A NOTE ON COMMUTATIVE BAER RINGS III

T. P. SPEED

(Received 29 July 1970)

Communicated by G. B. Preston

Introduction

If R is a commutative semiprime ring with identity Kist [4], [5] has shown that R can be embedded into a commutative Baer ring B(R), and has given some properties of this embedding. More recently Mewborn [7] has given a construction which embeds R into a commutative Baer ring with the stronger property that every annihilator is generated by an idempotent. Both of these constructions involve a representation of R as a ring of global sections of a sheaf over a Boolean space.

In this note we do two things — firstly we give a unification of the abovementioned results by constructing a family of extensions of R, the smallest of which is Kist's and the largest Mewborn's; secondly we give entirely algebraic constructions which relate to ones used in the theory of *l*-groups [2], [3]. Our extensions reduce to the familiar *m*-completions of R [8] in the case R a Boolean algebra, and we thus generalise the result of Brainerd and Lambek, see [6].

The author would like to thank Dr. A. C. Mewborn for supplying the preprint [7].

1. Preliminaries

For our notation we follow the previous notes: in particular if $a \in R$ where R is a commutative ring, we write $(a)_R [(a)_R^*]$ for the principal ideal generated by [annihilator of] a; subscripts will be dropped when no confusion is likely to result. |A| denotes the cardinality of A and m denotes a cardinal greater than 1. Also we write E_R for the Boolean algebra of idempotents of the commutative ring R.

DEFINITION 1.1 A commutative ring B is called a commutative Baer m-ring [commutative complete Baer ring] if for any $S \subseteq B$ with $|S| \leq m$ [if for any $S \subseteq B$] there is an idempotent $e \in E_B$ with $(S)_B^* = (e)_B$.

In the case *m* finite we call *B* a commutative Baer ring, see [10], [11].

DEFINITION 1.2 A ring morphism $\phi: R \to R'$ is said to be γ_m -compatible if for any S, $T \subseteq R$ with $|S| \leq m$, $|T| \leq m$ and $(S)_R^* = (T)_R^*$, we have $(S\phi)_R^* = (T\phi)_{R'}^*$.

LEMMA 1.3 Let J be an ideal of the commutative Baer m-ring B. Then the following are equivalent:

(i) For any $S \subseteq B$ with $|S| \leq m$, we have $S \subseteq J$ iff $(S)^{**} \subseteq J$.

(ii) For $S, T \subseteq B$ with $|S| \leq m$, $|T| \leq m$ and $(S)^* = (T)^*$ we have $S \subseteq J$ iff $T \subseteq J$.

(iii) J is a Baer ideal (see [10]) and $J \cap E_B$ is a Boolean m-ideal.

The simple proof is omitted.

We call an ideal J satisfying the conditions of 1.3 a Baer *m*-ideal; if J is a Baer *m*-ideal for all cardinals *m*, we call J a complete Baer ideal. The following lemma also has its easy proof omitted.

LEMMA 1.4 Let $\phi: B \rightarrow B'$ be a surjective ring morphism between two commutative Baer m-rings. Then the following are equivalent:

- (i) ϕ is ρ_m -compatible.
- (ii) ker ϕ is a Baer m-ideal.
- (iii) ϕ is a Baer morphism (see [10]) and $\phi \mid E_B$ is a Boolean m-morphism.

A ring morphism satisfying the conditions of 1.4 is called a Baer *m*-morphism; if ϕ is a Baer *m*-morphism for all cardinals *m*, we call ϕ a complete Baer morphism.

2. Baer m-Extensions

The construction which follows was suggested by Conrad's direct limit construction of the orthocompletion of a representable *l*-group [3] which goes back, via Bernau [2], to Amemiya [1]. We also recall that Kist's construction of the Baer extension of a commutative semiprime ring derived from [1].

Let R be a commutative semiprime ring and denote by A(R) the complete Boolean lattice of all annihilator ideals of R, Lambek [6] p. 43. If we write $\mu_R = \{(a)^{**} : a \in R\}$ then it is easily seen that μ_R is a dense sub-semi-lattice of A(R) and that A(R) is the normal completion of $\overline{\mu}_R$, the Boolean sublattice of A(R) generated by μ_R . By $A_m(R)$ (*m* an infinite cardinal) we mean the Boolean *m*-sublattice of A(R) generated by μ_R ; clearly $A_m(R)$ is the Boolean *m*-completion of $\overline{\mu}_R$.

A finite partition of $A_m(R)$ is a family \mathscr{D} of elements of $A_m(R)$ such that for distinct $D, E \in \mathscr{D}$ we have $D \cap E = (0)$, and $(\sum_{D \in \mathscr{D}} D)^{**} = R$. Let $\pi_m(R)$ be the (directed) set of all finite partitions of $A_m(R)$; we will define a family $\{R_{\mathscr{D}} : \mathscr{D} \in \pi_m(R)\}$ of commutative rings and a family of ring morphisms $\pi_{\mathscr{C}\mathscr{D}} : R_{\mathscr{C}} \to R_{\mathscr{D}}$ whenever $\mathscr{C} \leq \mathscr{D}$. (i) For $\mathscr{D} \in \pi_m(R)$ put $R_{\mathscr{D}} = \bigotimes_{D \in \mathscr{D}} R/D^*$.

(ii) For $\mathscr{C} \leq \mathscr{D}$ in $\pi_m(R)$ we proceed as follows: write $C = (\sum_{\delta} D_{\delta})^{**}$ for any $C \in \mathscr{C}$; then $C^* = \bigcap_{\delta} D^*_{\delta}$ and so we obtain a canonical isomorphism of R/C^* into $\times_{\delta} R/D^*_{\delta}$. Doing this for all C we obtain a canonical isomorphism

$$\pi_{\mathscr{CD}}: \underset{C \in \mathscr{C}}{\times} R/C^* \to \underset{D \in \mathscr{D}}{\times} R/D^*.$$

Now the family $\{R_{\mathcal{D}}, \pi_{\mathscr{CD}}: \mathscr{C}, \mathscr{D} \in \pi_m(R), \mathscr{C} \leq \mathscr{D}\}$ forms a direct system of commutative rings and we write $B_m(R) = \lim_{\mathcal{D}} R_{\mathcal{D}}$ for the direct limit taken as $\mathscr{D} \in \pi_m(R)$. Let $\beta: R \to B_m(P)$ be the injection embedding R into $B_m(R)$ as a subring.

LEMMA 2.1 Let $x \in B_m(R)$. Then there is a family $\{e_i : 1 \leq i \leq n\}$ of orthogonal idempotents such that $\sum_i e_i = 1$ and a family $\{a_i : 1 \leq i \leq n\} \subseteq R$ such that

$$x = \sum_{i} (a_i \beta) e_i$$

Further the idempotents $\{e_i\}$ can be represented by elements $\{\langle 1 + D_i^*, 0 + D_i \rangle\}$ where $\{D_i: 1 \le i \le n\} \in \pi_m(R)$.

PROOF. By our construction x can be represented by an ordered *n*-tuple

 $\langle x_i + D_i^* : 1 \leq i \leq n \rangle$

where $\{D_i: 1 \leq i \leq n\} \in \pi_m(R)$ and $\{x_i\} \leq R$. Put

$$e_i = \langle \delta_{ij} + D_j^* : 1 \leq j \leq n \rangle$$

where δ_{ij} is the Kronecker delta, $a_i = x_i$ and the Lemma follows.

Call the representation given in 2.1 the standard form for $x \in B_m(R)$.

LEMMA 2.2 $B_m(R)$ is a commutative Baer ring.

PROOF. For $a \in R$ we define $(a\beta)^* \in B_m(R)$ to be the element represented by

$$\langle 0 + (a)^*, 1 + (a)^{**} \rangle$$
,

and we will prove that $(a\beta)_{B_r(B)}^* = ((a\beta)^*)_{B_r(R)}$, i.e. that the annihilator of $a\beta$ is the principal ideal of $B_m(R)$ generated by the idempotent element $(a\beta)^*$ just defined.

Take $x \in B_m(R)$ in standard form, $x = \sum_i (a_i \beta) e_i$. Then $(a\beta)x = if$ and only if

$$(a\beta)(a_i\beta)e_i = 0 \ (1 \le i \le n),$$

and we will now show that this is the case if and only if

$$(a\beta)^* (a_i\beta)e_i = (a_i\beta)e_i \ (1 \leq i \leq n).$$

Suppose $e_i = \langle 1 + D_i^*, 0 + D_i \rangle$ where $D_i \in A_m(R)$; then

$$(a_i\beta)e_i = \langle a_i + D_i^*, 0 + D_i \rangle$$

We now refine $\{(a)^*, (a)^{**}\}$ and $\{D_i^*, D_i\}$ to

$$\{(a)^* \cap D_i^*, (a)^{**} \cap D_i^*, (a)^* \cap D_i, (a)^{**} \cap D_i\}$$

and then relative to this partition we have:

$$(a_{i}\beta)e_{i} = \langle a_{i} + (D_{i} \cap (a)^{*})^{*}, a_{i} + (D_{i} \cap (a)^{**})^{*}, 0 + (D_{i}^{*} \cap (a)^{*})^{*}, 0 + (D_{i}^{*} \cap (a)^{**})^{*} \rangle$$
$$(a_{i}\beta)^{*} = \langle 1 + (D_{i} \cap (a)^{*})^{*}, 0 + (D_{i} \cap (a)^{**})^{*}, 1 + (D_{i}^{*} \cap (a)^{*})^{*}, 0 + (D^{*} \cap (a)^{**})^{*} \rangle$$

From these expressions we see that we have $(a\beta)^*(a_i\beta)e_i = (a_i\beta)e_i$ if and only if $a_i \in (D_i \cap (a)^{**})^*$, while $(a\beta)(a_i\beta)e_i = 0$ iff $aa_i \in D_i^*$. Thus we will be nearly through when we have proved the following:

SUBLEMMA. $a_i \in (D_i \cap (a)^{**})^*$ iff $a a_i \in D_i^*$.

PROOF. Suppose $aa_i \in D_i^*$ and let $t \in D_i \cap (a)^{**}$. Then $taa_i \in (a)^{**}$ and also $t a a_i = 0$ whence $t a_i = 0$ proving that $D_i \cap (a)^{**} \subseteq (a_i)^*$ and so

$$a_i \in (a_i)^{**} \subseteq (D_i \cap (a)^{**})^*.$$

For the converse assume that $a_i \in (D_i \cap (a)^{**})^*$ and take $t \in D_i$. Then $t a \in D_i \cap (a)^{**}$ whence $t a a_i = 0$ proving that $a a_i \in D_i^*$.

We have thus shown that for any $a \in R$ the annihilator $(a\beta)_{B_m(R)}$ is a direct summand of $B_m(R)$. Now for an arbitrary element y (in standard form) $y = \sum_j (b_j\beta)f_j$

$$(y)_{B_m(R)}^* = \bigcap_j ((b_j\beta)f_j)_{B_m(R)}^* = \bigcap_j ((b_j\beta)^{**}f_j)_{B_{\dots}(R)}^*$$

which is certainly idempotent generated. Thus $B_m(R)$ is a commutative Baer ring.

LEMMA 2.3 $B_m(R)$ is a commutative Baer m-ring.

PROOF. In the previous lemma we saw that for any $x \in B_m(R)$ there was an idempotent x^* such that $(x)_{B_m(R)} = (x^*)_{B_m(R)}$. An examination of the construction shows that each such x^* is of the form $\langle 0 + D^*, 1 + D \rangle$ for some $D \in A_m(R)$. Take a subset $S \subseteq B_m(R)$ with $|S| \leq m$; then

$$S^* = \bigcap \{(s)^* : s \in S\} \\ = \bigcap \{(s^*) : s \in S\} \\ = \bigcap \{(\langle 0 + D(s)^*, 1 + D(s) \rangle) : s \in S\} \text{ where } D(s) \in A_m(R) \text{ for } s \in S, \\ = (e)_{B_m(R)},$$

where $e = \langle 0 + \bigcap_s D(s)^*, 1 + (\bigcap_s D(s)^*)^* \rangle$. Thus $B_m(R)$ is a commutative Baer m-ring; in fact we have also proved the following:

COROLLARY 2.4 The map $D \to \langle 1 + D^*, 0 + D \rangle$ defines an isomorphism $A_m(R) \cong E_{B_m(R)}$.

We now collect the preceding results and prove a characterisation of the extension $B_m(R)$ of R.

THEOREM 2.5 Let R be a commutative semiprime ring. Then there is a commutative Baer m-ring $B_m(R)$ and a ρ_m -compatible ring monomorphism $\beta: R \to B_m(R)$ with the following property: for any ρ_m -compatible ring morphism $\phi: R \to B$ of R into a commutative Baer m-ring B there is a unique Baer m-morphism $\overline{\phi}: B_m(R) \to B$ such that $\beta \circ \overline{\phi} = \phi$. Further, the pair $(\beta, B_m(R))$ is unique.

PROOF. We refer to the preceding lemmas for the construction of $B_m(R)$ with the embedding β . To prove that β is ρ_m -compatible take, $S, T \subseteq R$ with $|S| \leq m$, $|T| \leq m$ and $S^* = T^*$ in R. Then $(S\beta)^*_{B_m(R)} = (e)_{B_m(R)}$ and we readily see that $e = \langle 0 + S^*, 1 + S^{**} \rangle$ whence $e = \langle 0 + T^*, 1 + T^{**} \rangle$ and so $(S\beta)^*_{B_m(R)}$ $= (T\beta)^*_{B_m(R)}$.

Let $\phi: R \to B$ be a ρ_m -compatible ring morphism into a commutative Baer *m*-ring. We extend ϕ to $B_m(R)$ as follows: for $a \in R$ put $(\alpha\beta)\overline{\phi} = a\phi$; for $e = \langle 0 + S^*, 1 + S^{**} \rangle$ put $e\overline{\phi} = (S\phi)^*$ where $(S\phi)^*$ is the idempotent generator of $(S\phi)_B$. in *B*. Finally if $x = \sum_i (a_i\beta)e_i$ put $x\overline{\phi} = \sum (a_i\phi)(e_i\overline{\phi})$. It is easy to check that $\overline{\phi}$ is well defined and it also follows from the fact that ϕ is ρ_m -compatible that $\overline{\phi}$ is a Baer *m*-morphism. Clearly $\beta \circ \overline{\phi} = \phi$.

Finally standard category arguments establish that the pair $(\beta, B_m(R))$ is unique; we have in fact constructed a left adjoint for the forgetful functor from commutative Baer *m*-rings (with Baer *m*-morphisms) to commutative semiprime rings (with the usual ring morphisms).

The following theorem (whose proof we omit) gives another characterisation of the pair $(\beta, B_m(R))$.

THEOREM 2.6 The pair $(\beta, B_m(R))$ satisfy the following conditions:

(i) $\beta: R \to B_m(R)$ is a ρ_m -compatible ring monomorphism of R into a commutative Baer m-ring;

(ii) The induced map $\beta_*: \mu_R \to E_{B_m(R)}$ given by $(a)^{**} \beta_* = (a\beta)^{**}$ embeds μ_R as a dense subsemi-lattice of $E_{B_m(R)}$ and β_* lifts to an isomorphism $A_m(R) \cong E_{B_m(R)}$;

(iii) For any $x \in B_m(R)$ there are elements $\{a_i\} \subseteq R$ and orthogonal idempotents $\{e_i\}$ such that $\sum_i e_i = 1$ and $x = \sum_i (a_i\beta)e_i$.

Conversely, if $(k, K_m(R))$ is an extension of R satisfying (i), (ii), (iii) above, then $K_m(R)$ and $B_m(R)$ are Baer m-isomorphic over R.

T. P. Speed

3. Relation to Q(R)

We close this note by indicating how the extensions $B_m(R)$ fit inside Q(R), the complete ring of quotients of R, as R-subalgebras.

PROPOSITION 3.1. $B_m(R)$ is isomorphic to an R-subalgebra of Q(R).

PROOF. We recall that $Q(R) = \lim_{\to} \operatorname{Hom}_R(\Delta, R)$ where the direct limit is taken over all dense ideals Δ of R. Now for $\mathscr{D} \in \pi_m(R)$, $\sum_{D \in \mathscr{D}} D$ is a dense ideal of R, and we will see that there is a canonical isomorphism:

$$\delta_{\mathscr{D}} \colon R_{\mathscr{D}} \to \operatorname{Hom}_{R} \left(\sum_{D \in \mathscr{D}} D, R \right).$$

For, if $\langle x(D) + D^* \rangle_{D \in \mathscr{D}}$ is an element of $R_{\mathscr{D}}$, then the map $\langle x(D) + D^* \rangle \delta_{\mathscr{D}}$ which sends $\sum_{D \in \mathscr{D}} a_D$ to $\sum_{D \in \mathscr{D}} x(D) a_D$ is easily seen to be an *R*-homomorphism from $\sum_{D \in \mathscr{D}} D$ to *R*. Further the map $\delta_{\mathscr{D}}$ is a monomorphism.

Now if $\mathscr{C} \leq \mathscr{D}$, it is clear that $\sum_{C \in \mathscr{C}} C \supseteq \sum_{D \in \mathscr{D}} D$, and the map

$$pr_{\mathscr{C}\mathscr{D}} \colon \operatorname{Hom}_{R}\left(\sum_{C \in \mathscr{C}} C, R\right) \to \operatorname{Hom}_{R}\left(\sum_{D \in \mathscr{D}} D, R\right)$$

is simply given by restriction. A calculation which we omit shows that the following diagram:

is commutative. Thus the monomorphisms $\{\delta_{\mathfrak{g}}\}$ lift to define a monomorphism

$$\delta: \lim_{\substack{\longrightarrow\\ \Im \\ \Im \\ I}} R \to \lim_{\substack{\longrightarrow\\ \Lambda \\ I}} \operatorname{Hom}_{R}(\Delta, R),$$

and the proposition is proved.

COROLLARY 3.2 $B_m(R)$ is a ring of quotients of R.

PROOF. This is immediate from 3.1 and Proposition 6 page 40 of [6].

From now on we identify $B_m(R)$ with its isomorphic copy in Q(R) and turn to giving a simple description of it. For any $S \in A_m(R)$ consider the idempotent $f_S \in Q(R)$ given by

$$f_s: S + S^* \rightarrow R: a + b \mapsto a.$$

The Boolean algebra of all such idempotents f_s is a subring of Q(R) isomorphic to $A_m(R)$ which we denote by $\bar{A}_m(R)$.

THEOREM 3.3 $B_m(R)$ is the R-subalgebra of Q(R) generated by $\tilde{A}_m(R)$.

PROOF. This is immediate from the standard form for elements of $B_m(R)$ and the description of $\tilde{A}_m(R)$ just given.

COROLLARY 3.4 The Baer hull of R (Mewborn [7]) is identical with the complete Baer extension of R.

PROOF. This follows from Proposition 2.5 of [7] and 3.3 above.

COROLLARY 3.5 The Baer extension of R (Kist [4]) is a ring of quotients of R.

PROOF. This follows from 3.3.

REMARKS. It can also be shown that the classical ring of quotients of B(R) is the epimorphic hull [7] of R. This will appear in a forthcoming paper of M. W. Evans.

References

- I. Amemiya, 'A general spectral theory in semi-ordered linear spaces', J. Fac. Sci. Hokk. Univ. 12 (1953), 111-156.
- [2] S. J. Bernau, 'Orthocompletions of lattice groups', Proc. Lond. Math. Soc. 16 (1966), 107-30.
- [3] P. F. Conrad, 'The lateral completion of a lattice-ordered group', Proc. Lond. Math. Soc. 19 (1969), 444-480.
- [4] J. Kist, 'Minimal prime ideals in commutative semigroups', Proc. Lond. Math. Soc. 13 (1963), 31-50.
- [5] J. Kist, 'Compact spaces of minimal prime ideals', Math. Z. 111 (1969), 151-158.
- [6] J. Lambek, Lectures on Rings and Modules (Blaisdell 1966)).
- [7] A. C. Mewborn, 'Regular rings and Baer rings' (to appear).
- [8] R. Sikorski, Boolean Algebras (Springer (1964)).
- [9] T. P. Speed and M.W. Evans, 'A note on commutative Baer rings', J. Aust. Math. Soc. 13 (1971), 1-6.
- [10] T. P. Speed, 'A note on commutative Baer rings II', J. Aust. Math. Soc. 14 (1972), 257-263.

Department of Probability and Statistics The University Sheffield, S10 30D U. K.

[7]