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BOUNDARY BEHAVIOR

OF THE BERGMAN METRIC

BO-YONG CHEN

Abstract. Let Ω be a bounded pseudoconvex domain in C
n. We give sufficient

conditions for the Bergman metric to go to infinity uniformly at some boundary
point, which is stated by the existence of a Hölder continuous plurisubharmonic
peak function at this point or the verification of property (P ) (in the sense of
Coman) which is characterized by the pluricomplex Green function.

§1. Introduction

Let Ω be a bounded domain in Cn, and let KΩ(z) be the Bergman

kernel function on Ω. The Bergman metric is defined by

BΩ(z;X) =





n
∑

j.k=1

∂2 logKΩ(z)

∂zj∂z̄k
XjX̄k





1/2

where X =
∑n
j=1Xj∂/∂zj ∈ T 1,0(Cn). Recently, it was proved indepen-

dently by Blocki-Pflug [2] and Herbort [16] that the Bergman metric of an

arbitrary bounded hyperconvex domain is complete. This is a partial but

satisfactory answer to the old problem of Kobayashi [19]: Which bounded

pseudoconvex domain is Bergman complete? This problem has been exten-

sively studied (see also [3], [17], [21], [22]). However, the Bergman com-

pleteness does not guarantee that the Bergman metric tends to infinity

uniformly at the boundary. A polydisc is the most simple example. Notice

that such a domain does not admit a plurisubharmonic (psh for short) peak

function at each boundary point. Recall that a function ρ is called a psh

peak function at a boundary point w0 of a domain Ω if ρ is psh in Ω, con-

tinuous on Ω with ρ(w0) = 0 and ρ(z) < 0 for all z ∈ Ω\{w0}. It is natural

to ask whether the Bergman metric of a bounded pseudoconvex domain go

to infinity uniformly at a boundary point if there is a psh peak function at
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this point. The main purpose of this paper is to give the following partial

result:

Theorem 1. Let Ω be a bounded pseudoconvex domain in Cn and let

w0 ∈ ∂Ω. Suppose that there exists a psh peak function ρ for Ω at w0 which

is Hölder continuous at w0, that is, there exist constants c, γ > 0 such that

ρ(z) ≥ −c|z −w0|γ holds for all z ∈ Ω. Then one has

inf
06=X∈T 1,0(Cn)

BΩ(z;X)/|X| → ∞(1)

as z → w0 in Ω.

As an application of Theorem 1, we obtain following

Corollary 1. Let Ω be a bounded domain in C with Ω
◦

= Ω. Then

the Bergman metric can not be extended beyond Ω.

It is well known that the Bergman kernel function and the Bergman

metric of Ω\A can be extended through A if A is an complex analytic

subvariety of dimension≤ n − 1. For any bounded pseudoconvex Ω in Cn

with Ω
◦

= Ω, Pflug [23] proved that the Bergman kernel function can not

be extended through any boundary point. However, this phenomenon dose

not always occur for the Bergman metric in the case n ≥ 2. For example,

the Hartogs triangle Ω = {(z1, z2) ∈ C2 : |z1| < |z2| < 1} satisfies Ω
◦

= Ω;

nevertheless, it is well-known that the Bergman metric can be continued

across the origin. It would be interesting to find sufficient conditions for

the Bergman metric not being extended through the boundary.

When the psh peak function in Theorem 1 satisfies certain growth con-

dition, one can even obtain a quantitative estimate for the Bergman metric:

Theorem 2. Let Ω be a bounded pseudoconvex domain in Cn. Sup-

pose there exist positive constants c, α, γ such that for each p ∈ ∂Ω there is

a psh peak function ρp for Ω at p verifying

|z − p|α ≤ −ρp(z) ≤ c|z − p|γ

for all z ∈ Ω. Then there exist a number τ > 0 and a constant C > 0 such

that

BΩ(z;X) ≥ C|X|/δτΩ(z),

where δΩ(z) is the euclidean boundary distance of z.
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Remarks. (1) The assumptions are satisfied for pseudoconvex domains
with real analytic boundary [9] or more generally, pseudoconvex domains of
finite type in Cn [4]. In both cases such an estimate has also been obtained
by Diederich et. al. [10] and McNeal [20];

(2) We are not going to determine the exponent τ precisely.

The domains in Theorem 1 or 2 are quite general. We provide in the

last section some examples of non-smooth pseudoconvex domains on which

the hypothesis of Theorem 1 or 2 is satisfied. The defining equation is

|z1|2/α1 + |z2|2/α2 + · · · + |zn|2/αn + ϕ(z) < 0 where αj > 0, j = 1, 2, . . . , n

and ϕ is a Hölder continuous psh function in Cn.

In the proof of the Bergman completeness for hyperconvex domains, the

boundary behavior of the pluricomplex Green function plays an important

role. Motivated by this fact, we shall prove that (1) also holds under a

hypothesis characterized by the pluricomplex Green function. We begin

with some notions.

Definition. The pluricomplex Green function of Ω is defined by

gΩ(z, w) = sup{ϕ(z) : ϕ is psh on Ω, ϕ ≤ 0,

ϕ(z) ≤ log |z − w| +O(1) }.

This definition was firstly given by Klimek [18]. It coincides with the

(negative) Green function for the Laplace operator in one dimensional case.

The function gΩ( · , w) is a negative psh function in Ω and it has a loga-

rithmic pole at w. It is also invariant under biholomorphic mappings. If

Ω is hyperconvex, then gΩ(z, w) → 0 as z → ∂Ω and it is continuous on

Ω×Ω. This result is due to Demailly [8]. The pluricomplex Green function

plays a similar role in the pluripotential theory as the Green function in the

classical potential theory.

Coman introduced in [5] the following

Definition. We say that Ω has property (P ) at w0 ∈ ∂Ω if for every
compact set K ⊂ Ω\{w0} one has gΩ(z, w) → 0 as w → w0, uniformly for
z ∈ K ∩ Ω.

We shall show

Theorem 3. Let Ω be a bounded pseudoconvex domain in Cn and let

w0 ∈ ∂Ω. Suppose that Ω has property (P ) at w0. Then (1) holds.
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This class of domains contains the following cases (cf. [5]):

(1) w0 is a local weak peak point for Ω, i.e., there are a neighborhood

U of w0 and a holomorphic map h : Ω ∩ U → ∆, where ∆ is the unit disc

in the complex plane, so that limz→w0
|h(z)| = 1 and lim supz→q |h(z)| < 1,

for every q ∈ ∂Ω, q 6= w0;

(2) gΩ is symmetric, that is, gΩ(z, w) = gΩ(w, z) for all z, w ∈ Ω (this

case involves all bounded domains in C, convex domains and homogeneous

domains in Cn [8]), and there exists a psh peak function ρ for Ω at w0;

(3) There is a psh peak function ρ for Ω at w0 such that

(i) ρ is Hölder continuous at w0;

(ii)

Nρ(r) := max

{

log |ρ(z)|
log |z − w0|

: z ∈ Ω, r ≤ |z − w0| ≤ 1/2

}

= O(log log(1/r))

as r → 0.

The proofs of the theorems are based on the L2-estimates of the ∂̄-

operator firstly introduced by Donnelly-Fefferman [13] and then generalized

by Diederich-Ohsawa [11], [12] and Berndtsson [1]. The proof of the main

theorem is inspired especially by Diederich-Ohsawa [11].

§2. Some L2-estimates for the ∂̄-operator

In this section, we recall some powerful L2-tools for the ∂̄-equation.

The following brilliant result is due to Donnelly-Fefferman [13]:

Proposition 4. Let Ω be a bounded pseudoconvex domain in Cn and

let ϕ be psh in Ω. Let ψ be psh and assume that ∂∂̄ψ ≥ ∂ψ∂̄ψ holds in the

distribution sense (equivalently, the function e−ψ is plurisuperharmonic).
Then for any ∂̄-closed (0, 1)-form g in Ω there is a solution to the equation

∂̄u = g such that

∫

Ω
|u|2e−ϕdVn ≤ C

∫

Ω
|g|2∂∂̄ψe−ϕdVn.

Here C > 0 is a numerical constant and dVn denotes the Lebesgue measure

in Cn.
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Important generalizations of this result have been done by Diederich-

Ohsawa [11], [12] and Berndtsson [1]. We use the version of Berndtsson:

Proposition 5. Let Ω be a bounded pseudoconvex domain in Cn and

let ϕ,ψ be as in Porposition 4. Let 0 < ν < 1. Then for any ∂̄-closed
(0, 1)-form g in Ω there is a solution u to the equation ∂̄u = g such that

∫

Ω
|u|2e−ϕ+νψdVn ≤ 4

ν(1 − ν)2

∫

Ω
|g|2∂∂̄ψe−ϕ+νψdVn.

§3. Proof of Theorem 3

We begin with some notions. Let Ω be a bounded pseudoconvex domain

in Cn and let ϕ be a psh function on Ω. By L2(Ω) we denote all the square-

integrable functions on Ω. The L2 norm is denoted by ‖ · ‖Ω. Let H2(Ω)

denote the subspace of holomorphic functions in L2(Ω). We define for any

measurable function on Ω:

‖f‖2
Ω,ϕ :=

∫

Ω
|f |2e−ϕdVn.

We say that f ∈ L2(Ω, ϕ) if ‖f‖Ω,ϕ < ∞. Now we are going to prove

Theorem 3. Without loss of generality, we may assume w0 = 0 and Ω ⊂
{|z| < 1}. By the hypothesis of the theorem, for each 0 < ε < 1 there exists

a number 0 < δ << ε so that

gΩ(z, w) ≥ −1

for all z, w ∈ Ω with |z| ≥ ε and |w| ≤ δ. Let χ : R → [0, 1] be a C∞

function satisfying χ ≡ 1 on (−∞, 1) and χ ≡ 0 on (1 + log 2,∞). We put

ψ(z) = − log(− log |z|)
ηε(z) = χ(ψ(z) + log(− log ε) + 1)

ϕ(z) = 2(n+ 1)gΩ(z, w) +
1

2
ψ(z).

Now fix w ∈ Ω with |w| ≤ δ for a moment. Let X ∈ T 1,0(Cn). Since

the Bergman metric is biholomorphically invariant, we may assume X =

|X|∂/∂z1 for the sake of simplicity. Since ψ is psh on Ω and satisfies ∂∂̄ψ ≥
∂ψ∂̄ψ, there is, according to Proposition 4, a solution to the ∂̄-equation

∂̄uε = (z1 − w1)
KΩ(z, w)

K
1/2
Ω (w)

∂̄ηε(z)
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together with the estimate

∫

Ω
|uε|2e−2(n+1)gΩ(z,w)dVn

≤ C

∫

Ω
|z1 − w1|2|KΩ(z, w)|2/KΩ(w)|∂̄ηε|∂∂̄ψe−2(n+1)gΩ(z,w)dVn

≤ C sup |χ′|2
∫

Ω∩{ε≤|z|≤ε1/2}
|z − w|2|KΩ(z, w)|2/KΩ(w)e−2(n+1)gΩ(z,w)dVn

≤ Ce2(n+1) sup |χ′|2
∫

Ω∩{|z|≤ε1/2}
|z −w|2|KΩ(z, w)|2/KΩ(w)dVn

≤ C1ε

where C1 only depends on n, sup |χ′|. It follows that uε(w) = 0 and

∂uε/∂z1(w) = 0 since gΩ(z, w) ∼ log |z − w| as z → w. Let

fε(z) = (z1 − w1)ηε(z)KΩ(z, w)/K
1/2
Ω (w) − uε(z).

Then fε is holomorphic on Ω. Since |w| < δ < ε, one has ηw(w) = 1. Hence,

fε(w) = 0, Xfε(w) = |X|K1/2
Ω (w) and

∫

Ω
|fε|2dVn ≤ 2

∫

Ω
|(z1 − w1)ηε(z)KΩ(z, w)/K

1/2
Ω (w)|2dVn + 2

∫

Ω
|uε|2dVn

≤ C2ε+ 2

∫

Ω
|uε|2e−2(n+1)gΩ(z,w)dVn

≤ C3ε

because gΩ(z, w) < 0 on Ω. Here the positive constants only depend on n

and sup |χ′|. We set hε = fε/ ‖fε‖Ω . From the well-known formula of the

Bergman metric

BΩ(w;X) = K
−1/2
Ω (w) sup{|Xf(w)| : f ∈ H2(Ω), f(w) = 0 and ‖f‖Ω ≤ 1},

we obtain

BΩ(w;X) ≥ |Xhε(w)|
K

1/2
Ω (w)

=
|Xfε(w)|

K
1/2
Ω (w)‖fε‖Ω

≥ C
−1/2
3 ε−1/2|X|

for any w ∈ Ω ∩ {|w| < δ}. This proves the theorem.
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§4. Proofs of Theorems 1, 2

We assume c = 1 for the sake of simplicity (otherwise, we replace ρ

by ρ/c). Put φ = − log(−ρ). Without loss of generality, we may assume

ρ(z) > −1/2 on Ω and diamΩ ≤ e−1. This implies φ > log 2 on Ω. Choose

a C∞ cut-off function (we still denote χ for the sake of simplicity) so that

χ|(−∞,0) ≡ 1, χ|(1,∞) ≡ 0, sup |χ′| ≤ 2 and sup |χ′′| ≤ 1. Let 0 < ε << 1 be

an arbitrary fixed number. We define on Ω a function as follows:

gk,w(z) = χ

(

1

log k
(− log φ(z) + log(− log ε)) + 1

)

log |z − w|

for any k > 1 and w ∈ Ω. The following lemma is similar to Proposition

2.1 in Diederich-Ohsawa [11].

Lemma 6. There exists a constant k0 > 1 (only depends on n, γ) so

that for any w ∈ Ω with |w − w0| < 1
2ε
k0/γ the following holds

(i) gk0,w ∼ log |z − w| near w;

(ii) gk0,w(z) + 1
8(n+1) (φ(z) − log(− log |z −w|)) is a psh function on Ω.

Proof. We assume |w −w0| < 1
2ε
k/γ where k will be determined later.

Then one has

ρ(w) ≥ −|w − w0|γ > − 1

2γ
εk.

Since

{z ∈ Ω : gk,w(z) = log |z − w|} ⊃ {z ∈ Ω : ρ(z) > −εk},
one has gk,w ∼ log |z − w| near w. By a straightforward computation, we
obtain the following equality in the distribution sense

∂∂̄gk,w =
log |z − w|
φ log k

(

χ′′( · ) ∂φ∂̄φ
φ log k

+ χ′( · )∂φ∂̄φ
φ

− χ′( · )∂∂̄φ
)

− χ′( · ) log |z − w|
φ log k

(

∂φ
∂̄ log |z −w|
log |z − w| + ∂̄φ

∂ log |z − w|
log |z − w|

)

+ χ( · )∂∂̄ log |z − w|.

Observe that

suppχ′( · ) ⊂ {z ∈ Ω : ρ(z) ≤ −εk}
⊂ {z ∈ Ω : |z − w0| ≥ εk/γ}.
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It follows that

|z − w| ≥ |z − w0| − |w − w0| ≥
1

2
|z − w0|

on suppχ′( · ) since |w − w0| < 1
2ε
k/γ . Hence

|φ(z)| = | log(−ρ(z))|
≥ γ| log |z − w0||
≥ γ| log(2|z − w|)|

holds there. By Cauchy-Schwarz’s inequality, the following inequality holds
in the distribution sense

±2Re
∂φ∂̄ log |z − w|

log |z − w| ≥ −∂φ∂̄φ− ∂ log(− log |z − w|)∂̄ log(− log |z −w|).

Then we can find, by neglecting the semipositive term χ( · )∂∂̄ log |z − w|,
a constant C ′ > 0 (only depends on γ) so that

∂∂̄gk,w(z) ≥ − C ′

log k
(∂∂̄φ+ ∂∂̄(− log(− log |z − w|)))

provided k ≥ e, because φ > log 2 on Ω, ∂∂̄φ ≥ ∂φ∂̄φ and

∂∂̄(− log(− log |z − w|)) ≥ ∂ log(− log |z − w|)∂̄ log(− log |z −w|).

To complete the proof we only need to take k0 so large that C ′/ log k0 ≤
1

8(n+1) .

Proof of Theorem 1. Let 0 < ε << 1 and w ∈ Ω with gk0,w be as above.
We denote by gw = gk0,w for the sake of simplicity. Let

δ = δ(ε) := sup
z∈Ω,ρ(z)≥−ε

|z − w0|.

Then δ > 0 and δ → 0 as ε → 0 since ρ is a psh peak function. Let
κ : R → [0, 1] such that κ|(−∞,1−log 2) = 1 and κ|(1,∞) = 0. We put

ηw = κ(− log(− log |z − w0|) + log(− log δ1/2) + 1)

ψw =
1

2
(φ− log(− log |z − w0|))

ϕw = 2(n+ 1)gw − 1

4
log(− log |z − w|) +

1

2
ψw.
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By Lemma 6, ϕw is psh on Ω. Obviously one has ∂∂̄ψw ≥ ∂ψw∂̄ψw and
∂∂̄ψw ≥ 1

2∂ log(− log |z − w0|)∂̄ log(− log |z − w0|). This implies

|∂̄ηw|∂∂̄ψw
≤

√
2 sup |κ′|.

Notice that

supp gw ⊂ {z ∈ Ω : ρ(z) ≥ −ε}
⊂ {z ∈ Ω : ηw(z) = 1}.

In particular, one has ηw(w) = 1. Let X = |X|∂/∂z1. We apply Proposition
5 with ν = 1/2, ϕ = ϕw, ψ = ψw to solve the ∂̄-equation

∂̄uw = (z1 − w1)KΩ(z, w)/K
1/2
Ω (w)∂̄ηw

on Ω with the estimate
∫

Ω
|uw|2e−2(n+1)gw+ 1

4
log(− log |z−w|)dVn

≤ 32

∫

Ωt

|z1 − w1|2|KΩ(z, w)/K
1/2
Ω (w)|2|∂̄ηw|2∂∂̄ψw

e−2(n+1)gw+ 1
4

log(− log |z−w|)dVn

≤ C1

∫

Ω∩{|z−w0|<δ1/2}
|z − w|2(− log |z − w|)1/4

|KΩ(z, w)/K
1/2
Ω (w)|2dVn

≤ C2δ
1/2

because supp gw∩supp ∂̄ηw = ∅. Here C1, C2 > 0 are constants only depend
on sup |κ′|. Since

2(n+ 1)gw − 1

4
log(− log |z − w|) < 0

on Ω and

2(n+ 1)gw − 1

4
log(− log |z − w|) < 2(n+ 1) log |z − w|

near w, the function fw = (z1−w1)ηwKΩ(z, w)/K
1/2
Ω (w)−uw is holomorphic

on Ω and satisfies

fw(w) = uw(w) = 0, Xfw(w) = |X|K1/2
Ω (w)
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and

‖fw‖Ω ≤ ‖(z1 − w1)ηwKΩ( · , w)/K
1/2
Ω (w)‖Ω + ‖uw‖Ω

≤ C3δ
1/2 + ‖uw‖Ω,2(n+1)gw− 1

4
log(− log |z−w|)

≤ C4δ
1/4.

This implies
BΩ(w;X) ≥ C−1

4 δ−1/4|X|
for any w ∈ Ω with |z − w0| < 1

2ε
k0/γ . This proves the theorem.

Proof of Theorem 2. It suffices to modify the proof of Theorem 1 slight-
ly. Let w ∈ Ω be fixed for a moment. Choose a boundary point w ′ so that
|w − w′| = δΩ(w). We take ε = (3δΩ(w))γ/k0 . We replace the w0 by w′, ρ
by ρw′ and repeat the argument as in the proof of Theorem 1. Clearly one
has |w − w′| < 1

2ε
k0/γ and

δ = sup
z∈Ω,ρw′ (z)≥−ε

|z −w′| ≤ c′δ
γ

αk0

Ω (w)

because −ρw′(z) ≥ |z −w′|α. We obtain finally the following

BΩ(w;X) ≥ Cδ
− γ

4αk0

Ω (w)|X|

for suitable constant C > 0. To complete the proof, we only need to take
τ = γ

4αk0
.

Proof of the corollary. Let w0 ∈ ∂Ω be an arbitrary point. Then there
exist a sequence of points wk ∈ C\Ω, k = 1, 2, . . . which converge to w0 as
k → ∞. Let w′

k ∈ ∂Ω be the nearest point to wk for each k. It follows that
Ω ⊂ C\∆(wk, rk) where rk = |wk −w′

k| and ∆(x, r) denotes the disc which
is centered at x with radius r. Since ∂∆(wk, rk) is C∞, Ω admits a Hölder
continuous psh peak function at w′

k for each k. According to Theorem 1,
the Bergman metric goes to infinity uniformly at wk. This implies that the
Bergman metric can not be continuously extended across w0.

§5. Examples and remarks

1. Let ϕ be a Hölder continuous psh function in Cn. We consider the

following domain

Ω = {z ∈ Cn : r(z) = |z1|2/α1 + |z2|2/α2 + · · · + |zn|2/αn + ϕ(z) < 0}
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where αj > 0, j = 1, 2, . . . , n. If ϕ ≡ −1, then Ω is a well-known Reinhardt

domain which has been studied by many authors (cf. [6], [7], [14]). Now

let p be any boundary point. Without loss of generality, we may assume

pj 6= 0 if 1 ≤ j ≤ l and pj = 0 if j > l for some positive integer l. We take

an open neighborhood U of p so that zj does not vanish there for 1 ≤ j ≤ l.

For each z ∈ Ω ∩ U one has

−r(z) + |zj |2/αj > |z1/αj

j |2

= |z1/αj

j − p
1/αj

j |2 + 2Re p̄
1/αj

j (z
1/αj

j − p
1/αj

j ) + |pj |2/αj

for 1 ≤ j ≤ l. Put

ρj(z) =







r(z) − |zj |2/αj + 2Re p̄
1/αj

j (z
1/αj

j − p
1/αj

j ) + |pj |2/αj if 1 ≤ j ≤ l

r(z) − |zj |2/αj if j > l

Notice that

r(z)−|zj |2/αj = |z1|2/α1+· · ·+|zj−1|2/αj−1+|zj+1|2/αj+1+· · ·+|zn|2/αn+ϕ(z).

It follows that ρj is psh on Ω ∩ U for each j and satisfies

ρj(z) ≤
{

−|z1/αj

j − p
1/αj

j |2 if 1 ≤ j ≤ l

−|zj |2/αj if j > l.

Let ρ =
∑n
j=1 ρj. Then ρ is a psh peak function for Ω∩U at p and clearly,

it is Hölder continuous in U . To get the global psh peak function, we take

ρ̃ = max{ρ,−δ} for suitable fixed constant δ > 0, and extend ρ as constant

−δ where it is not defined. Thus Theorem 1 applies.

2. Let Ω be defined as above. Furthermore, we assume 0 < αj ≤ 1 for

all 1 ≤ j ≤ n. Let p be any boundary point. Note that for any z ∈ Ω one

has

(−r(z) + |zj |2/αj )αj > |zj |2 = |zj − pj |2 + 2Re p̄j(zj − pj) + |pj|2

if 1 ≤ j ≤ l. Set

ρj,p = |pj |2 + 2Re p̄j(zj − pj) − (−r(z) + |zj |2/pj )αj .

Clearly ρj,p is psh since 0 < αj ≤ 1, and also −ρj,p(z) > |zj − pj |2 holds on

Ω. It follows that the function ρp :=
∑n
j=1 ρj,p is a psh peak function which

satisfies the hypothesis of Theorem 2 because r is Hölder continuous in Cn.

Then Theorem 2 applies.
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Remarks. If we let ϕ ≡ −1 in the above example, then Ω is convex
and the function defined by

r̃(z) =

(

sup
p∈∂Ω

(ρp(z) + |z − p|2)
)∗

(where ∗ denotes the uppersemicontinuous regularization) is a psh function
on Ω with the following holds

(i) −CδαΩ(z) ≤ r̃(z) < 0 where α = min{α1, α2, . . . , αn};

(ii) ∂∂̄r̃ ≥ ∂∂̄|z|2 holds in the distribution sense.

Due to a result of Sibony [24], we may bound the Kobayashi met-

ric from below by C|X|/δα/2Ω (z). Combining the well-known fact that the

Caratheodory metric coincides with the Kobayashi metric for convex do-

mains [8] together with the fact that the Bergman metric is always no less

than the Caratheodory metric [15], we immediately obtain a sharp estimate

for the Bergman metric

BΩ(z;X) ≥ C|X|/δα/2Ω (z).

3. In [11], Diederich-Ohsawa obtained a quantitative estimate for the

Bergman distance for bounded pseudoconvex domains in Cn, on which there

exists a bounded C∞ strictly psh exhaustion function ρ on Ω such that

1

c1
δ
1/c2
Ω (z) ≤ −ρ(z) ≤ c1δ

c2
Ω (z)

holds for suitable constants c1, c2 > 0. With the method we used in prov-

ing Theorem 1, the above condition can be weakened to only assume the

existence of a bounded psh exhaustion function which is Hölder continuous

on Ω.
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