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Abstract
The rumen microbiome has attracted tremendous interest among microbiologists and rumi-
nant nutritionists because of its crucial role in mediating feed digestion and fermentation and
supplying most of the energy, nutrients, and precursors for producing ruminant products.The
application of various omics technologies, including metataxonomics, metagenomics, meta-
transcriptomics, metaproteomics, and metabolomics, have enabled unprecedented investiga-
tions into this ecosystem, shedding new light on its interactions with diet and animals and its
relationships with key production traits. Despite the valuable insights these omics technologies
provide, each has its unique utility and inherent limitations. Achieving a holistic characteriza-
tion of the rumenmicrobiome and deciphering its causal relationship with diet and key animal
production traits remain an ongoing endeavor. In this perspective review paper, we highlight
the limitations of individual technologies and advocate for an integratedmulti-omics approach
and data analyses in studying the intricate relationships between diet, rumen microbes, and
ruminant nutrition. This approach, termed “rumen microbiome nutriomics,” aims to compre-
hensively understand the rumen microbiome in the context of diets and animal productivity.
Our emphasis lies in recognizing the necessity of integrated analysis across multiple data lay-
ers, encompassing data of diet, rumenmicrobiome features, animal genotypes, and production
traits and identifying the causal relationship among them.We also call for collaborative efforts
to develop a comprehensive rumenmicrobiome genome database, including prokaryotes, pro-
tozoa, fungi, and viruses. Furthermore, standardization of processes and analyses is crucial
to address the variability observed in the literature, facilitating comparison of results among
future studies and enabling robust data reanalysis through advanced data analytics.

Introduction

Domesticated ruminants are a crucial source of high-quality proteins to meet human protein
and nutrient requirements. They depend on the rumen microbiome to produce the primary
source of energy, nutrients, and precursors for protein production. This unique microbiome
features multi-kingdoms of remarkably diverse microbes, including bacteria and archaea as
prokaryotes, protozoa and fungi as eukaryotes, and viruses. Bacteria are the most abundant
and diverse, encompassing thousands of species (Creevey et al. 2014; Kim et al. 2011). Rumen
archaea are primarily methanogens, while protozoa are nearly exclusively ciliates. Despite being
less diverse and abundant, only 104 – 105 individuals per ml of rumen fluid, protozoa canmatch
bacteria in terms of biomass (Andersen et al. 2023). Rumen fungi represent only 10 – 16% of
total rRNA transcript abundance (Elekwachi et al. 2017) and less than 20% of the rumenmicro-
bial biomass (Rezaeian et al. 2004). Despite being the smallest, rumen viruses are diverse and
abundant (Gilbert et al. 2020; Yan et al. 2023).Thesemicrobes form a dynamic and finely-tuned
ecosystem.Their populations and metabolism can shift in response to changes in diet, allowing
ruminants to adapt to different nutritional regimes.

Previous studies have provided fundamental information on the capability of rumen
microbes, primarily bacteria. As the most abundant microbes, bacteria play the most cru-
cial role in the rumen functions, such as feed digestion, fermentation, and microbial protein
synthesis. Archaea produce enteric CH4, a potent greenhouse gas that raises significant envi-
ronmental concerns associated with ruminant production. Protozoa participate in feed diges-
tion and fermentation, but as predators, they engulf microbial cells and degrade microbial
protein, significantly contributing to the intraruminal recycling of microbial protein, a pro-
cess primarily responsible for the lower nitrogen utilization efficiency in ruminants than in
nonruminants. Fungi are not abundant but possess a unique ability and high activity to digest
feed fiber (Bhagat et al. 2023). Rumen viruses do not directly digest or ferment feed. Still, by
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ysing their hosts or providing auxiliary metabolic genes and other
genes, they can profoundly impact the functions and metabolic
activities of various rumen microbes, including those that form
the core rumen microbiome, in both top-down and bottom-up
manners (Yan et al. 2023). The rumen microbes constitute an
intricate ecosystem by interacting with each other, the diet, and
the hosts, and this ecosystem is responsible for converting feed
into energy, nutrients, and precursors that ruminants can utilize.
Therefore, the rumen microbiome can profoundly affect feed effi-
ciency, animal health, productivity, quality of products (meat,milk,
andwool), and the environmental footprint of the ruminant indus-
try. Understanding the diversity, composition, and functions of the
rumen microbiome and its interaction with diet and host has been
a long-term pursuit of research over the past century.

Despite considerable progress in understanding the rumen
microbiome, knowledge gaps remain regarding the interactions of
most rumenmicrobes with diet and host and their contributions to
animal nutrition and productivity. First, the role and significance
of specific microbial species in enhancing nutrient utilization and
reducing CH4 emissions are not yet fully understood. Second, the
crosstalk between differentmicrobial taxa and their dynamic inter-
actions with the diet and the host requires further investigation.
Third, the heritability (h2) of rumen microbes, which reflects the
influence of host genotypes on shaping the rumenmicrobiome and
its functions (Martinez Boggio et al. 2022), needs to be explored
more. Fourth, the microbiability (m2) of key animal production
traits, calculated as the proportion of variance in a specific produc-
tion trait explained by the rumenmicrobiome (Difford et al. 2018),
has only started to be assessed. Fifth, comprehensive investigations
into the resilience of the rumen microbiome to environmental
stressors, such as heat stress, are necessary to develop sustain-
able livestockmanagement practices. Finally, the exploration of the
rumen virome is in its initial stages, and its influence on the popu-
lations of rumen microbes or the overall rumen functions remains
to be determined

Understanding the complex relationship between diet, rumen
microbiome, host, and specific production traits presents some
challenges. The rumen microbiota (or microbial) composition can
considerably vary even among cohorts of the same breed fed the
same diet, making it challenging to attribute different produc-
tion traits to differences in the rumen microbiome. Experimental
design and analyses, including sequence data processing and bioin-
formatic analyses, lack standardization, which makes it difficult to
compare results across different studies. Additionally, the micro-
biome data generated from metataxonomics and metagenomics
are sparse, high-dimensional, zero-inflated, and compositional,
necessitating complicated statistical analyses. Furthermore, cor-
relations can be observed among diets, the rumen microbiome,
rumen functions, and production traits. However, the complex and
dynamic nature of this diverse microbiome poses challenges in
establishing unequivocal causal relationships. Additionally, most
studies identify rumenmicrobes only at the genus level, but species,
even strains, can vary significantly in their metabolism, activ-
ity, and contributions to overall rumen functions. Furthermore,
from an analytical perspective, the data layers generated by indi-
vidual meta-omics technologies can exhibit interactions with ani-
mal production traits. Therefore, the integration of various omics
technologies and data analyses is crucial for a comprehensive
understanding of the rumen microbiome and its relationship with
diet and animal nutrition. This integrated multi-omics approach,
combined with integrated analysis of the multiple layers of data, is
referred to as “rumen microbiome nutriomics.”

Omics technologies for rumen microbiome nutriomics

Since the early to mid-2000s, omics have become the pri-
mary technologies in microbiome research, including metatax-
onomics, metagenomics, metatranscriptomics, metaproteomics,
andmetabolomics coupled with bioinformatics.Thesemeta-omics
technologies have enabled comprehensive investigations of the
rumen microbiome, leading to an unrepresented understanding
and appreciation of its vast diversity, composition, functional
capacity, and association with diets and key animal production
traits, such as feed efficiency andmethane emission. However, each
of these omics technologies has its inherent limitations.

Metataxonomics

The 16S rRNA gene is among the few phylogenetic markers
analyzed through high-throughput sequencing in early stud-
ies profiling microbiomes, including the rumen microbiome.
Metataxonomics involves PCR amplification, high-throughput
sequencing of phylogenetic markers, and bioinformatic analy-
sis to taxonomically identify the microbes within microbiomes
(Denman et al. 2018). It is the first omics technology used in com-
prehensively profiling the rumenmicrobiome, greatly contributing
to our understanding of its extensive diversity. Although it can
help taxonomically identify most cellular rumen microbes, it has
several limitations (Denman et al. 2018). First, the preparation
of amplicon sequencing libraries involved PCR, but PCR intro-
duces biases (Silverman et al. 2021) stemming from the choice
of phylogenetic regions targeted and the primers used (Laursen
et al. 2017; Tremblay et al. 2015; Yu and Morrison 2004). These
biases can compromise differential abundance analysis (DAA),
especially for the minor taxa, posing challenges in comparing
DAA results among studies that use different marker regions and
primers. Second, while metataxonomics can cost-effectively detect
and identify most cellular microbes, the short amplicon sequences
lack the necessary taxonomic resolution to support species-level
classification (Johnson et al. 2019). This limitation is particu-
larly profound in the analysis of rumen ciliates due to the highly
conserved nature of their 18S rRNA gene (Somasundaram and
Yu 2024). Third, although comparing the marker sequences to
databases with specific tools like PICRUSt2 (Douglas et al. 2020)
and CowPI (Wilkinson et al. 2018) can help predict the func-
tional capability of the rumen microbiome, it does not provide
direct evidence of its functional capacities. Additionally, the lack of
species-level identification and the detection of numerous unclas-
sified microbes constrain the depth of functional insights. Finally,
metataxonomics cannot detect viruses or phages because they do
not have conserved phylogeneticmarkers. Nevertheless, metataxo-
nomics is still valuable in rumen microbiome studies. Sequencing
alternative markers, such as the internal transcribed spacers and
23S or 28S rRNA genes, can help enhance the taxonomic resolu-
tion, particularly by sequencing the entire length of these markers.
The full lengths of all the commonly used phylogenetic mark-
ers can be sequenced using synthetic long-read sequencing tech-
nologies, such as LoopSeq (Callahan et al. 2021), or long-read
sequencing technologies, such as MinION (https://nanoporetech.
com/) and Sequell II (https://www.pacb.com/technology/hifi-
sequencing/sequel-system/), enhancing the accuracy and resolu-
tion of taxonomic assignments (Abellan-Schneyder et al. 2021).
Furthermore, as demonstrated by Greengene2 (McDonald et al.
2023), amalgamating databases of phylogenetic markers and
genomes can improve the utility of metataxonomics in analyzing
the rumen microbiome.
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Metagenomics

In brief, metagenomics encompasses shotgun sequencing and a
series of bioinformatic analyses of DNA directly extractive from
microbiome samples. This omics technology is commonly used
to unveil the taxonomic diversity and functional capacities of
microbiomes, and it has proven to be one of the most powerful
omics technologies in rumen microbiome research (e.g., [Amin
et al. 2022]). Through taxonomic assignments of metagenomic
sequences, contigs, or metagenome-assembled genomes (MAGs),
metagenomics can potentially identify all microbes, including
viruses, providing insights into the overall diversity, composition,
and structure. For sequence-based taxonomic assignments, sev-
eral bioinformatics programs are available, such as MetaPhlAn2
(Truong et al. 2015), Kraken2 (Lu and Salzberg 2020), mOTUs2
(Milanese et al. 2019), and Kaiju (Menzel et al. 2016). Contig-
based taxonomic assignment enhances classification accuracy, and
several bioinformatics tools are available for this purpose, includ-
ing DIAMOND (Buchfink et al. 2015), CAT (von Meijenfeldt
et al. 2019), and MetaBinG2 (Mirdita et al. 2021). MAG-based
taxonomic assignment further enhances taxonomic classifica-
tion. Species-level taxonomic assignment can be achieved with
GTDB-Tk v2 (Chaumeil et al. 2022) and its genome database
and taxonomy (Parks et al. 2018). As sequencing costs decrease,
metagenomic sequencing depth increases, increasing the num-
ber of high-quality MAGs (>90% complete with <5% contam-
ination) and thus filling some of the gaps in genome databases.
Improvements in reference genome databases will facilitate pro-
file microdiversity and population dynamics at species, even strain
levels. Notably, strain-level profiling of metagenomes has been
demonstrated using inStrain (Olm et al. 2021) in a recent study
on the interactions between rumen microbiome and virome (Yan
and Yu 2024). Therefore, genome-centric and genome-resolved
metagenomics will further enhance taxonomic profiling of the
rumen microbiome, particularly at the species and strain levels.

Metagenomics can uncover the functional potential of the
entire rumen microbiome, along with discovering novel genes,
enzymes, and pathways. Indeed, early metagenomic studies
revealed an incredible repertoire of various genes, shining new
light on the functional diversity and potential of the rumenmicro-
biome (Brulc et al. 2011). However, metagenomics cannot dis-
tinguish genes from dead versus viable microbes. Additionally,
the “bag-of-genes” generated through gene-centric metagenomics
provides scant insight into genomic architecture. This approach
also has limited capacity to unveil new microbial species or
reconstruct the metabolic networks (MN) of individual microbes
(Frioux et al. 2020). Genome-centric and genome-resolved
metagenomics can address some of the limitations by construct-
ing MAGs and also provide opportunities to estimate the growth
rates of individual prokaryotes represented by MAGs (Joseph
et al. 2022; Korem et al. 2015), illuminating the population
dynamics of individual microbes within rumen microbiomes
(Zhang et al. 2022). Nevertheless, genome-centric and genome-
resolvedmetagenomics face several challenges. First, metagenomic
sequences are often short (<300 bp), making it challenging and
computing-demanding to assemble MAGs, particularly for rumen
microbes at low abundance, including ciliates and fungi, which
also have large complex genomes. Metagenomic sequences from
multiple samples of the same individual or treatment can be co-
assembled and binned to help recover MAGs of low abundance
species, but this approach leads to poor results when the sam-
ples have high intraspecies diversity, and it is computationally

consuming (Delgado and Andersson 2022). Second, genome
reconstruction also has biases (Nelson et al. 2020), leading to
over- or under-representation of specific microbial taxa, affecting
the accuracy of metagenomic analysis. Third, assigning functions
to some genes in metagenomic datasets can be challenging due
to gaps in reference genome databases and many unknown or
hypothetical genes. Indeed, about one-third of the protein-coding
genes from bacterial genomes could not be functionally annotated
(Bileschi et al. 2022). Deep learning models emerge as an effective
tool to enhance functional annotation (Bileschi et al. 2022).

Ongoing research efforts are focusing on addressing the above
challenges. Integrating short- and long-read sequencing tech-
nologies can improve sequence assembly, increasing high-quality
MAGs. Developing and refining bioinformatics tools can enhance
the quality of MAGs and streamline the metagenomics process.
For example, using machine learning, CheckM2 improves MAG
quality assessment (Chklovski et al. 2022). Further, expanding and
refining reference databases can improve the accuracy of taxo-
nomic classification and functional annotation (Stewart et al. 2019;
Xie et al. 2021; Yan and Yu 2024). Integration of metagenomics,
particularly genome-centric and genome-resolved metagenomics,
with other omics technologies, such as metatranscriptomics and
metaproteomics, along with the continued refinement of bioinfor-
matics tools, can provide more comprehensive insights into the
rumen microbiome and its complex interactions with diets, ani-
mals, and production traits. It should also be noted that genome-
centric and genome-resolved metagenomic studies have predomi-
nantly focused on rumen bacteria and archaea, thereby neglecting
rumen protozoa, fungi, and viruses. Leveraging on the recent
bioinformatics tools specifically developed for viral sequence anal-
yses, such as VirSorter2 (Guo et al. 2021), VIBRANT (Kieft et al.
2020), and CheckV (Nayfach et al. 2021), several recent studies
have successfully revealed that the rumen virome is highly diverse
and can infect a wide range of rumen microbes, including the core
rumen microbiome (Yan et al. 2023), responds to diets (Anderson
et al. 2017), and associates with microbial diversification, commu-
nity dynamic, and specific production traits (Yan and Yu 2024).
New bioinformatics tools capable of discerning eukaryotic sig-
nals amid metagenomic sequences, coupled with newly sequenced
genomes of rumen protozoa and fungi, will significantly enhance
the analysis of these rumen eukaryotic microbes within rumen
metagenomic datasets.

Metatranscriptomics

Through sequencing and bioinformatic analysis of RNA,metatran-
scriptomics reveals actively expressed genes, collectively referred
to as the transcriptome. rRNA is commonly removed before con-
ducting RNA-Seq to enhance sequencing efficiency and allow for
more precise sequencing ofmRNAalongside non-codingRNAand
small RNA. Hence, metatranscriptomics illuminates the ongoing
metabolic and other biological processes withinmicrobiomes.This
omics technology has yielded valuable insights into how the rumen
microbiome responds to dietary alterations or interfaces with
specific rumen functionalities and production traits at the tran-
scriptional level. Previous metatranscriptomic investigations have
focused on genes exhibiting differential expressions between diets
of feed additives (e.g., (Jize et al. 2022; Pitta et al. 2022)), animal
productivities (e.g., (Park et al. 2022; Xue et al. 2022)), or breeds
(e.g., (Li et al. 2019; Zhang et al. 2020)). Linking the expressed
genes to the specific host microbes can be challenging with such
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a ene-centric metatranscriptomic approach. Furthermore, rumen
metatranscriptomes have been analyzed for transcripts of prokary-
otes. The eukaryotic transcripts and the genomes of RNA viruses
should also be analyzed in future studies.

Genome-centricmetatranscriptomics focuses on the analysis of
transcriptional activity withinmicrobiomes, potentially at the level
of individual genomes.This approach employs RNA-Seq and com-
pares transcript sequences to individual genomes orMAGs.Hence,
it enables researchers to (i) associate transcripts with the expressing
genomes orMAGs and (ii) reconstruct genome-scale MN ormod-
els for individual microbes. Such information facilitates a more
precise evaluation of the contributions of those microbes to the
critical metabolic processes, such as feed digestion and fermenta-
tion, protein synthesis, and CH4 emissions. Additionally, differen-
tial gene expression (DGE) and pathway enrichment analyses are
crucial in revealing how microbial activities respond to variations
in diets and interface with rumen functions and animal productiv-
ity. Furthermore, genome-centric metatranscriptomics facilitates
identifying the rumen fungi that produce microRNA-like RNAs
(no evidence is available indicating that bacteria, archaea, and
protozoa produce microRNAs) and all cellular rumen microbes
produce small RNAs. While genome-centric metatranscriptomics
can potentially provide dynamic insights into rumen functions
at the genome level and dynamics in the rumen microbiome, it
faces several challenges with low-abundance transcripts. Gaps in
reference genome databases and the presence of unknown or hypo-
thetical genes further hinder the identification of some expressed
genes (Shakya et al. 2019). Furthermore, genome-centric meta-
transcriptomics can be biased toward culturedmicrobes with well-
annotated genomes. As sequencing costs decrease and reference
genome databases expand, metagenome-centric metatranscrip-
tomics is poised to surpass gene-centric metatranscriptomics.

Metaproteomics

Metaproteomics, the study of all the proteins expressed in a micro-
biome, the metaproteome, offers a snapshot of the expressed
proteins therein. Unlike metagenomics or metatranscriptomics,
it provides a “snapshot” of actively working proteins, revealing
the actual metabolic landscape at the sampling time. Pathway
enrichment analysis can help identify the pathways correspond-
ing to the identified proteins, providing dynamic insights into
the activities of a microbiome. This extends beyond the capabili-
ties of metagenomics or metatranscriptomics, furnishing a more
direct perspective on the actual functional processes and their
connection to animal productivity (Andersen et al. 2021). Studies
have used metaproteomics in investigating the metabolic influ-
ence of rumen protozoa within the rumen microbiome (Andersen
et al. 2023) and its responses to dietary interventions (Trautmann
et al. 2023) and heat stress (Li et al. 2021). Metaproteomics can
also help identify biomarkers associated with specific microbial
functions, microbiome dysbiosis, rumen functions, or produc-
tion traits. However, metaproteomics can face several challenges,
as demonstrated in other microbiomes, including the complexity
and diversity of the rumen microbiome, limitations in detecting
low-abundance proteins, and issues with identical peptides from
homologous proteins (Heyer et al. 2017; Lohmann et al. 2020;
Miura andOkuda 2023). Finally, the lack of complete genomes and
protein databases for many rumen microbes, particularly rumen
fungi and protozoa, hinders precise annotation and taxonomic
assignment, leaving some identified proteins with unknown ori-
gins. These challenges are further exacerbated by the presence of
dietary proteins in the rumen. To fully harness the potential of

genomic-centric metaproteomics for studying the rumen micro-
biome, comprehensive reference genome databases specific to this
microbiome are essential. The Rumen Microbial Global Network
or a similar international network can facilitate collaborative efforts
to compile existing and future genomics data including MAGs.
These databases, designed to minimize gaps in the representa-
tion of key rumen microbes, will enable genome-centric metapro-
teomics. Such an approach promises unprecedented insights into
the roles of key rumen microbes and their impacts on various
rumen functions and production traits. Ultimately, this informa-
tion will empower efforts to optimize the rumen microbiome for
improved animal health and productivity.

Metabolomics

Metabolomics leverages proton nuclear magnetic resonance
(NMR) spectroscopy and gas or liquid chromatography coupled
with mass spectrometry (GC-MS or LC-MS) or tandem MS (GC-
MS/MSor LC-MS/MS) to separate and identify individualmetabo-
lites. Targeted metabolomics analyzes a predefined set of related
metabolites, whereas untargeted metabolomics involves global
metabolic profiling. Metabolomics enables the elucidation of the
complex metabolic profiles within the rumen microbiome, offer-
ing valuable insights into its functional activities. Univariate and
multivariate statistical analyses can help identify specific metabo-
lites that differ between animals or treatments. Moreover, pathway
enrichment analysis can help identify the metabolic pathways that
are influenced or differentially expressed. Metabolomics has been
used in examining how the rumen metabolic profiles respond to
dietary shifts (Ali et al. 2023; Ren et al. 2023), dietary supplements
(de Poppi et al. 2021; Li et al. 2022a), stresses (Feng et al. 2022; Li
et al. 2023), and health status (Eom et al. 2021; Mu et al. 2022).
Furthermore, metabolomics aids in the identification of rumen
metabolites or pathway enrichment indicative of divergent rumen
functions or production traits, including residual body weight gain
(Idowu et al. 2023), RFI (Liu et al. 2022b), and efficiency of milk
production in dairy cows (Xue et al. 2022).

Rumen metabolomics also faces several challenges. First, the
rumen microbiome produces a myriad of metabolites at vari-
ous concentrations, but only a relatively small number of them
can be detected or identified. Second, identifying and annotat-
ing rumen microbiome metabolites face challenges because many
metabolites lack known reference standards, leading to uncer-
tainties in result interpretation. Third, the accurate assessment
of the metabolic response of the rumen metabolome necessi-
tates the quantification of metabolites, but the complex matrices
of rumen samples may compromise the reliability of quantifica-
tion. Fourth, several metabolomic databases like BMDB (www.
bovinedb.ca), MetaboBank (https://metabo.ca), andMetaboLights
(http://www.ebi.ac.uk/metabolights/), as well as pathway databases
like KEGG (https://www.genome.jp/kegg/) and MetaCyc (https://
metacyc.org/) can be used to map metabolites to their corre-
sponding metabolic pathways. However, gaps in these databases
constrain the reliable identification of metabolites and linking
metabolites or metabolic pathways to the producers. The develop-
ment of metabolomic databases specific to the rumen ecosystem
and advancements in bioinformatics tools for metabolite anno-
tation and pathway analysis will contribute to a more accurate
andmeaningful interpretation of rumenmicrobiomemetabolomic
data. Furthermore, integration with other omics technologies,
such as genomics, genome-centric metagenomics, metatranscrip-
tomics, and metaproteomics, is essential to further enhance the
capability of metabolomic analysis of the rumen microbiome.
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As demonstrated in a recent study (Idowu et al. 2023), integrat-
ing currently used LC-MS with other techniques, such as isotope
labeling, can increase the sensitivity of metabolite detection.

Bioinformatics and databases

Bioinformatics is essential for data analysis in all meta-omics. The
power of omics technologies depends on the capabilities of avail-
able bioinformatic tools in identifying and classifying microbial
species, annotating sequences and proteins, predicting functional
capabilities, and unveiling metabolic activities. Many bioinformat-
ics algorithms and tools are available to analyze the omics data
derived from various microbiomes. Most bioinformatics tools are
initially developed for other microbiomes, and they are applied to
omics investigations of the rumen microbiome. However, unlike
other host-associated microbiomes, the rumen microbiome has
diverse eukaryotic microbes (protozoa and fungi), which play sig-
nificant roles in ruminant nutrition. These eukaryotic microbes
are often overlooked and understudied due to the lack of appro-
priate bioinformatics tools. Bioinformatics algorithms employing
machine learning are now available to analyze eukaryotes (Karlicki
et al. 2022; Levy Karin et al. 2020;West et al. 2018). A recent bioin-
formatics tool GutEuk, developed specifically for rumen eukary-
otes, can markedly enhance the analysis of these eukaryotes (Yan
et al., 2024). Machine learning-based bioinformatics algorithms
have also been developed to extract the largely underexplored viral
sequence data (Du et al. 2023; Guo et al. 2021; Kieft et al. 2022;
Nayfach et al. 2021) andmobile genetic elements (Tang et al. 2023).
The advent of novel bioinformatics tools will greatly enhance
comprehensive analyses of all domains and kingdoms within the
rumen microbiome. It is envisaged that the near future will wit-
ness a substantial surge in data volumes capturing various facets
of the rumen microbiome with unparalleled depth and resolution.
Advancements in bioinformatics algorithms and tools, particu-
larly those that can seamlessly integrate datasets frommulti-omics
sources, are needed to analyze this anticipated influx of diverse data
effectively and adequately.

The experience from the preceding decades has shown that
general-purpose genome databases have gaps, with inadequate
representations of numerous microbial species. This deficiency
becomes particularly evident when these databases are employed
in rumen microbiome investigations. For example, a substantial
portion of the biomass in the rumen is attributed to microbial
eukaryotes, particularly protozoa (Andersen et al. 2023). However,
the current databases have few genomes of rumen protozoa.
Rumen viruses and fungi are also underrepresented in general-
purpose databases. The recent bioinformatics tools tailored for
viral sequence analysis have enabled the development of the first
global comprehensive rumen virome database (Yan et al. 2023). A
genome database of rumen protozoa must be developed for multi-
omics investigations into this important group of rumen predators.
The recently sequenced 52 single-cell amplified genomes (SAGs)
are a valuable initial resource (Li et al. 2022b). Since zoospores
of rumen fungi can be singularly picked, the single-cell genome
sequencing approach used to sequence the SAGs of rumen proto-
zoa may be used to sequence the genomes of rumen fungi.

Rumen microbiome nutriomics – connecting the rumen
microbiome and nutrition

The intricate interplay among diet, the rumen microbiome, and
ruminants establishes a dynamic nexus that forms the foundation

for rumen functions, nutritional processes, and, ultimately, pro-
ductivity. Investigating this nexus and identifying the rumen
microbes or metabolic pathways that influence specific rumen
functions or animal production traits has long been a focus of
research. Through integrating multi-omics technologies and data
analyses, rumenmicrobiome nutriomics can advance our compre-
hension of the roles played by rumenmicrobes in rumen functions
and nutrition.

Rumenmicrobiome nutriomics through integrated omics and
data analysis

Each omics technology has distinct capabilities and limitations.
This recognition has led to the utilization of multiple omics in
some recent studies, resulting in a more comprehensive character-
ization of the rumen microbiome (Liu et al. 2022a; Mu et al. 2022;
Xu et al. 2021). However, few studies have sufficiently integrated
the analysis of the data derived from different omics technologies
or established the links between the data and rumen functions
or animal production traits. This challenge is attributed, in part,
to the multiple layers of high-dimensional microbiome data gen-
erated by individual omics technologies (Pedersen et al. 2018).
Several strategies can reduce data dimensionality. These include
combining data normalization, binning of co-abundant features
(genes ormetabolites), integrationwith prior biological knowledge
(Pedersen et al. 2018), and clustering MAGs into metagenomic
species (Zhang et al. 2023b). Additionally, identifying modules of
relatedmicrobiome features, such as modules of microbiome, gene
expression, and metabolites, can contribute to a more cohesive
analysis. Bioinformatic approaches are continually evolving to inte-
grate data derived from multi-omics technologies. For instance, a
recent study utilizedweighted gene co-expression network analysis
and structural equation modeling (SEM) to integrate metataxo-
nomic, metagenomic, and metabolomic data, revealing informa-
tive connections from rumen microbes to metabolites and milk
protein yield (Zhang et al. 2023b). Furthermore, combinatorial net-
work and machine learning methods have demonstrated utility in
identifying metagenomic and host genotypes potentially linked to
CH4 emissions and feed efficiency in dairy cows (Cardinale and
Kadarmideen 2022). In line with these advancements, we propose
an integrated genome-centric and genome-resolved multi-omics
approach to holistically characterize all the rumen microbes (i.e.,
prokaryotes, eukaryotes, and viruses) and key aspects of the rumen
microbiome and establish connections with diets, rumen func-
tions, and animal phenotype and production traits (Fig. 1).

In brief, existing high-quality MAGs, such as the large sets
of MAGs of prokaryotes reported recently (Andersen et al. 2023;
Stewart et al. 2019; Xie et al. 2021), viruses (Wu et al. 2024; Yan
and Yu 2024), and genomes of the rumen microbiome such as
those of the Hungate1000 project, ciliates (Li et al. 2022b; Park
et al. 2021), and anaerobic fungi (Brown et al. 2021; Haitjema et al.
2017; Youssef et al. 2013), along with high-quality MAGs gener-
ated from ongoing studies, are combined to develop a compre-
hensive genome database (rumen microbiome genome database,
RMGD). The MAGs and genomes of prokaryotes are taxonom-
ically annotated using the taxonomy implemented in GTDB,
which supports species-level classification based on the phylogeny
derived from a concatenated set of 120 single-copy marker pro-
teins. The RMGD is used for taxonomic classification and func-
tional annotation of metagenomic and metatranscriptomic data.
The RMGD can also be used in classifying operational taxonomic
units (OTUs) or amplificon sequence variants (ASVs) generated
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Feed digestibility
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Figure 1. Integration of genome-centric and/or genome-resolved
omics in investigating the nexus of rumen microbiome,
functionalities, and animal production traits. A comprehensive
rumen microbiome genome database (RMGD) is created using
MAGS derived from genome-centric and genome-resolved
metagenomics and genomes of rumen microbes. A rumen
microbiome proteome database (RMPD) and metabolic networks
(MN) are then prepared from the RMGD. Blue arrows indicate
association analysis and causal inference. MAGs,
metagenome-assembled genomes; OTUs, operational taxonomic
units; ASVs, amplificon sequence variants; SNPs, single nucleotide
polymorphisms.

by metataxonomics, potentially at the species level, by sequence
mapping. The existing 52 SAGs of rumen ciliates (Li et al. 2022b)
and the recent rumen virome database (RVD) (Yan et al. 2023)
can be expanded to support rumen virome analysis. However, as
discussed above, concerted efforts are needed to sequence more
rumen protozoan and fungal genomes to develop a comprehensive
rumen eukaryotic genome database and genome-based taxonomy.

The AA sequences translated from all the open reading frames
(ORFs) of the RMGD are then used to prepare a rumen micro-
biome proteome database (RMPD) to aid in metaproteomic
investigations of the rumen microbiome. Metabolic nextworks
are assembled from the pathways reconstructed from indi-
vidual MAGs and genomes to assist in identifying the tran-
scripts and metabolites detected through metatranscriptomic and
metabolomic analyses, respectively. The multiple layers of omics
data are analyzed in an integrated manner (Subramanian et al.
2020). While having not been used in rumen microbiome nutri-
omics studies, xMWAS (Uppal et al. 2018) may be a valuable
software for data integration, network visualization, clustering, and
differential network analysis of data derived from two or more
omics platforms. This integrated omics approach and data analy-
sis will comprehensively characterize the rumen microbiome with
respect to its many key features (Fig. 1). Furthermore, the integra-
tion of multiple omics data and analyses will enhance the accuracy
of functional annotations. Such detailed data can be further inter-
rogated in the context of diet, rumen functions, animal genotypes,
and production traits.

Deciphering the interdependent labyrinth within the rumen
ecosystem – Advancing toward establishing causality in the
nutriomics of the rumenmicrobiome

The central goal of rumen microbiome nutriomics investiga-
tions is to delve into connections between various sets of

data encompassing diets, rumen microbiome features identified
through the omics technologies, rumen functions (i.e., feed diges-
tion and fermentation characteristics), key production traits (e.g.,
feed digestibility, feed efficiency, growth, lactation performance,
CH4 emissions, etc.), and response to stress (e.g., heat stress), and
nutritional disorders (e.g., subacute rumen acidosis). However,
determining the causal relationships among these datasets remains
an arduous task. Hence, researchers have used several analy-
ses, such as DAA, correlation, and association analyses, to infer
potential relationships. DAA can identify microbial taxa (primar-
ily genera, OTUs, or ASV), functional categories of genes, and
less frequently pathway enrichment, transcripts, and proteins that
are differentially abundant between diets, animal groups, treat-
ments, and animal production traits. Several analysis methods,
including analysis of compositions of microbiomes with bias cor-
rection (ANCOM-BC), which address the data features of the
rumenmicrobiome, in particular zero inflation and compositional
effects, along with partial least squares discriminant analysis (PLS-
DA) and linear discriminant analysis effect size (LEfSe), have
been commonly used in DAA. Studies in ruminant nutrition fre-
quently involve repeated measurements of the same subjects (for
example, using a Latin square design) and experimental designs
incorporating fixed and random effects (such as the randomized
complete block design). For these studies, DAA methods capa-
ble of analyzing mixed effects, like LinDA (Zhou et al. 2022),
should be used. However, all these methods have certain limita-
tions (Nearing et al. 2022). To further improve DAA of micro-
biome data, some new methods that can better address the micro-
biome data features have been developed, such as ZicoSeq (Yang
and Chen 2022), LOCOM (Hu et al. 2022), and CDEMI (Wang
et al. 2023a). Future rumenmicrobiome nutriomics studies should
employ these newmethods. LikeDAA,DGE analysis unveils varia-
tions in the expression ofmicrobial genes andpathway enrichment;
these variations can be associated with differences in diets, rumen
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microbiome structure, rumen functions, or animal production
traits. Correlations among these datasets can also be evaluated
with appropriate, non-parametric methods. Differentially abun-
dant microbial taxa and other microbiome features between, or
those correlated with, specific rumen functions and animal pro-
duction traits may guide further investigations into the causal
relationships in rumen microbiome nutriomics.

Association analyses are used to reveal specific rumen micro-
biome taxa, often at the OTU (or ASV) and genus levels, as well
as categories of functional genes linked to diets and animal pro-
duction traits. Recently, microbiome, microbiota, or metagenome-
wide association studies (MWAS) have been conducted to discover
all taxa or functional gene categories associated with a specific host
phenotype or disease status in humans and animals (Wang and Jia
2016). Despite having been frequently used to unveil gut microbes
associated with diseases in humans (e.g., (Liu et al. 2021)) and
feed efficiency (Aliakbari et al. 2022) along with intramuscular fat
content (Wang et al. 2022b) in pigs, MWAS has only been used
in a few recent studies on ruminants (Boggio et al. 2023a; Wang
et al. 2023b). In a sheep study, MWAS did not identify any OTUs
associatedwith dairy traits (Boggio et al. 2023a).The rumenmicro-
biomehas thousands ofOTUs. IndividualOTUsmay lack sufficient
“weight” to exhibit significant association.Therefore,MWASmight
be more effectively applied to genera. Until now, MWAS has only
been utilized to associate microbes detected through metataxo-
nomics with animal production traits. However, assessing associa-
tions between rumen microbes and variations in diets and rumen
functions will be equally applicable. Furthermore, MWAS should
be able to examine associations between diet or animal production
traits with rumenmicrobiome data derived from other omics tech-
nologies. An analogous approach, virome-wide association studies
(VWAS), could be developed to identify rumen viruses associated
with diets, specific rumen microbes, rumen functions, and animal
production traits. This would represent a viral version of MWAS,
extending the scope of broad association studies to include the viral
component of the rumen ecosystem.

Many statistical or data analytics approaches, such as corre-
lation, regression, probability, random forest, and deep learning,
can be used in MWAS. However, the distinct data features of
microbiomes may pose challenges to the robustness of MWAS.
New methods are being developed to improve and streamline
MWAS further. Recent examples include omnibus metagenome-
wide association studywith robustness (OMARU) (Kishikawa et al.
2022), MiATDS (Sun et al. 2021), and multiMiAT (Sun et al.
2023a). OMARU rigorously controls the statistical significance of
MWAS results, including the correction of hidden confounding
factors and the application ofmultiple test comparisons (Kishikawa
et al. 2022). Additionally, OMARU can evaluate pathway-level
links between metagenomes, as well as links between taxa and
genes in metagenomes. MiATDS performs adaptive microbiome-
based association analysis to detect microbial association signals
with diverse sparsity levels (i.e., sparse, low sparse, non-sparse).
This is achieved by defining the probability degree to measure the
associations between microbes and host phenotypes and intro-
ducing the adaptive weighted sum of powered score tests by con-
sidering both probability degree and phylogenetic information
(Sun et al. 2021). Divergently, implementing the multinomial logit
model framework, multiMiAT supports MWAS between micro-
biomes and ordinal or nominal multicategory host phenotypes
or traits (Sun et al. 2023a). Additionally, genome-wide associa-
tion studies (GWAS) using rumen microbes as traits can identify
heritable rumen microbes (Mani et al. 2022; Wang et al. 2023b).

The integration of MWAS with GWAS, referred to as micro-
biome genome-wide association studies (mGWAS), provides a
comprehensive approach for identifying heritable microbes asso-
ciated with a specific phenotype (Wang et al. 2022a). For example,
in growing lambs,mGWAS helped identify four genera of heritable
rumen microbes associated with body weight (Wang et al. 2023b).
This integrated methodology holds promise in identifying rumen
microbes that can serve as potential markers, facilitating selective
breeding for enhanced production traits.

It should be emphasized that association studies can only iden-
tify rumen microbes or other microbiome features exhibiting sta-
tistical correlations with diets, rumen functions, or specific animal
production traits. Although prior knowledge of rumen microbes
and their metabolism, meta-analyses of relevant studies, and lon-
gitudinal studies can help infer the biological plausibility of associ-
ations, cautionmust be exercised in interpreting these associations
as causal relationships. To transcend mere correlation and associ-
ation, it is crucial to establish causal relationships between diets,
features of the rumen microbiome, rumen functions, and key ani-
mal production traits. Experimental testing or verification of the
above causal relationships is arduous due to the complexity of the
rumenmicrobiome and its intricate interactions with diet and ani-
mals. At the microbiome level, causality can be deduced through
modeling approaches that integrate causality principles (Munoz-
Tamayo et al. 2023). Several methods have been used to predict the
microbes potentially driving a specific production trait in rumi-
nants. These methodologies include SEM (Hertel et al. 2023) and
causal Bayesian networks (CBNs) (Stebliankin et al. 2022). SEM
allows researchers to investigate the direct and indirect effects of
variables on one another, furnishing comprehensive insights into
their complex relationships within a theoretical framework. On
the other hand, CBNs utilize directed edges to represent causal
relationships or data dependencies between variables, providing
causal inference between rumen microbes and diet or animal pro-
duction traits. SEM has proven valuable in identifying rumen
microbial modules in dairy cows that potentially regulate milk
protein yield (Zhang et al. 2023b) and CH4 emissions (Saborio-
Montero et al. 2020). While CBN analysis has not been used in
rumen microbiome nutriomics studies, it has demonstrated utility
in inferring causality between the gut microbiome and colorectal
cancer (Kharrat et al. 2019) and between infant gut microbiome
and resistome (Stebliankin et al. 2022) in humans. Causal inference
models have also found applications in other human gut micro-
biome research (Hughes et al. 2020; Sun et al. 2023b). These anal-
ysis methods can be instrumental in deducing causal relationships
in rumen microbiome nutriomics studies.

Machine learning has been increasingly used in investigat-
ing microbiomes, including rumen microbiomes. Compared with
the traditional linear models commonly used in animal science
research, machine learning is advantageous in analyzing large
multidimensional data and inferring non-linear relationships.
Machine learning has proven effective in predicting animal perfor-
mance, exemplified by its application in forecasting CH4 emissions
from sheep (Zhang et al. 2023a), feed efficiency in dairy cows
(Xue et al. 2022), and animal health conditions (Zhong et al. 2020)
based on high-dimensional rumen microbiome data. Akin to its
potential in human microbiome research, machine learning will
prove itself to be useful in rumen microbiome nutriomics investi-
gations, particularly in facilitating causal inference. Furthermore,
recent studies have demonstrated the potential of artificial intel-
ligence in human microbiome research (e.g., (Gao et al. 2023)).
This suggests the prospect of applying artificial intelligence in
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rumen microbiome nutriomics research, including discovering
causality by analyzing large datasets of diets, rumen microbiomes,
and animals and identifying their patterns and associations with
animal production traits.

Assessing the magnitude of the rumenmicrobiome
contribution to animal production traits

Because of its vital role in ruminant nutrition, the rumen micro-
biome significantly influences key animal production traits. Recent
studies have quantitatively assessed the microbiability of specific
animal traits, shedding light on the contribution of the rumen
microbiome. Noteworthy among these traits are CH4 emissions
(m2 of 13%) (Difford et al. 2018), RFI (m2 of about 20%), milk
energy (m2 of about 25%) (Boggio et al. 2023b), and milk fatty
acid composition in dairy cows (m2 > 30% for some fatty acids)
(Buitenhuis et al. 2019), as well as milk composition (m2 of up
to 7%) (Boggio et al. 2023a) and body weight (m2 of 20%) in
sheep (Wang et al. 2023b). These studies estimated the plausible
contribution of the entire rumen microbiome to the production
traits. Furthermore, MWAS based on single-OTU regression has
revealed a small number of fecal OTUs significantly or sugges-
tively linked to traits like RFI, feed conversion ratio (FCR), daily
feed intake, and back fat thickness in pigs (Aliakbari et al. 2022).
In a recent study utilizing machine learning to develop prediction
models for CH4 emissions from sheep, certain genera of rumen
microbes were selected as predictor variables alongside animal
data (Zhang et al. 2023a). The incorporation of microbial pre-
diction variables not only enhanced prediction accuracy but also
bolsteredmodel robustness.Thismachine learning approach iden-
tifies rumen microbes potentially associated with CH4 emissions
and provides insights into their effect sizes through the coefficients
of the microbial predictor variables.

No study has assessed the microbiability of rumen functions,
such as feed digestibility and VFA profiles. Significant micro-
biability has been demonstrated for digestive efficiency in pigs
(Deru et al. 2022). Given the direct correlation between rumen
functions, feed efficiency, and other key animal production traits,
future research is warranted to investigate the microbiability of
major rumen functions and the rumen microbial taxa (genera or
species) contributing to those functions. Furthermore, heritable
rumen bacteria contribute more to the microbiability of lacta-
tion performance than their nonheritable counterparts (Zang et al.
2022). Given that host genetics significantly influence heritable
rumenmicrobes, a novel metric called “holobiality” (ho2) has been
proposed. This metric combines the heritability of specific pro-
duction traits with their microbial contribution (microbiability).
By quantifying the joint influence of the host genome and rumen
microbiome, holobiality offers promising potential for predicting
improvement in these traits.

Concluding remarks and future perspectives

The ruminant industry faces challenges in optimizing feed effi-
ciency, minimizing environmental impact, and enhancing the
quality of milk and meat to meet growing global demands for
dairy and meat products. The diverse rumen microbiome, as the
primary supplier of metabolizable energy, protein, and precursors
of milk and muscle protein, requires a more profound under-
standing with respect to its composition and functions, as well
as its interactions with diet, animal genotypes, and production
traits. Furthermore, it is essential to unveil the causal relationship

among these layers of variables, including data from ruminants.
While various omics technologies have been used to investigate the
rumen microbiome, each has limitations. Recently, the use of two
or three multi-omics has shown promise in providing amore com-
prehensive characterization of the rumen microbiome. However,
the data generated through these technologies are often not suf-
ficiently analyzed or interpreted in an integrated manner. The
proposed concept of rumen microbiome nutriomics advocates for
the integration ofmultiple omics and data analyses.This integrated
approach aims to advance our comprehensive understanding of
the rumenmicrobiome and its intricate interactions with both diet
and animals. The establishment of the Animal Nutriomics jour-
nal serves as a vital platform for disseminating and exchanging
novel findings from rumenmicrobiome nutriomics investigations,
facilitating collaboration and knowledge dissemination within the
scientific community.

Central to rumen microbiome nutriomics is the development
of a comprehensive RMGD. While some researchers have devel-
oped in-house databases, there exists significant variability in their
completeness and accuracy of curation, thereby exerting a signif-
icant influence on the analysis outcomes (Smith et al. 2022). A
serious undertaking is needed to compile the genomes and high-
qualityMAGs of rumenmicrobes into a publicly accessible RMGD.
Concerted efforts among researchers in the realm of the rumen
microbiome are needed to sequence more genomes of rumen
protozoa, fungi (in particular), and viruses or mine the existing
rumen metagenomes. Moreover, comparisons of results and find-
ings among studies have been compromised or difficult due to the
lack of sufficient metadata and technical variations across studies,
such as study design; sampling; extraction or isolation of DNA,
RNA, protein, and metabolites; as well as bioinformatic analyses
(Hagey et al. 2022; McGovern et al. 2018; Rintala et al. 2017). A
set of criteria for the above technical aspects and workflows will
be valuable to standardize the processes of rumen microbiome
nutriomics investigations. Such standardizationwill be particularly
invaluable for data reanalysis using big data analytics.

The “holy grail” of rumen microbiome nutriomics is to reveal
and understand the causal relationships between different layers
of data, ranging from diet, rumen microbiome, rumen functions,
animal genotypes, and key production traits. DAA, correlation,
and association analysis may help identify potential interactions
and indicators of some important aspects, such as feed efficiency,
product quality, or methane emissions. However, causal inference
is urgently needed to establish their cause–effect relationships.
Several approaches, including modeling and CBNs, can be used.
Machine learning and artificial intelligence also hold potential in
this pursuit in future investigations.
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