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ABSTRACT

Policyholders often decide to buy, renew, or cancel insurance based on the premium
charged by the insurer compared with what they expect their claims will be. It is
important for actuaries to consider the persistency of policyholders because the
financial well-being of the insurer depends on spreading its risk over a large book
of business. We use statistical decision theory to develop premium formulas that
account for the past experience of a given policyholder, the experience of the entire
collection of policyholders, and the likelihood of the policyholder renewing with or
buying from a given insurer, that is, persistency.

We assume that the persistency of policyholders depends on the arithmetic
difference between the premium charged and their anticipated claims. We extend
the work of TAYLOR (1975) in which he obtains linear credibility formulas by
minimizing loss functions that incorporate the persistency of policyholders. We
consider Taylor's loss functions and other objective functions, including those that
account for the amount of business the insurer writes or renews.
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1. INTRODUCTION

It is important for actuaries to consider the persistency of policyholders because the
financial well-being of the insurer depends upon long-term profitability and upon
spreading its risk over a large book of business. An insurer also wishes to retain
business because writing initial business is more expensive than renewing existing
business. We develop premium formulas that account for the past experience of a
given policyholder, the experience of the entire collection of policyholders, and the
likelihood of the policyholder renewing with or buying from a given insurer, that is,
persistency.

The framework under which we determine the effect of the persistency of
policyholders on premiums is statistical decision theory and its application to
credibility theory. Credibility theory seeks to find systematic methods for calculat-
ing a policyholder's insurance premium based on that policyholder's past experi-
ence and the experience of the entire group of policyholders. Current formulas
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in credibility theory often calculate premium as a weighted sum of the average
experience of the policyholder and the average experience of the entire collection of
policyholders. In order to avoid an off-balance from the application of credibility,
these formulas usually require that a policyholder will renew no matter what
premium is charged.

We assume that the persistency of policyholders depends on the arithmetic
difference between the premium charged and their anticipated claims. Considering
the arithmetic difference makes sense because we assume that the policyholders are
the same size (see Section 2.1). If one wishes to model the persistency of
policyholders of different sizes, one might assume that the persistency of policy-
holders depends on the relative difference, instead of the arithmetic difference. We
develop credibility formulas that optimize functions that consider the amount of
business that an insurer writes, as well as the monetary gain of the insurer. We,
thus, extend the work of TAYLOR (1975) in which the obtains linear credibility
formulas by minimizing loss functions that incorporate the persistency of policy-
holders.

SUNDT (1983) also considers the effect of persistency in credibility rating. His
approach differs from ours in that he assumes that the likelihood of renewing is not
affected by the premium charged by the insurer. Instead, he assumes that the
persistency of the policyholder gives the insurer information about the claim
distribution of the policyholder.

We review the work of BUHLMANN (1967, 1970) and TAYLOR (1975) in
Section 2. Buhlmann derives a credibility formula by minimizing the expected
value of a squared-error loss function. Similarly, Taylor minimizes the expected
value of the monetary loss to the insurer while discounting the loss by the
persistency of policyholders. In Section 3, we introduce objectives that an insurer
might consider optimizing.

We propose an exponential persistency function in Section 4 and develop a
general credibility formula in Section 5. In Sections 6 and 7, we calculate credibility
formulas in two parametric cases—normal-normal and Poisson-gamma. Finally, we
suggest future research in Section 8.

2. WORK OF BUHLMANN AND TAYLOR

2.1. Notation and Assumptions

Assume that the total claims of a given policyholder, or risk, in the /th policy period
(usually one year), is a random variable X, | (0 = 9), or more simply, X, \9, i -
1, ..., n. For a given value 0-9, assume that the random variables X,\ 9, i =
1, ..., n, are independently and identically distributed according to a conditional
probability (density) function f(x \ 9). Assume that the value 9 is fixed for a given
risk, although it is generally unknown. For existing policyholders, denote the
probability (density) function of © by JI{6), also called the structure function
(BUHLMANN, 1970). Note that we tacitly assume that the policyholders are the same
size because the distribution of the total claims of a policyholder selected at random
is given by the marginal distribution of X.
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Suppose the insurer has n years of claim experience for a policyholder: x =
(xx, ..., xn) e X". In this work, we consider credibility formulas that are not
necessarily linear, denoted by d(x), in which d is a real-valued function on X". We
also consider linear credibility formulas of the form a + bx, in which a and b are
constants to be determined and x is the arithmetic means of the claims JC, , ..., xn. We
refer to d(x) as the renewal premium, or simply premium, for year n + 1, and we are
not loading for administrative expenses.

For a prospective policyholder, d(x) is more accurately termed the initial
premium based on past experience of the risk, but we blur this distinction because
the insurance products that typically use credibility premiums are annually
renewable ones. For this reason, sales personnel must often "sell" the policy
annually even if the policyholder is renewing and not initially buying.

2.2. Work of Biihlmann

To estimate the future claims of a risk, Xn+l \6, with unknown 0, BUHLMANN

(1967, 1970) minimizes the expected value of the squared-error loss function

L(E[Xn + ] \ e ] , d(x)) = ( E [ X n + l \ 0 ] - d(x)f.

Under our assumptions, the resulting optimal premium d*(x) is

(2.1) E[Xtt+l\x] =iE[Xn+1\6]jt(d\x)dd.

By restricting the form of the renewal premium d(x) to be a linear combination
of the claim experience, xt, ..., xn, and by using the same squared-error loss
function, BUHLMANN (1967, 1970) obtains the following credibility formula

d*(x) = (l-Z)E[X]+Zx,

in which E[X] = EQE[X\9\ is the overall mean; Z = n/(n + k); and k =
E0 [War [XI 6 ]] I Ware [E [X \ d ]]. The numerator of k is called the expected process
variance; the denominator, the variance of the hypothetical means.

In certain cases, the premium E [Xn + , | x ] is linear and, thus, equals the linear
credibility formula. JEWELL (1974a, 1974b) verifies conditions under which this
exact credibility occurs. Also, please refer to WILLMOT (1994; Chapter 4) in which
he clearly explains the foregoing theory and illustrates it by providing many
examples.

2.3. Work of Taylor

One of the properties that d*(x) = E[Xn+l \x] satisfies is that the sum of
premiums over the portfolio of risks equals the expected claims from the portfolio
(BUHLMANN, 1967). In confirming this property, Buhlmann implicitly assumes that
the structure of the portfolio does not change as a result of the rating formula.
TAYLOR (1975) challenges this assumption and asserts that if a policyholder tends
to cancel when it is renewed with a premium that is higher than its anticipated

https://doi.org/10.2143/AST.26.1.563233 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.1.563233


56 VIRGINIA R. YOUNG

claims, then the premium income will not necessarily equal the expected claims. He
proposes a loss function that explicitly accounts for the decision of policyholders to
buy, cancel, or renew their insurance. He suggests that the insurer minimize its
expected financial loss while discounting for the persistency of policyholders.

Taylor defines a persistency function p (0, x, d(x)) to be the ratio of the exposure
in year n + 1 to the exposure in year n for the risk class given by 0 - 6 with n-year
claim experience * and premium d(x) for year n + 1. The exposure in year n is the
number of existing policyholders. To be somewhat rigorous for a continuous
structure parameter 0, think of p as an "instantaneous" ratio or a density
function.

His loss function is the financial loss, discounted by persistency,

(2.2) L(0,xx, a + bxx) = p(8,Xl, a + bxx) (E[X2\0] -(a + bx^)),

and he finds values for a and b that minimize the expected loss. Note that he
restricts n = 1 and d(x) - a + bx\.

Taylor assumes that p is a linear function of the arithmetic difference between
what the insurer charges, a + bxx, and the amount of claims the policyholder
expects to incur. He then considers two cases: In the first, Taylor calls the
policyholder unbiased because the policyholder expects to incur E [X21 9], its
hypothetical mean; in the second, the policyholder is biased and expects to incur
x,, its recent claim experience. (Note that Taylor does not use the term biased in a
statistical sense because the expected value of x, is E[X I 6].) His two persistency
functions are, thus,

Unbiased risk: p(0,xx,a,b) = 1 - e(a + bxx - E[X2 I 0]);

Biased risk: p(G,xl,a,b)=\-e(a + frx, - x , ) ;

in which e is a positive constant; Taylor calls the parameter e a price-elasticity of
exposure.

The linear credibility premiums that Taylor finds are

(2.3a) Unbiased risk: (1 - Z ) E[X] + Zx, + \/(2e);

(2.3b) Biased risk: (1 -Z* ) E[X] + Z*x, +

In these formulas, Z is the Biihlmann credibility weight, and Z* = V2 (1 +Z) > Z.
Note that in each case, the credibility premium is a weighted average of xt and
E[X], plus a flat load, l/(2e), independent of the claim distribution or the
policyholder's experience. One can consider this load a risk charge for the
policyholder selecting against the insurer.

3. OBJECTIVES OF THE INSURANCE COMPANY

3.1. Maximize Underwriting Gain and Amount of Business

One of the goals of an insurance company, as for any company, is to earn a profit.
The profit or underwriting gain is the excess of income over outgo. Insurance
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premiums contain provisions for claims (including risk margins) and for the
expenses of administering the insurance policy. Outgo consists of claims, expenses,
and experience rating refunds (MOREWOOD, 1992).

In this work, we consider the component of the underwriting gain equal to the
excess of the provision for claims and risk in the premium over the claims
themselves. In other words, we ignore service fees, investment income, loadings for
expenses, as well as the expenses themselves, and experience rating refunds.

Another possible goal of an insurance company is to increase its book of
business. MOREWOOD (1992) notes that writing new business depends on competi-
tive premium rates and that renewing existing business depends on how fair the
policyholder perceives the price. He points out that underwriting gain and growth
are interdependent: Rapid growth and large profit margins in the premiums are
usually inversely related. We, therefore, propose finding a function d*: X"—>R
such that the combination

(3.1) UG + hB = E[p(0,x,d(x)) (d(x)-E[X\0])] + hE[p(0,x,d(x))]

(3.2) = E[p(0,x, d(x)) (d(x) + h-E[X\ 9])]

is maximum when d-d*. The parameter h is a non-negative constant, and we take
the expectation with respect to the joint distribution of X,,...,Xn, and 0. In
Section 4, we propose a specific formula for the persistency function p, but here it
is any real-valued function defined on 0xX" x R. Recall that p accounts for initial
business as well as renewal.

The first term on the right hand side in equation (3.1) is the expected value of the
underwriting gain discounted for the persistency of policyholders. We write UG to
denote this first term. The second term is h multiplied by the expected relative
amount of business written, or B. It is reasonable to constrain £/G>0, B > 1 , or
both. If we let h approach 0, then by maximizing UG + h B, we maximize the
expected underwriting gain UG; if we let h approach &, then we maximize the
expected amount of business written B.

The parameter h converts the relative amount of business into monetary units (see
equation (5.1) below). To choose its values, an actuary may wish to consider the
potential loss or gain of revenue to cover fixed administrative expenses. Also, one
may choose h according to one of the following criteria:

• /z>0 is the smallest value such that B>M, for some M > 1, in which B is
evaluated at the optimal d*.

• /zsO is the largest value such that UG>M, for some M>0 , in which UG is
evaluated at the optimal d*.

In this context, one can think of A or 1//J as a Lagrange multiplier in a constrained
optimization problem. At the end of Section 6.2, we apply these criteria in a
hypothetical example.
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3.2. Optimize Properties of the Book of Business

An insurance company may set goals concerning the structure of its book of
business. If the structure of the company's business is given by n{9) during year 1,
and the credibility premium for year 2 is d(x,), then the expected structure of the
business in year 2 is described by

n2(d) = K.\ p{6,xud{x^)) f(xt \6) jc(6)dx],

in which K is a normalizing constant.
One goal may be to ensure that the grand mean decreases from year to year. This

occurrence indicates that the company is writing risks with lower expected claims.
The grand mean in year 2, expected at time 0, is

/u02 = K j]x2 p(9,X,, d(X])) f(x I 9) n{9)dxdd,

in which x = (x,, x2). Note that [i02 is the expected value of X2, with respect to the
distribution \f(x2 \ 9) JI2{6) d9.

Another goal may be to ensure that the total variance decreases over time. This
occurrence may enable actuaries to price more accurately by making claims more
predictable. The variance in year 2, expected a time 0, is

E[(X2- \ \ \

- Expected Process Variance + Variance of Hypothetical
Means,

in which 0 is distributed according to n2{9). We examine these two goals in two
parametric cases in Sections 6 and 7.

4. PERSISTENCY

We assume, as does TAYLOR (1975), that persistency depends on the arithmetic
difference between premium charged and anticipated claims. Such an assumption
may be suitable because we assume that risks are the same size. In our work, we
explicitly account for Taylor's belief that policyholders most likely expect claims
somewhere between ^[Xlft] and x. We do so by expressing the policyholder's
anticipated claims as a linear combination of E [X \ 6 ] and x, namely,
(l-c)E[X\0] + cx, 0 < c < l . The difference between what the insurer charges
and what the policyholder expects is, therefore,

A=d(x)-[(\-c) E[X\d]+cx].

Note that when n=\, the amount that the policyholder expects to incur,
(1 - c) E[X21 9] + ex,, includes as special cases the two that Taylor examines. For
unbiased risks, c = 0; for biased risks, c = 1.

Taylor points out one major weakness of the linear persistency functions that he
uses: They may take on negative values, implying that the amount of business is
negative. We, therefore, propose an exponential persistency function

p(A) = d exp(-Azl),

https://doi.org/10.2143/AST.26.1.563233 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.1.563233


CREDIBILITY AND PERSISTENCY 59

in which d > 0 and X > 0. Such a function p is always positive and behaves as one
expects, namely, it decreases as A increases, and conversely. The parameter 6 is the
relative amount of business written if the insurer charges what the policyholder
expects its claims will be, and X measures the sensitivity of policyholders to the
difference A. That is, X is analogous to the parameter e of Taylor, the price-
elasticity of exposure.

We assume that d, X, and c (the relative weight the policyholder gives its claim
experience) are fixed for all risks. These assumptions are perhaps unrealistic
because one expects that for a given A, an existing policyholder is more likely to
renew than a prospective one to buy. One also may argue that policyholders buy
insurance from a particular company based on that company's premium relative to
premiums offered by other insurance companies in the market. To adapt our
persistency function to that model, one could replace the difference A with the
following

A' = d(x)-dmarket(x),

in which dmarket is the (lowest) premium charged by the market. One might also use
a dynamic version of this model to explain the underwriting cycle experienced in
many lines of insurance.

5. UNCONSTRAINED MAXIMIZATION OF UG + h B

The combination of underwriting gain and relative amount of business, UG + h B,
includes UG as a special case by setting h = 0 and includes B by letting h
approach °<=. We, therefore, do not work through the details of maximizing UG or B
separately. Instead, we maximize UG + h B as given in equation (3.2) and obtain
the following theorem.

Theorem 5.1: Let X,\ 6, i=\,...,n, be independent and identically distributed
random variables given 0 = 0. Let 2F be the set of functions d: X"—>R for which the
gain function

G = (5exp{ -X(d(x)-[(\ -c) E[X\ 6] + cx])} (d{x) + h - E[x\ 6])

is integrable with respect to the joint distribution of Xt,X2, ..., Xn and 0. The
expected value of G is maximized when d = d*, with d* given by

(5.1) d*(x)=l/X-h + D,{lnE()lx[exp{tE[x\O]}]}\l = l(l_c),

provided d* is in 3F. Here D, denotes the operator of differentiation with respect
to t.

Proof: For d in 3% we apply Fubini's theorem to switch the order of integration in
the expectation of G. The expected value of G is, therefore, maximized when we
maximize

(5.2) Eo|, [d exp { -X(d(x)-{\-c)E[x\d]-cx)} (d(x) + h-E[x\ 9])],
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for an arbitrary sample X - x, in which we take the expectation with respect to the
posterior distribution of 0 \ x. Treating expression (5.2) as a function of d(x), and
applying standard techniques from calculus, we find that the maximum occurs
when

U*(x)Eg\x[exp{X(l-c)E[x\e]}] =

= Xd*{x)Ee\x[E[X\d]exp{X(\-c)E[x\d]}]

+ (l -Ui) E0\x[exp[k(l -c) E[x\d]}],

or, after solving for d*(x),

d*(x) = \a-h + Ee\x[E[X\e]exp[).(]-c)E[X\e]}]

+ Eelx[exp{X(l-c)E[X\8]}]

One may interpret the terms in equation (5.1) as follows: The first, I/A, is a flat
load similar to the one found by Taylor in equations (2.3a, b), namely, l/(2e); it
partially accounts for the sensitivity of policyholders to the premium charged. The
second term, - h, offsets for how much the insurer weights the relative amount of
business, B. Note that d*(x) decreases one unit for every unit of increase of h;
therefore, the more we weight B, the more we decrease the optimal premium, as one
might expect. The third term is an Esscher premium (GERBER, 1980); it equals a(x)
that minimizes the expected value of the following loss function:

(a(x)-E[x\6])2 e x p { A ( l - c ) E[X\0]}.

6. NORMAL-NORMAL

6.1. Unconstrained Maximization of UG + hB

To maximize UG + hB in the normal-normal case, we apply Theorem 5.1 to obtain
the following proposition.

Proposition 6.1: Let Xt \ 9~N(6, a1), i= 1, ..., n, be independent and identically
distributed normal random variables, with unknown mean 6 and known variance
CT2>0. Let 0~N(/u, r 2 ) , with known mean fi and variance r 2 > 0 . Then UG + hB
is maximized when

(6.1) d*(x)=m-h+{(l -Z)fi + Zx} +Ar2(l -Z)(l -c),

in which Z = m1l(nr1+ o2), the Biihlmann credibility weight.

Proof: The posterior distribution of © \ x is normal with mean

(6.2) n* = {\

and variance
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(6.3) (r2)*= c j V / ( n r 2 + CT2) = r 2 ( l - Z ) .

Because E [X I 0 J = 6, substitute the moment generating function of 0 I x into
equation (5.1). The moment generating function of a normal random variable
0~N(fi,z2) is

(6.4) Me(t) = Eg[e\p{6t}]=exp{ftt+T-fL/2}.

The derivative, with respect to t, of the natural logarithm of this moment generating
function is

(6.5) n + z2t.

To calculate the credibility formula in equation (5.1), substitute fi* from equation
(6.2) for /u, (r2)* from equation (6.3) for T2, and X (1 - c) for t in equation (6.5). We
obtain

d*(x) = \IX-h + {ji* + (T2\ ..v
= l/X-h + {([-Z) fi + Zx}+Xr2(\-Z)(\-c). D

Note that d*(x) is a linear function of the average claim experience x; therefore,
we have a type of exact credibility in this case. This credibility premium is the sum
of five interesting terms. We discuss the first two at the end of Section 5; they
occur in d*(x) in general. The sum of the third and fourth terms is the standard
Buhlmann credibility estimate in the normal-normal case. The fifth expression,
depends on how much the policyholders weight their own claim experience relative
to their true mean.

To see how the optimal premium d*(x) changes when the parameter X changes,
examine

Dxd*(x)= - l / 2 2 + r 2 ( l - Z ) ( l - c ) .

Observe that if c is sufficiently close to 1 (that is, the policyholders weight their
claim experience heavily) or if n is sufficiently large, then d*(x) decreases as X
increases. In this case, as the policyholders become more sensitive to the arithmetic
difference A, the lower the optimal premium.

6.2. Constrained Maximization of UG + HB

Up to this point, we have not constrained the values of UG and B. It is reasonable to
require that UG > 0, B > 1, or both; in other words, the insurer does not lose money,
business, or both. We examine two sets of constraints and obtain the following
propositions.

Proposition 6.2: Given the assumptions in Proposition 6.1 and the restrictions
(/GsO and d(x)-a + bx, we maximize UG + hB when d = d*, with d* given
by

(6.6) d*(x)= \/X-h+{(\ -Z)n + Zx}+Xz2(l-Z)(\-c),
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for /i<

(6.7)

for h>

I/A, and

d*(x.

I/A.

VIRGINIA R. YOUNG

) - {(1 —Z)fi + Zx] +Ar2( -c),

Proof: UG + hB = E[d exp{ -X(a + bx)- (1 - c ) 0 - c i t } (a + ft + foJc-0)]

(6.8) = (5exp{-Aa} (a + h) Ee [exp {9X(1 - c)} Ex\e[exp { -X(b-c)x)\]

+6exp{-Xa}bEg[exp{dW-c)}Ex\e[xe\p{-k(b-c)x}]]

-6exp{-ka}Eg[dexp{eX(l-c)}Ex\e[cxp{-X(b-c)x}]].

Use Mx|g(O and Ex\g[xexp {xt}] to calculate the expected values in UG + hB.
More specifically,

r}] = {Mx\e(tln))n

and

£^|fl[xexp{ir}] = [Mx\e{tln)\-1 Ex\e[xtxp[xtln)]

= exp{6t + o2t2/(2n)} [9 + a2t/n].

Substitute these expressions into UG + hB, equation (6.8), to obtain

UG + hB = (5exp{ -Aa} (a + h) £[exp {A(l -b)6 + X2(b - c)2 o2/(2n)}] +

+ dexp{ -la) ££[exp{A(l -b)9+X2(b - c)2 o2/(2n)}x

x[6-X(b-c) o2/n]]-d exp { - la] x

xE[d exp {A(l - b ) 6 +12(b - cf o2/(2n)}]

= (3exp{ -la + A2(b - cf o2l(2n)}x

x {(a + h - Ib (b - c) o2/n) £[exp {0A(1 -b)}]-(\ -b)x

xE[0 exp(61(1 -b)}]}

(6.9) = dexp{-Xa + X2(b-c)2o2/(2n) + X(l-b)fi + X2(\-b)2z2/2}

x{a + h-Xb(b-c) o2/n - (1 - b)fi - A(l - bf r 2 } .

By setting h = 0 in equation (6.9), we see that

(6.10) t/G>0 if and only if a>Xb(b - c) o2/n + (1 -V)fi + {\ -bfx1.

The values of the parameters a and b that appear in d*(x) in equation (6.1) satisfy
the inequality (6.10) if and only if / i< I/A. Therefore, if /*< I/A, then the insurance
company does not expect to lose money by using the credibility formula d*(x) in
equation (6.1).
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On the other hand, if h> I/A, then invoke the constraint and set

a-a{ =Xb(b - c) o2ln + {\ -b)ft + A(1 - b)2 r 2 ;

that is, set UG = 0. In this instance,

UG + hB = hB

(6.11) =hdexp{ -Xa + X2{b-c)2o2l(2n) + l{\-b) n+X2(\-b)2T2l2}.

The value b, of b that maximizes h B also maximizes the exponent in the braces in
equation (6.11). The maximum of the exponent occurs at

In this case, a, =(1 -Z)fi + Ar2(l - Z ) (1 - c ) , and we are done. Note that the
formula in equation (6.7) is the one we obtain when we maximize B subject to
£/G>0. •

We offer the following proposition without proof, thereby sparing the reader of
the messy details that are similar to the ones in the proof of Proposition 6.2.

Proposition 6.3: Given the assumptions in Proposition 6.1 and the restrictions
B> 1 and d{x) = a + bx, we maximize UG + hB when d = d*, with d* given by

d*{x) = \IX-h+{(\ -Z)

for /z>l/A-(//i<5)/A + Ar2(l - Z ) / 2 - Ac2 o2/(2n), and

for h otherwise. •

To illustrate how one might choose the parameter h, we offer the following
example:

Example: In the normal-normal case, let A = 0.01, CT2 = 250 , ,«=1000, T2 = 250 ,
(3= 1.5, and n=\. Therefore, Z = 0.50, so let c = 0.75. As h increases from 0 to
I/A = 100, UG decreases from about 55 to 0. As h increases beyond 59.375, as
determined in Proposition 6.3, B increases from 1 upward.

Suppose we target an underwriting gain of at least 25. The largest value of h is,
therefore, 79.571. If we use this value of h, then we maximize the relative amount
of business B, subject to the constraint that UG^ 25. Also, suppose we target a
relative amount of business of at least 1.1. The smallest value of h is, therefore,
68.939. If we use this value of h, then we maximize the underwriting gain UG,
subject to the constraint that B > 1.1. To achieve both UG ̂  25 and B > 1.1, use any
value of h between 68.939 and 79.571. •
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6.3. Optimize Properties of the Book of Business

An insurance company may set goals concerning the structure of its book of
business. We obtain the following lemma that we use to minimize the future grand
mean and the future total variance.

Lemma 6.4: Assume the conditions in Theorem 6.1. If the structure of the
company's business is given by JI(Q) during year 1, and the credibility premium for
year 2 is a + bxx, then the expected structure of the business in year 2 is distributed
normally with mean fi + 2.r2(\ —b) and variance r2.

Proof: 7z2(6)ocl p(e,x],a + bx[)f(x] \9) n(6)dxi

* exp { - [62-26(fi + AT 2 (1 - b ) ) ] / ( 2 r 2 ) } .

It follows that the structure parameter 0 is expected to be distributed normally with
mean ,« + AT2(1 —b) and variance x . •

The density JT2 will be independent of the rating parameter a in every case because
the term e~Xa factors. In the normal-normal case, the distribution is also indepen-
dent of c.

Proposition 6.5: Given the conditions in Lemma 6.4, the grand mean in year 2,
expected at time 0, is minimized when the insurer gives full weight to the
policyholder's experience.

Proof: The future grand mean is /iO2-EgE[X21 0] = E[6] =[i +Ar2(l -b), in
which 0 < b < 1. In order to minimize this mean, set b equal to 1. In other words,
give full weight to the policyholder's experience in calculating its second-year
premium. •

Proposition 6.6: Given the conditions in Lemma 6.4, the variance in year 2,
expected at time 0, is constant, independent of the premium parameters a and b.

Proof: The future total variance is

a constant. •

7. POISSON-GAMMA

To maximize UG + hB in the Poission-gamma case, we apply Theorem 5.1 to
obtain the following proposition.

Proposition 7.1: Let Xj\8~P(6), i=l,...,n, be independent and identically
distributed Poisson random variables, with unknown mean 6. Let 0~G(a, fi) be
gamma distributed, with known mean a //3 and variance a //32. Then UG + h B is
maximized when

https://doi.org/10.2143/AST.26.1.563233 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.1.563233


CREDIBILITY AND PERSISTENCY 65

(7.1) d

for fi + n>X(\ -c).

Proof: The posterior distribution of &\x is gamma, G(a + nx, fi + ri). Because
E [X21 0 ] = 8, substitute the moment generating function of 0 \ x into equation
(5.1). The moment generating function of a gamma random variable 0~G(a,fi)
iis

for (5>t. The derivative, with respect to t, of the natural logarithm of this moment
generating function is

(7.2) al(P-t).

To calculate the credibility formula in equation (5.1), substitute a + nx for a, /3 + n
for /?, and X{\ -c) for t in equation (7.2). We obtain

d*{x)=\IX-h + (a + nx)l(P + n-k(\-c)). •

Note that d*(x) is a linear function of the average claim experience it; therefore,
we have a type of exact credibility in this case, as in the normal-normal case. The
third term in equation (7.1) is similar to the Buhlmann credibility formula,
(a + nx)/(/3 + n), except for - A ( l - c ) .

To see how the optimal premium d*(x) changes when the parameter X changes,
examine

D % d * { x ) = - MX2 + ( 1 - c ) (a + n x ) / ( j 3 + n - X(l - c ) ) 2 .

As in the normal-normal case, observe that if c is sufficiently close to 1 or if n is
sufficiently large, then d*(x) decreases as X increases; therefore, as the policyhold-
ers become more sensitive to the arithmetic difference A, the lower the optimal
premium will be.

7.2. Constrained Maximization of UG + hB

As in Section 6.2, we examine two sets of constraints and obtain the following
propositions.

Proposition 7.2: Given the assumptions in Proposition 7.1 and the restrictions
[/G^O and d(x) = a + bx, we maximize UG + hB when d = d*, with d* given
by

(7.3)

for h<\lk, and

(7.4)

for h>\lk.
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Proof: The moment generating function of a Poisson random variable P(0) is

Mx| e (O = £x|e[exp{.rt}]=exp{0(exp{f) - 1)},

and similarly

£ x I e [x exp {*?}] = exp {0(exp {r} -1 )} [0exp{f}].

Use Mx\g(t) and EX\Q[XQXP {xt}] to calculate some of the expected values in
UG + hB. More specifically,

Ex\e[exp{xt}] = Mx\e{tln)}n

= exp {nO(exp {tin} - 1)},

and

Ex\g[xexp{xt}] = Mx\e(t/n)}"~[ Ex\e[xexp{xt/n)\

= exp{n6(exp{t/n} - 1)} [0 exp {f/n}).

Also we have for a gamma random variable, 0 ~ G (a, /3),

Assume that /3>A(1 - c ) + «(exp{ -A(fe-c)/«} - 1 ) , for all be [0,1]
Substitute these expressions into UG + hB, equation (6.8), to obtain

= <5exp{ -la) (a + /i)£[exp{0(A(l - c ) + «(exp{ - 2 ( ^ - c ) / n ) - 1))}]

+ <3exp{ -la] bE[zxp{6(X{\ - c ) + n(exp{ -

x[0 exp { -\(b - c/n}]] - <5 exp { -Xa) x

exp{-Aa) {(a + ft) £[exp {0(A(1 - c ) + «(exp{ - A ( f t - c ) / n ) - 1))}]

0 e x p { -

(7.5) = 6exp{-Xa} /?a/(^ + n - A(l - c ) - « exp ( -A(/>

x{(a + ft)(y8 + «-A(l -c) -nexp{ -X(b-c)ln))

+ (x(bQxp{-X{b-c)ln)-\}.

By setting h = 0 in equation (7.5), we see that

(7.6) f/G>0 if and only if

a>a(l -b exp { -X(b - c)/n})/(J3 + n-X(\ - c ) - « e x p { - A ( f o - c ) / n } ) .

The values of the parameters a and b that appear in d*(Jt) in equation (7.1) satisfy
the inequality (7.6) if and only if h^ I/A. Therefore, if ft< I/A, then the insurance
company does not expect to lose money by using the credibility formula d*(x) in
equation (7.1).
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On the other hand, if h> MX, then invoke the constraint and set

that is, set UG = 0. In this instance,

UG + hB = hB

= h6e\p{-Xa) Ba/(j3 + n -X(l -c) -n exp { - X ( b - c)ln})a.

The function hB attains its maximum at

In this case, al = a/(B + n-X(l - c ) ) , and we are done. •

We offer the following proposition without providing a proof.

Proposition 7.3: Given the assumptions in Proposition 7.1 and the restrictions
B > 0 and d(x) = a + bx, we maximize UG + hB when d = d*, with d* given by

d*(x)= l/X-h + (a + nx)/(B + n -X(l -c)),

for h> MX-(In 6)1 k + al(B + n-k(\-c))-
-(a/A) ln(B/(B + n-X(l-c)-n exp { - X(bx -c)/n})),
in which b]=n/(B + n-X(l -c)), and

d*(x) = (In 6)/X + (a/X) ln(B/(B + n -X(l - c) - n exp { -X(b{ - c)/n}))

+nx/(B + n-X(] - c ) ) .

for h otherwise. D

7.3. Optimize Properties of the Book of Business

An insurance company may set goals concerning the structure of its book of
business. We obtain the following lemma that we use to minimize the future grand
mean and the future total variance.

Lemma 7.4: Assume the conditions in Theorem 7.1. If the structure of the
company's business is given by iz(Q) during year 1, and the credibility premium for
year 2 is a + bx{, then the expected structure of the business in year 2 is gamma
distributed G(a, B+ 1 -A( l - c ) - e x p { -A (b - c)}).

Proof:
\ + bx{) f(xx \d) Ji(6)dx\

-d[B+l-X(\ -c)-exp{-X(b-c)}]}.

It follows that the structure parameter 0 is expected to be gamma distributed
G(a, B+\-X(\ - c ) - e x p { -X(b-c)}). •

Proposition 7.5: Given the conditions in Lemma 7.4, the grand mean in year 2,
expected at time 0, is minimized when the insurer gives full weight to the
policy holder's experience.
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Proof: The future grand mean is /xQ2 = EgE[X2 \ 9] =E[6\ = a/( /3+1
- X (1 - c) - exp { - X (b - c)}), in which O s i < l . In order to minimize this mean,
set b equal to 1; that is, give full weight to the policyholder's experience. •

Proposition 7.6: Given the conditions in Lemma 7.4, the variance in year 2,
expected at time 0, is minimized when the insurer gives full weight to the
policyholder's experience.

Proof: The future total variance is

E[(X2-fi02)
2] = Ee [Var[X2 \ 0]] + Vare [E[X2 I 9]]

= E[9] + Var[9] = a/(j3+l-X(\-c)-exp{-X(b-c)})

+ a/(P + I -X(l - c) -exp { -X(b - c)})2.

This variance is minimized when b equals 1. •

8. FUTURE RESEARCH

Credibility theory continues to be an important and dynamic area of research in
actuarial science as witnessed by the recent work of NORBERG (1992) and PANJER

and Li (1994). An aspect of credibility theory that has not been considered very
extensively is persistency, which we have addressed here. This work only begins to
deal with the problem of credibility and persistency, and we intend to explore this
issue further. Some of the outstanding problems are:

Long-term effects

We have optimized gain functions that span only one year or policy period. Because
actuaries consider longer lengths of time, it may be more appropriate to consider the
following objectives:
• Maximize the present value of underwriting gain.
• Maximize the stability of the number of insureds; for example, one could

minimize the change in the expected number of insureds from year to year.
• Optimize properties of the long-term structure of the book of business.
Another time effect to investigate is the change, or trend, in the number or amount
of claims from year to year. Such work could follow the models given by KREMER

(1982) or LEDOLTER, KLUGMAN and LEE (1991).

Different risk sizes and empirical study

We have not considered different risk sizes. This factor is an important one to
include in future models because, in reality, policyholders are not the same size. In
future work, we will consider the Biihlmann-Straub model (BUHLMANN and
STRAUB, 1970) and other models that allow for varying risk size (VENTER, 1990),
(GOOVAERTS and HOOGSTAD, 1987).
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Such models could be used to fit empirical data in practical research, as in
KLUGMAN (1992). An empirical study may also test the validity of the model
proposed in this paper with the one mentioned at the end of Section 4.
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