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Legumes are a large and diverse family of plants that provide us with food, feed, fuel
and feedstocks for industry. They can use atmospheric di-nitrogen for growth, via
symbiotic nitrogen fixation (SNF) with bacteria called rhizobia, making them key to
sustainable agricultural systems. There are opportunities to increase SNF in legumes
to help tackle critical challenges related to the overuse of fertilizer nitrogen in
agriculture. The last two decades have seen enormous progress in our understanding
of the genetics of SNF, although this is yet to be leveraged to improve SNF in
legumes. In principle, two main plant-based approaches exist to improve SNF, one
involving genetic engineering and the other using existing natural variation in this
complex trait. These approaches are not mutually exclusive and now is an opportune
time to attempt to increase SNF in legumes via plant genetics and genomics.

Introduction

Legumes are a large and diverse family of plants that provide us with sustainable
sources of food, feed, fuel and feedstocks for industry (Foyer et al. 2016; Semba et al.
2021). Well-known legumes include: the common garden pea, which was
instrumental in the work of Mendel that established the field of genetics; soybean,
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the most important legume on earth in terms of total seed production; other food
legumes such as peanut, various types of bean, chickpea, lentil, liquorice, carob;
forage species such as alfalfa/lucerne and clover; and many species of trees, such as
acacias in Australia. Soybean is an important annual oil seed crop, but another
legume, the perennial tree Pongamia pinnata, is emerging as a potential source of oil
for biodiesel and sustainable aviation fuel, especially as it can be grown on land
unsuitable for food crops (Scott et al. 2008).

Legumes play key roles in natural ecosystems because of their ability to form
nitrogen-fixing symbioses with bacteria called rhizobia, which represent a major
source of useful nitrogen (N) for terrestrial ecosystems (Canfield et al. 2010; Gou
et al. 2023). For the same reason, legumes were crucial to the emergence and/or
persistence of agriculture in otherwise N-depauperate soils. Indeed, legumes remain
essential for N-supply in sustainable agricultural systems, even though they have
been sidelined somewhat in conventional agricultural systems by the massive use of
synthetic N-fertilizers. Amounting to well over 100 million tonnes of N per year,
fertilizer-N helped fuel the Green Revolution and subsequent massive growth in the
human population over the past 60 years (Smil 2001). Synthetic fertilizer-N use is a
double-edged sword, however, as it generates massive amounts of carbon dioxide
during its production, distribution and application, and another, 300-times more
potent greenhouse gas, nitrous oxide, when metabolized by soil microbes (Snyder
et al. 2009; Pan et al. 2022). Additionally, about half of N-fertilizers applied to
agricultural fields globally are not used by the target crop and are lost to the
environment via leaching, erosion and gaseous emissions, which wreaks havoc with
natural ecosystems and human health (Sutton et al. 2011; Steffen et al. 2015). This
brings us back to legumes, which by virtue of SNF have much higher intrinsic
nitrogen use efficiency (NUE: the ratio of N captured in plant products divided by N-
inputs) in cropping systems, e.g., 80% for soybean, compared with other crops such
as cereal, which hover around 40% (Zhang et al. 2015). Ultimately, this means that
less nitrogen is lost from agricultural soils because of legume cultivation than from
other crops, such as cereals (Udvardi et al. 2021).

Despite their ability to use atmospheric nitrogen for growth, legumes prefer soil
nitrogen for energetic reasons, which typically supplies about 30–60% of total plant-
N (Herridge et al. 2008). Thus, legumes in agriculture derive about 40–70% of their N
from the atmosphere, well short of the theoretical maximum of 100% that can be
approached under experimental conditions when no N is provided in the growth
substrate. Whatever soil-N is removed with harvested plant parts is no longer
available to subsequent crops. Of course, the same is true of nitrogen derived from
the atmosphere (Ndfa), although some of this N remains in the soil system in the
form of crop residue. Thus, legume cultivation results in a net gain of soil-N in many
systems (Herridge et al. 2008). Nonetheless, given the gap between potential and
actual %Ndfa achieved by legumes in agriculture, there are opportunities to increase
this net gain further by improving SNF in ways we explore below.
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Genetics and Genomics of SNF

Symbiotic nitrogen fixation (SNF) in legumes is a complex trait that involves the
development of specialized organs called nodules, which generally form on roots
(Brewin 1991; Ferguson et al. 2010). During nodule development, rhizobia bacteria
typically enter plant cells via ‘infection threads’ in epidermal root hair cells that
provide access to underlying cortical cells, which accommodate and feed the bacteria
as they multiply and eventually differentiate into nitrogen-fixing ‘bacteroids’.
In exchange for ammonium derived from nitrogen fixation, the plant provides its
microsymbionts with all the nutrients required for growth, including organic
compounds that are used for energy and biosynthesis and inorganic elements such
as iron, sulphur andmolybdenum that are required for the production of enzymes such
as nitrogenase, which catalyses nitrogen fixation (Udvardi and Poole 2013).
Ultimately, ammonium produced by bacteroids is assimilated into amino acids and
other compounds by host plant cells before export from nodules to the rest of the plant.

Thousands of plant and bacterial genes are expressed during nodule development
and differentiation and presumably are required for SNF (Colebatch et al. 2004;
Benedito et al. 2008). Indeed, hundreds of plant genes have been shown to be
necessary for SNF, via genetic studies (Roy et al. 2020). These mostly rely on loss of
gene function, from mutations in the DNA or interference in gene expression at the
level of RNA (RNAi), to illuminate the roles of genes based on aberrant phenotypes
(Szczyglowski et al. 1998; Penmetsa and Cook 2000; Ott et al. 2005; Tadege et al.
2008; Fukai et al. 2012; Zhang et al. 2022). Genes involved in various aspects of
nodule development and function have been characterized genetically, including:
(i) initial chemical signalling between the plant and rhizobia, which determines
partner compatibility, and subsequently triggers gene expression and cell division in
the plant, initiating nodule development; (ii) cell biological processes required for
bacterial entry and accommodation in plant cells; (iii) nitrogen-dependent repression
and autoregulation of nodule development, which restricts and optimizes the number
of nodules produced; (iv) nutrient transport and nodule metabolism that enables
metabolic cooperation between the symbiotic partners; (v) nodule oxygen
homeostasis to establish the low-oxygen environment required by oxygen-labile
nitrogenase; and, finally, (vi) nodule senescence, which can shut down nitrogen
fixation in response to increased soil-N, environmental stress, and internal
developmental cues, and enables recycling of resources to the rest of the plant
(reviewed in Roy et al. 2020).

Discovery of genes involved in SNF was largely facilitated by whole genome
sequencing, assembly and annotation of the model legumes, Medicago truncatula
and Lotus japonicus (Sato et al. 2008; Young et al. 2011) and of crops such as
soybean (Schmutz et al. 2010). Genome sequence information accelerated map-
based cloning of genes, identification of mutations caused and ‘tagged’ by foreign
DNA sequences, and selection of genes for ‘reverse genetics’, in which individuals
with defects in specific genes or their expression are isolated before determining the
mutant phenotype (Roy et al. 2020).
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Given the complexity of SNF, the thousands of genes involved and the countless
interactions between the products of these genes and the processes they control, it is
little wonder that genetic knowledge of SNF has not yet been harnessed to increase
SNF effectiveness in crop or pasture legumes. Indeed, with so many ‘players’, it is
hard to know where to ‘place your bets’, at least when it comes to contemplating
engineering approaches. We will come back to this later, but next consider more
conventional approaches to plant improvement that use natural variation in traits of
interest.

Natural Variation and Opportunities to Improve SNF

Decades of research have shown that legume SNF effectiveness (quantified as Ndfa)
varies with changes in the environment (E), including edaphic or soil factors and
climatic conditions (Sulieman and Tran 2016; Santachiara et al. 2019), and with the
strain of rhizobia chosen as partner (rhizobial genotype, Gr; Mendoza-Suárez et al.
2020; Westhoek et al. 2021). The resulting knowledge has guided agricultural
management practices (M) to optimize SNF, or at least growth and yield of legume
crops and forages (GRDC). Few studies have examined the plant genetic (Gp)
contribution to SNF effectiveness, although it impacts SNF effectiveness through
interactions with the other factors (conceptually, SNF=Gp×Gr× E×M). Recent
studies with collections of diverse genotypes of several species have found variation
in SNF associated with plant genotype and have mapped genetic loci, or
Quantitative Trait Loci (QTL) for this complex trait in common bean, soybean
and peanut (Kamfwa et al. 2019; Yang et al. 2019; Bazzer et al. 2020; Thilakarathna
et al. 2021; Nzepang et al. 2023; Krueger et al. 2024). Interestingly, breeding for
increased seed yield of soybean in Canada over 100 years has done little to increase %
Ndfa or Ndfa per plant of current versus older varieties (Thilakarathna et al. 2021).
Given available natural variation in SNF effectiveness within species, there are
clearly opportunities to increase %Ndfa and total Ndfa associated with these crops,
especially if Ndfa is measured directly or estimated accurately in the process, rather
than simply relying on seed biomass/yield or even total seed N as a proxy for SNF.

One approach that we are taking begins with public ‘core’ or ‘mini-core’
collections of genotypes that represent much of the genetic diversity of the species,
such as the international mungbean mini-core collection of 296 genotypes
(Schafleitner et al. 2015). These lines are then phenotyped for SNF and related
traits and genotyped to identify sequence variation associated with variation in traits
of interest. ‘Genomic prediction’ models can then be generated that predict the
performance of individuals based on the specific set of sequence variants, or
haplotypes, they possess across the whole genome. These models are based on the
phenotypic and genotypic profiles of a ‘training set’ of lines analysed initially, e.g., a
mini-core collection or part thereof. The models can be tested by their ability to
predict the performance of lines not in the training set based on their genotypes.
Ultimately, such models can be used to select parents for crossing that are likely to
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generate offspring with more favourable sets of haplotypes, to optimize
performance. This process can be aided by artificial intelligence to select a series
of crosses over multiple generations to obtain an optimal ‘stack’ of haplotypes to
increase %Ndfa, total Ndfa, etc., ideally without compromising yield (Hickey et al.
2019; Hayes et al. 2023). The latter can be avoided by including yield data in
prediction models and selecting for multiple desired traits in parallel (Hayes
et al., 2023).

Attempts to harness novel variability in legume species for plant breeding are
being aided by pan genome projects. A pan genome is the collective set of DNA
sequences of all or a representative subset of individuals of a species, much of which
is shared between all individuals (the core genome), while a significant fraction,
ranging from 4.8% in narrow-leafed lupin to 49.9% in soybean, for example (Garg
et al. 2022; Liu et al. 2020), is present in some but not all members of the species (the
ancillary genome representing presence–absence variations (PAV) and gene copy
number variation (CNV)). Initial attempts to assemble pan genomes relied on a
single, high-quality reference sequence, which was used to identify core and ancillary
DNA sequences in other individuals of the species, mainly using relatively short
sequences of a few hundred base pairs from high-throughput sequencing instru-
ments. Such an approach leaves a lot of ancillary genome sequences ‘orphaned’ and
unable to be positioned on specific chromosomes. Very recently, however, high-
throughput, long-read (thousands to tens of thousands of base pairs) sequencing has
made it possible to assemble, de novo, entire genomes of multiple, diverse individuals
of a species (Sharma et al. 2022). For example, we recently sequenced eight diverse
genomes of mungbean, using HiFi PacBio sequencing, which each assembled into
the 11 chromosomes of mungbean with cumulative sequences ranging from 512 to
577 Mbp covering more than 99% of expected conserved genes (Mens et al.
unpublished). The resulting mungbean pan-genome will aid our efforts to improve
SNF in this species, via predictive plant breeding, as outlined above.

Control of SNF and Opportunities to Engineer It

Biological nitrogen fixation, which takes place exclusively in prokaryotes (eubacteria
and archaebacteria), requires biological energy (adenosine triphosphate (ATP) and
reducing equivalents (e-), see reaction below) and oxygen levels within the organism
that are orders of magnitude lower than ambient levels, because nitrogenase enzyme
complexes are rapidity inactivated by free oxygen.

Nitrogenase reaction : N2 � 8 H� � 8e� � 16 ATP ! 2NH3 �H2 � 16 ADP� 16 Pi

where ADP is adenosine diphosphate and Pi is a phosphate. The oxygen-labile nature
of nitrogenase causes a conundrum for many nitrogen-fixing diazotrophs because
they require oxygen for respiratory metabolism and energy production. This
‘paradox’ has been resolved in multiple, interesting ways via evolution. These include
barriers to reduce oxygen diffusion into cells, rapid respiration to maintain steady-
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state levels of oxygen low enough for nitrogenase to function, and spatial or temporal
separation of nitrogen fixation from photosynthesis, which generates oxygen in
photoautotrophic diazotrophs (Robson and Postgate 1980). In nitrogen-fixing
legume nodules, the plant and resident rhizobia work together to achieve nanomolar
concentrations of oxygen in infected cells, as opposed to the equilibrium level of 250
micromolar oxygen in sterile water. This is achieved via a combination of gaseous
diffusion resistance in the outer cell layers of nodules, high concentrations of the
oxygen-binding and transporting protein leghemoglobin, and high rates of
respiration in plant and rhizobial cells within nodules (Ott et al. 2005; Layzell
and Hunt 1990; Appleby 1984; Dakora and Aitkins 1989; Bryan et al. 1988).
Leghemoglobins are the most abundant plant proteins in nodules, and the
corresponding gene families in legumes have expanded relative to those in non-
legumes, presumably because extra copies were selected for their crucial role in
nodule oxygen homeostasis. Indeed, the leghemoglobin genes are the archetypal
nodulin genes, or genes expressed specifically in nodules. It remains to be seen
whether some or all legumes have evolved optimal levels of leghemoglobin for
maximal SNF. It will be interesting to determine if there are differences in
leghemoglobin levels in different genotypes of the same species and whether these
correlate with SNF performance. If there is latitude to further optimize
leghemoglobin levels in some species, this could be done by plant breeding using
natural variation, and/or by engineering projects that increase the number or activity
of leghemoglobin genes. The latter could conceivably be done by adding genes to
plant genomes or by genome editing existing genes to increase their expression, for
example.

Typically, diazotrophs control the expression of nitrogenase genes in several
ways, including repression by oxygen and repression by alternative sources of N, to
avoid wasting resources and energy on a process that either cannot proceed or is not
needed (Roberts and Brill 1981; Merrick and Edwards 1995). The curious thing
about rhizobia is that although they retain oxygen control over nitrogenase gene
expression (Fischer 1994; Rutten and Poole 2019), they appear to have lost the
capacity to repress nitrogenase expression in response to alternative sources of N
(Udvardi et al. 1992; Udvardi and Day 1997). This is great for legumes, as they are
able to ‘corner’ rhizobia into fixing nitrogen and into releasing ammonia to host cells
in nodules, by controlling oxygen levels and a strict diet of carbon compounds they
deliver to their captive rhizobia (Ott et al. 2005; Schulte et al. 2021). Despite the
apparent loss of bacterial N-control over SNF, plants impose their own layer of N-
control on the process, by repressing nodule development and/or nodule persistence
when sufficient N is available in the soil (Figure 1). Control of nodulation is affected
both locally and systemically via a system involving rhizobia- and/or nitrate-
responsive signalling peptides, called CLAVATA3/endosperm-surrounding region-
related (CLE) peptides that interact with leucine-rich receptor-like kinases in the root
or shoot during autoregulation of nodulation (AON) or nitrate-dependent regulation
of nodulation respectively (as reviewed in Ferguson et al. 2019). This results in lower
abundance of the micro-RNA miR2111, which under conditions allowing for
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nodulation targets the mRNA of too much love (TML, a root regulator in Lotus
japonicus) for degradation (Tsikou et al. 2018; Zhang et al. 2021). This F-box protein
in turn targets an unknown regulator of cell division and nodule development for
degradation, resulting in inhibition of nodulation (Takahara et al. 2013). The
miR2111 was first characterized as a regulator of phosphate starvation suggesting a
more general role in plant nutrition. In this way, the presence or addition of sufficient
soil-N inhibits nodule development, sparing the associated plant resources for
growth elsewhere.

Legumes are also able to put the brakes on metabolic activity and energy
consumption of mature nodules in response to sufficient soil-N, via nitrogen-
responsive genes that orchestrate nodule senescence. Senescence is a genetically
controlled developmental process that allows plants to recycle cellular constituents
and reuse them for growth elsewhere. Nodule senescence is triggered by several

Figure 1. Autoregulation and nitrate repression of nodulation in legumes. CLE
peptides produced in roots and/or nodules in response to rhizobia (e.g., GmRIC1/2,
MtCLE13/35, LjCLE-RS1/2) or to soil nitrate (e.g., GmNIC1, MtCLE35, LjCLE-
RS2) act locally within roots in the case of nitrate repression, or systemically through
the autoregulation of nodulation (AON) pathway, via CLE receptors belonging to
the leucine-rich repeat receptor-like kinase (LRR-RLK) family to repress further
nodulation. In the case of AON at least, perception of the CLEs in the shoot results
in a decrease of active miRNA (miR2111) that targets transcripts of the F-box
protein, too much love (TML) for degradation in the roots. TML is part of the 26S
proteasome pathway and targets an unknown positive regulator of nodulation for
degradation, thereby inhibiting nodulation.
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environmental and endogenous plant signals (Swaraj and Bishnoi 1996;
Kazmierczak et al. 2020; Wang et al. 2023), including signals related to soil-N or
reproductive development when the demand for N and other nutrients to support
seed production is high and vegetative tissues are being sacrificed to supply this
demand. Recently, genes encoding transcription factors that regulate nodule
senescence (NAC, acronym derived from three reported proteins that contain a
highly conserved domain in their N-terminal region) have been described (Wang
et al. 2023; Yu et al. 2023).

Knowledge of mechanisms and genes underpinning N-repression of nodulation
and activation of nodule senescence opens the possibility of optimizing nodule
numbers and/or prolonging their longevity to increase SNF, especially in agricultural
soils with relatively high levels of available soil-N. For instance, by reducing or
nullifying the activity of specific genes involved in N-regulation of nodule
development, such as one or more of the CLE genes, via genome editing, it may
be possible to maintain high levels of nodulation and SNF under conditions of
relatively high soil-N. This could potentially spare soil N for subsequent crops,
forcing the legume to utilize atmospheric-N instead. While this might be expected to
reduce legume productivity slightly, the overall economic, environmental and social
benefits to the system, including reduced need for fertilizer-N and concomitant losses
to the environment might well outweigh the costs.

Although there are other potential targets for optimizing and increasing SNF,
such as control of carbon import and distribution by sugar and organic-acid
transporters in nodules and control of nitrogen removal from nodules via amino acid
or ureide transporters (Udvardi and Poole 2013; Tegeder 2014) the quantitative
nature of SNF, the complexity of gene interaction networks underlying SNF and the
environmental challenges that plants face in agricultural systems suggest that the
potential for large increases in SNF in the field from changes in one or two genes will
be small in most cases. A possible exception to this might be engineering/editing of
genes controlling nodule development and longevity in response to soil
N. Conceivably, uncoupling nodule development and nitrogen fixation from control
by soil-N, which would undermine the competitiveness of legumes in natural
ecosystems, could lead to large increases in SNF under high soil-N conditions under
non-competitive cropping conditions.

Looking Forward

To summarize, two decades of genetic and genomic research have given us deep
insight into the biochemistry and molecular and cell biology of legume nodule
development and symbiotic nitrogen fixation. This, together with the recent
development of legume pan genomes, the demonstration of natural variation in SNF
effectiveness within species and advances in genome editing, genome-based
predictive breeding and artificial intelligence to optimize haplotype stacking, opens
two complementary pathways to improve SNF in crop and pasture legumes
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(Figure 2). Starting with a high-quality pan genome representing diverse germplasm
(seeds, plants, or plant parts useful in crop breeding) available to plant breeders, one
pathway to SNF enhancement (upper pathway in Figure 2) involves phenotyping
hundreds of genetically diverse individuals to determine their cumulative nitrogen
fixation activity. Integrative measures of SNF, such as mass-spectrometric
measurements of 15N/14N ratio and %N in tissues combined with biomass measures,
to determine total Ndfa are key to this. Together with genomic sequence information
for each individual, they will enable associations to be made between DNA sequence
and phenotypic variation across the whole genome. In particular, genome-wide
association studies (GWAS) can identify specific genes and gene variants that have
the greatest impact on SNF, which will complement existing knowledge of SNF
genetics and identify new targets for detailed genetic analysis and, potentially,
genome editing (lower pathway in Figure 2). Association genomics also informs
genomic prediction models that can guide the genomic selection of best parents to
bring together optimal haplotypes for SNF in progeny. After multiple generations of
progeny genotyping, selection and crossing, individuals with desired genotypes/
haplotypes are tested for SNF effectiveness, with improved genotypes entering
commercial breeding programmes. In parallel, genome editing may produce genetic
and phenotypic novelty not present in natural populations, thus complementing the
genome-enabled breeding pathway. Such novel material can also enter commercial
breeding pipelines, most easily so if genome editing is done in genotypes that are
similar to, if not identical to, advanced stage breeding material. Thus, there is work
to do for both molecular biologists and molecular plant breeders, and a need for
dialogue between the two to ensure efforts are coordinated and aligned with breeding
objectives. For early-career scientists just entering this area of R&D, there has never

Figure 2. Pathways to increase SNF in legumes. Pan genomes reveal the full genetic
potential of a species, including the complete set of genes and variation in DNA
sequence and content amongst individuals. This enables discovery of genes involved
in SNF, via genome wide association studies (GWAS) of all genes and genetic studies
of specific genes. The potential of such genes and their natural alleles to improve
SNF can be tested by genomic selection of parents that contribute desired sets of
alleles or haplotypes to offspring. In parallel, genome editing can generate novel
genetic variation that may be incorporated into breeding programmes, along with
optimal haplotype stacks from genomic selection, to increase SNF.
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been a better time to tackle the task of increasing SNF in legumes to help solve the
wicked problem of feeding the growing population without destroying the
environment upon which all life depends.
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