 0.9633 0.7466

Figure 5. Plots showing predicted results along with the input and ground truth for a particular day (the
color bar indicates amount of rainfall in mm.).
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truth than existing models. We have examined the predictive behavior of these models for ISMR data and
for a specific scaling factor. This behavior may change with regional climatic factors of different regions
across the globe. In future, this model can be employed to analyze and downscale the climate variables of
different geographical regions.
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Figure 6.Actual versus predicted value of daily mean rainfall across India (in mm/HR grid) for the period
2013–2019 (only ISMR).

Table 2. Model performance during extreme events.

SR technique/Model
Root mean square

error
Peak signal
to noise ratio

Mean structural similarity
index measure

Correlation
coefficient

Bilinear interpolation 8.0220 40.2081 0.9482 0.7113

SRCNN 6.5725 41.9392 0.9599 0.8064

DeepSD 7.0707 41.3045 0.9558 0.7904

Nest-UNet 6.7730 41.6781 0.9621 0.7929

ResDeepD (proposed) 6.3985 42.1722 0.9629 0.8182
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