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ULTRAMETRIC FACTOR ANALYSIS FOR MODELING RELIABLE AND

UNIDIMENSIONAL HIERARCHICAL FACTORS

Abstract

This paper introduces a novel methodology to model the hierarchical dependence

structure of manifest variables. This is done by reconstructing their correlation matrix

considering a hierarchy of latent factors which forms an ultrametric correlation matrix.

The proposed ultrametric factor analysis model will be shown to obtain reliable, uni-

dimensional, and unique hierarchical factors. This approach addresses the limitations

of traditional factor analysis methods that often oversimplify the multidimensional and

complex relationships among manifest variables. The paper provides an in-depth mathe-

matical description of the proposed model, as well as an algorithm for parameter estima-

tion. An extensive simulation study with 3, 000 generated samples validates the proposal

across twelve different scenarios. Finally, we demonstrate the potential of the proposed

model using a real data set that is a benchmark in psychological research.

Key words: hierarchical factor analysis, ultrametric correlation matrix, latent variables,

higher-order models.
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1. Introduction

Latent concepts represent aspects of reality that cannot be directly observed, such as quality

of life, sustainable development, poverty, happiness, and personality traits. These concepts can

be inferred through observable Manifest Variables (MVs) and are essentially measurable by means

of a Latent Variable (LV) that is statistically related with two or more MVs. In general, latent

concepts need statistical models to comprehensively and synthetically represent them through a

mathematical formalization of the observed data and their relationships, i.e., the measurement

model (Bollen and Bauldry, 2011, among others). However, the representation of a multidimen-

sional latent concept through a single LV might result in a simplistic portrayal, by inadequately

capturing the intricate nature of the complex phenomenon at hand. Exploratory Factor Analysis

(EFA), pioneered by Spearman (1904), is one of the widely used statistical methods to identify LVs,

often called factors, which are assumed to generate MVs and reflect into their linear relationships.

EFA has been extensively applied to identify complex constructs like personality traits, intelligence,

attitudes, and mental health in psychology; social stratification, cultural values, and interpersonal

relationships in sociology; consumer preferences, brand perceptions, and product attributes in

marketing; and quality of life, health behaviors, and disease risk factors in health sciences. Ad-

ditionally, if a theoretical factorial structure can be hypothesized a priori, Confirmatory Factor

Analysis (CFA), and more generally Structural Equation Model (SEM), can be used to test its fit

to the observed data (Brown, 2015). Nonetheless, it may sometimes happen that a reduced set of

factors, which are uncorrelated in EFA, is insufficient to analyze and reproduce the complexity of

the phenomenon under study, since hierarchical relationships among its multiple factors exist.

Advanced approaches for exploring hierarchies of LVs underlying the data include hierarchical

models, which organize various facets of a construct into hierarchical structures, extending from

the original MVs to the ultimate General Factor (GF) through a refined group of Specific Factors

(SFs). The GF represents the highest abstraction of the phenomenon under study, while the SFs

denote dimensions that, in turn, measure specific concepts describing the primary components of

the phenomenon under study. SFs are LVs less abstract than GFs and are more correlated with

MVs, allowing a better understanding of the phenomenon. This hierarchical approach is necessary

https://doi.org/10.1017/psy.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.6


Psychometrika Submission March 4, 2025 3

to provide a more precise and comprehensive understanding, steering away from the pitfalls of

oversimplification associated with a single factor or with a group of uncorrelated factors. Higher-

Order Factor Analysis (HOFA, Gorsuch, 1983), Second-Order Disjoint Factor Analysis (Cavicchia

and Vichi, 2022), both based on EFA, and Hierarchical Disjoint Principal Component Analysis

(Cavicchia et al., 2023), a hierarchical extension of the model introduced by Ferrara et al. (2016),

are examples of hierarchical models. Specifically, HOFA involves a sequential application of EFA

followed by non-orthogonal rotation to detect higher-level factors representing broader constructs,

while the other two models use a simultaneous approach, either limited to two orders or related

to principal component analysis instead of EFA, respectively. In psychometric studies, hierarchical

concepts are ubiquitous. For example, as described by Cattell (1971) and Carroll (1993) in the

context of intelligence studies, a hierarchical model might include multiple levels of abstraction,

with lower levels representing specific abilities or tasks (e.g., memory, verbal comprehension, spa-

tial reasoning) and higher levels representing broader factors (e.g., fluid intelligence, crystallized

intelligence, general intelligence or g factor). Another example is the Five-Factor Model of per-

sonality (Cronbach, 1990; Costa and McCrae, 1992), which organizes personality traits into five

factors, namely openness to experience, conscientiousness, extraversion, agreeableness, and neu-

roticism, each represented by specific aspects. The aggregation of neuroticism, agreeableness, and

conscientiousness on the one hand, and extraversion and openness to experience on the other, give

rise to two higher-order dimensions, called alpha and beta (or stability and plasticity), respectively

(DeYoung et al., 2002). Hierarchical models are also employed in organizational psychology to

understand the structure of job performance (Campbell, 1990).

Unlike the aforementioned models, the methodology introduced in this paper addresses the

modeling of the unexplained correlation between higher-order factors through a simultaneous ap-

proach that goes beyond two levels and identifies higher-order LVs from the hierarchical structure

of MVs. The proposal is called Ultrametric Factor Analysis (UFA), as it extends the EFA model to

the case of factors with a hierarchical structure, which mathematically corresponds to an ultramet-

ric correlation matrix. However, if UFA is applied to data without a true hierarchical structure,

first-order factor correlations will be close to zero, resulting in near-zero loadings for higher-order

factors. This indicates the absence of a hierarchical structure. The model requires that the identi-
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fied factors possess certain relevant properties to define a sound methodology that adheres to the

principles of high-quality statistics, as clearly described in the European Code of Practice (Euro-

pean Commission, 2017). Good properties for a hierarchy of factors include internal consistency,

reliability, unidimensionality, and content validity of the factors. The paper proposes an adequate

measurement model for constructing a hierarchy of LVs with these desirable properties starting

from a group of MVs. The results of the simulation study underscore the superiority of the UFA

method compared to well-established factor analysis techniques, particularly in scenarios where the

data exhibit a nested or hierarchical structure within factors. Traditional methods often struggle to

accurately capture the complexity of such hierarchical data, leading to sub-optimal factor solutions.

In contrast, UFA demonstrated a remarkable ability to identify and model the nested relationships,

providing more precise and interpretable factor structures. We also apply UFA to the Cattell’s

dataset, which focuses on the factorial study of intelligence. Given the inherent hierarchical nature

of this construct, where specific cognitive abilities feed into broader dimensions like crystallized and

fluid intelligence, UFA is perfectly suited to model this type of data. Indeed, by capturing both

the unidimensional and hierarchical relationships by means of an ultrametric correlation structure,

UFA provides deep insights into how different cognitive abilities interrelate, offering a more nuanced

understanding of intelligence that traditional factor analysis methods may fail to capture.

The rest of the paper is organized as follows. In Section 2, we present the notation used

across all sections, along with fundamental concepts regarding ultrametric matrices, EFA and

its constrained version based upon a sparse structure of the loading matrix. A comprehensive

illustration of the proposed methodology is presented in Section 3. Section 4 describes the algorithm

built to implement the proposed procedure. Different measures for model selection and for the

choice of the number of factors are examined in Section 5. An extended simulation study designed

to evaluate the model is illustrated in Section 6, while a practical application is the core of Section

7. Conclusions and key findings are reported in Section 8.

2. Notation and background

For the convenience of the reader, the notation and terminology common to all sections is

listed here.
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n, J,Q Number of units, MVs, and primary factors, respectively;
nq Number of MVs associated with the q-th factor;
X (n× J) data matrix of n multivariate units;
1a, 0a (a× 1) a-dimensional vector of ones or zeros elements, respectively;
Ia (a× a) generic identity matrix of order a;
J (n× n) centering matrix, J = In − 1

n1n1′
n;

Y (n×Q) factor score matrix of n multivariate units;
A (J ×Q) factor loading matrix;
E (n× J) error matrix;
B (J × J) matrix of the weights of the MVs;
VQ (J ×Q) membership matrix defining a partition of the J MVs in Q groups;
CQ (Q×Q) diagonal matrix fixing a unique non-null loading for a group of MVs;
RX (J × J) correlation matrix;
R (J × J) observed correlation matrix;
ER (J × J) error matrix related to R;
RW (Q × Q) within-concept consistency diagonal matrix, the diagonal elements

represent the consistency within the q-th group of MVs;
RB (Q × Q) between-concept correlation matrix, with zero diagonal and the off-

diagonal elements denote the correlation between two factors;
QRX (J × J) correlation structure of the MVs partitioned into Q groups;
Ψ (J × J) correlation matrix of the errors;
M+ (m× r) Moore-Penrose inverse of an (r×m) matrix M, M+ = (M′M)−1 M′.

2.1. Ultrametric correlation matrix

To introduce our new factorial methodology, we first need to recall the definition of an ultra-

metric correlation matrix, that is

Definition 1. A matrix RX is an ultrametric correlation matrix if all its elements rjl ∈ R, for

j, l = 1, . . . , J , satisfy the following conditions

(i) symmetry: rjl = rlj for j, l = 1, . . . , J ;

(ii) non-negativity and unitary of the diagonal: rjl ≥ 0 for all j, l = 1, . . . , J , rjj = 1 for all

j = 1, . . . , J ;

(iii) positive semi-definiteness (psd): xRXx ≥ 0 for all x ∈ RJ ;
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(iv) ultrametricity: rjl ≥ min{rjh, rlh}, for j, l, h = 1, . . . , J or, equivalently, for each triplet

j, l, h = 1, . . . , J , there exists a reordering {j, l, h} of the elements s.t. rjl ≥ rjh = rlh.

In detail, RX is a (2Q− 1)-ultrametric correlation matrix of order J if MVs are partitioned into Q

groups and then they are agglomerated into Q − 1, Q − 2, . . . , 1 broader groups (Cavicchia et al.,

2020). An example is provided in Fig. 1a. Each group q = 1, . . . , Q in the initial partition of the

MVs is characterized by a strong correlation among the MVs within the group. This correlation

level, denoted by W rqq, can be stored as the q-th element of a diagonal matrix RW . The groups

are also correlated with each other, though to a lesser extent. These correlations, denoted byBrqh,

can be stored as off-diagonal elements of a hollow matrix RB. To arrange the MVs into groups,

and those groups into larger groups (property (iii) for the whole matrix), the correlations within

each group must be greater than the correlations between different groups, i.e., W rqq ≥ Brqh, q, h =

1, . . . , Q, h ̸= q. Additionally, the ultrametric property must hold for the correlations between

groups. Hence, a (2Q − 1)-ultrametric correlation matrix has a reduced number of parameters

than a (J × J) correlation matrix since its off-diagonal elements assume one of the (2Q − 1)

different values, i.e., W rqq q = 1, . . . , Q, and Brqh (q, h = 1, . . . , Q, h ̸= q). It is easy to show that

a (2Q − 1)-ultrametric correlation matrix is one-to-one associated with a hierarchy of Q groups

of MVs (Cavicchia et al., 2020, Lemma 1). In fact, as shown in Fig. 1b, the first Q values

W rqq q, q = 1, . . . , Q, define the first-order aggregation levels of the hierarchy and represent the

expected correlation within the first Q groups. The other Q− 1 values Brqh q, h = 1, . . . , Q, h ̸= q,

identify the remaining Q− 1 levels and represent the expected correlation between groups of MVs.

2.2. Exploratory Factor and Disjoint Factor Analysis

Let x be a J−dimensional random vector with mean vector µ and variance-covariance matrix

ΣX. We assume that MVs are standardized; therefore, µ = 0 and the variance-covariance matrix

ΣX is the correlation of x. The Exploratory Factor Analysis (EFA) assumes that the observed

units are explained (reconstructed, generated) by the following model

x = Ay + e, (1)
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(a) (2Q− 1)-ultrametric correlation matrix

with Q=4.

(b) Hierarchical tree representation of a (2Q − 1)-ultrametric

correlation matrix, with Q=4.

Figure 1: Example of a (2Q− 1)-ultrametric correlation matrix, with Q=4, and its corresponding

hierarchical tree. First-order groups in (b) are G1 = {V1,V2,V3}, G2 = {V4,V5,V6}, G3 =

{V7,V8,V9}, G4 = {V10,V11}. Higher-order groups are obtained as G5 = G1 ∪ G2, G6 = G3 ∪

G4, G7 = G5 ∪G6.

where y is a vector of non-observable Q random variables called factors, while A is a (J × Q)

matrix of unknown parameters called factor loadings that identifies the statistical relations between

MVs and factors, and finally e is a J−dimensional vector of non-observable random errors, whose

elements are called the specific or unique factors. We shall assume that LVs and errors are centered,

i.e., E(y) = 0Q; E(e) = 0J ; factors are standardized, and uncorrelated for EFA, i.e., Cor(y) = IQ

(we assume the orthogonal EFA hereinafter); and, finally, errors and factors are uncorrelated,

i.e., Cor(y, e) = 0Q×J . For the Maximum Likelihood (ML) estimation, it is also assumed that

y ∼ NQ(0Q, IQ) and e ∼ NJ(0J ,Ψ), where Ψ is a diagonal positive definite matrix. Given these

assumptions, it can be found that x ∼ NJ(µ,ΣX), where

ΣX = AA′ + Ψ. (2)

The EFA model clearly has a problem of identification of A from AA′, since if Ã = AT is
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an arbitrary orthogonal transformation of A, then ÃÃ′ = AA′. This indeterminacy is usually

solved by rotating the factor loadings to create maximum contrast between columns of A, e.g.,

by using varimax rotation method (Kaiser, 1958). This frequently simplifies the loading matrix

and facilitates interpretation. In this spirit, Vichi (2017) introduced the Disjoint Factor Analysis

(DFA), in which the solution is constrained to have the simplest loading matrix A that allows each

MV to be uniquely correlated with one of the Q LVs. Thus, A is parametrized by considering the

product

ADF A = BVQ, (3)

where B = diag(b1, . . . , bJ) is a (J × J) diagonal matrix and VQ is a (J × Q) binary and row

stochastic matrix. The elements of B identify the levels of correlation between MVs and LVs, while

VQ is a membership matrix indicating each MV to which LV is assigned. This parameterization

induces a partition of MVs into Q disjoint groups and the definition of a LV for each subgroup of

MVs. Therefore, the model in Eq. (2) can be written as

ΣX = BVQV′
QB + Ψ. (4)

The ML estimation is obtained supposing that a random sample of n > J multivariate units

xi = [xi1, . . . , xiJ ]′, i = 1, . . . , n, so that X = [x′
1, . . . ,x′

n]′ is observed; thus, the reduced log-

likelihood is

L(B,VQ,Ψ; X) = −nJ

2 ln(2π) − n

2 ln |BVQV′
QB + Ψ| + n

2 tr
(
(BVQV′

QB + Ψ)−1R
)
, (5)

where R is the sample correlation matrix (equal to the sample variance-covariance matrix S since

the observed sample is standardized). It is worth noting that the maximization of L(B,VQ,Ψ; X)

is equivalent to the minimization of the following discrepancy function with respect to B,VQ and

Ψ

D(B,VQ,Ψ) = ln |BVQV′
QB + Ψ| + tr

(
(BVQV′

QB + Ψ)−1R
)

(6)
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such that

VQ = [vjq : ∀vjq ∈ {0, 1}] (binary), (7)

VQ1Q = 1J i.e.
Q∑

q=1
vjq = 1 j = 1, . . . , J (row stochastic), (8)

B = diag(b1, . . . , bJ) with b2
j > 0 (diagonal, non-null), (9)

V′
QBBVQ = diag(b2

·1, . . . , b
2
·Q) with b2

·q =
∑

j∈Gq

b2
j (orthogonal, non-empty), (10)

where Gq indicates the group of MVs related to the q-th factor. DFA involves a mixed binary (in

VQ) and continuous (in B and Ψ) optimization problem, thus, a quasi-Newton method cannot be

properly applied. Two coordinate descent algorithms (Zangwill, 1969) have been developed to solve

it in Vichi (2017).

EFA and DFA models are scale invariant under linear transformation of the data matrix X,

useful for data normalization or standardization. However, DFA, differently from EFA, has the

additional property to be identified (unless for a label switching), thus, no rotation is needed.

3. The Ultrametric Factor Analysis model

The Ultrametric Factor Analysis models hierarchical structures by providing a specific fac-

tor loading matrix capable of identifying the ultrametric correlation matrix describing the set of

the supposed nested latent concepts. Therefore, let us formulate the mathematical form of the

ultrametric correlation matrix that UFA can derive. First suppose that Q factors are identified

according to the DFA model in Eq. (4) with the following parsimonious formulation of the loading

matrix (Parsimonious DFA, PDFA)

AP DF A = VQCQ, (11)

where CQ = diag(c1, . . . , cQ) is a diagonal matrix of order Q. The elements of CQ represent

equal levels of correlation between each LV and the corresponding MVs. Therefore, the correlation

structure of PDFA is

QRX = VQC2
QV′

Q + Ψ, (12)
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where the loadings of the MVs belonging to the same group, i.e., associated with the same LV, are

equal. After a proper permutation of the rows of VQ so as to have all the ones in each column of

VQ contiguous, the correlation structure in Eq. (12) has the following block diagonal form

QRX = blkdiag(W R1, . . . ,W Rq, . . . ,W RQ) =

W R1 · · · 0
... . . . ...
0 · · · W RQ

 . (13)

In (13), blocks represent the correlation matrices W Rq of the q-th group of MVs related to the q-th

factor, for q = 1, . . . , Q, that is

W Rq = (1nq 1′
nq

)c2
q + Ψq, (14)

where c2
q is the correlation between the q-th factor and the nq associated MVs, and Ψq is a diagonal

matrix such that diag(Ψq) = [ψ1q, . . . , ψnqq]′ = 1nq (1− c2
q). It is worth noting that QRX, due to its

block diagonal form, automatically satisfies the ultrametric conditions of Definition 1. However, for

the non-orthogonal EFA, correlation between factors is hypothesized to be different from zero, i.e.,

Cor(y) = Ry. To model the latter, an higher-order correlation structure is required, corresponding

to additional “layers” that account for it. For the second-order correlation structure, we have

Q+1RX = vQ+1c
2
Q+1v′

Q+1, (15)

where vQ+1 – hereinafter, we denote vq as the q-th column of VQ – identifies a group of variables

which is obtained as the sum of two columns h and q of VQ, i.e., vQ+1 = vh + vq, with h,

q ∈ {1, . . . , Q}, h ̸= q, while cQ+1 is the loading of the (Q + 1)-th factor corresponding to the

square root of the correlation between factors h and q. The matrix formulation of Eq. (15) is

Q+1RX =


0 BRhq 0

BRhq
. . . ...

0 . . . 0

 , (16)

where BRhq = (1nh
1′

nq
)c2

Q+1. Note that the matrix obtained as QRX + Q+1RX =W Rh BRhq 0

BRhq W Rq
...

0 . . . 0

 is ultrametric, since if the h-th and q-th groups are aggregated it must hold

that W rhh,W rqq ≥ Brhq (see Subection 2.1). For the additional orders of correlation structures
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from Q + 2 to 2Q − 1, it is supposed that the correlation not explained by the previous levels is

partially explained by the successive one. Formally, the additional layers are

Q+2RX = vQ+2c
2
Q+2v′

Q+2, . . . , 2Q−1RX = v2Q−1c
2
2Q−1v′

2Q−1, (17)

where vectors vQ+q, q = 1, . . . , Q− 1, represent the broader groups obtained by the aggregation in

pairs of those from the previous levels.

The UFA model parameterizes a correlation matrix of order J as the sum of 2Q− 1 different

layers as follows

RX =
Q−1∑
q=0

Q+qRX + Ψ = VQC2
QV′

Q +
Q−1∑
q=1

vQ+qc
2
Q+qv′

Q+q + Ψ =
2Q−1∑
q=1

vqc
2
qv′

q + Ψ, (18)

where the values cq, q = 1, . . . , Q, in the diagonal of CQ = diag(c1, . . . , cQ) represent the loadings

between the q-th factor and the MVs in the q-th group of the initial partition in Q groups, while

the values cQ+q, q = 1, . . . , Q− 1, are the loadings of the higher-order factors. It is easy to see that

the right-hand side of Eq. (18), i.e., the second and third term, is, by construction, a (2Q − 1)-

ultrametric correlation matrix with values

rjl =


∑2Q−1

q=1 vjqc
2
qvlq if j ̸= l

1 if j = l

, (19)

such that ∑2Q−1
q=1 vjqc

2
qvlq ≤ 1 and 0 < c2

q ≤ 1. Additionally, RX in Eq. (18) can be rewritten in a

compact matrix form as follows

RX = V̈C̈2V̈′ + Ψ, (20)

where

V̈ = [v1,v2, . . . ,vQ,vQ+1, . . . ,v2Q−2,1J ] = [VQ,vQ+1, . . . ,v2Q−2,1J ] (21)

is the (J × 2Q− 1) binary matrix, with the first Q columns of V̈ reported in VQ which identify the

partition of the J MVs in Q groups, while the following Q − 1 columns identify the aggregations

of groups of MVs into partitions formed by Q − 1, . . . , 1, nested groups. The last column of V̈

corresponds to the total aggregation of the MVs into a single class. The UFA loadings in each of

the 2Q− 1 layers are stored into the matrix C̈, which is given by

C̈ = diag([c1, . . . , cQ, cQ+1, . . . , c2Q−1]) = [CQ,diag(cQ+1, . . . , c2Q−2, c2Q−1)]. (22)
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It is worth noting that the loadings cQ+1, . . . , c2Q−1 produce cross-loadings w.r.t. VQCQ, i.e., MVs

that load on two or more higher-order LVs and that induce their correlation. However, while the

number of parameters in a generic non-negative correlation matrix increases in the order of O(J2),

for RX in Eq. (18), the number of parameters increases linearly in the matrix as we will see in

Section 5.

Remark 1. The elements rjl of the correlation matrix RX in Eq. (18) can be decomposed in two

parts as follows

rjl =
Q∑

q=1
vjqc

2
qvlq +

2Q−1∑
q=Q+1

vjqc
2
qvlq. (23)

In (23), the first sum is equal to zero if MVs j and l belong to two different groups of VQ. It is worth

noting that, in the first sum, at most one of the Q terms is non-zero (i.e., the term corresponding

to the case where j and l belong to the same group), while in the second sum, which has Q − 1

terms, more than one term may be non-zero.

Remark 2. When RX in Eq. (18) has a block diagonal form as in Eq. (13), that is, the Q LVs are

uncorrelated, all the correlation between MVs is due to the correlation among MVs within the Q

groups, i.e., Brqh = 0, q, h = 1, . . . , Q, h ̸= q. In this case, PDFA best explains the correlation in

RX, and therefore it can be considered a special case of UFA where only c1, . . . , cQ are different

from zero.

3.1. Model properties

In this section, we illustrate the fundamental properties of the UFA model, which consist of

uniqueness, internal consistency and unidimensionality. It is thus worth recalling that a group

of MVs is internally consistent when the corresponding factor explains them coherently, where

coherence means that given any triplet j, l, p of MVs, if j is positively correlated (concordant) with

l and p, then also the correlation between l and p is positive. Moreover, a group of (at least two)

MVs is unidimensional if the first largest eigenvalue of their correlation matrix is greater than 1,

and all the others are < 1. This means that there exists a unique factor that explains most of their

total variance.

Property 1 (Uniqueness). The loading matrix C̈ is unique, up to a permutation of columns of VQ.

https://doi.org/10.1017/psy.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.6


Psychometrika Submission March 4, 2025 13

Proof. This is a direct consequence of DFA, which has a unique solution for the loading matrix

(Vichi, 2017, Property 2). Given VQ, RW and RB are unique and therefore also the loading matrix

V̈C̈. Any transformation of C̈ with an arbitrary orthogonal matrix T, i.e., C̈∗ = C̈T, produces a

non-admissible loading matrix for UFA. ■

Property 2 (Reliability). The matrices W Rq in Eq. (14) define each one a factor which is generally

reliable.

Proof. The Cronbach’s alpha of W Rq is α
W Rq = nqc2

q

1+(nq−1)c2
q
, where for c2

q → 1, α
W Rq → 1

(Spearman, 1910; Brown, 1910). It easily follows that if c2
q = 1, then α

W Rq = 1. ■

An example of this property is as follows. Supposing that W Rq has size nq = 5 and the loading

is cq = 0.7, α
W Rq = 0.83, which corresponds to a good internal consistency (reliability, coherence).

For nq = 5, but this time cq = 0.6, α
W Rq = 0.73, which is still an acceptable reliability.

Property 3 (Unidimensionality). The Q first-order factors identified by UFA are unidimensional.

Indeed, the matrices W Rq = (1nq 1′
nq

)c2
q +Ψq have the first largest eigenvalue equal to (nq−1)c2

q > 1,

while all the remaining (nq − 1) eigenvalues have value 1 − c2
q , which is smaller than 1, since

0 < c2
q ≤ 1.

Proof. Denote with M the (nq × nq) matrix of unitary elements (1nq 1′
nq

). We have that M is

such that MM = nqM, hence M = MM
nq

. Let λ be an eigenvalue of M and v the corresponding

eigenvector, then we have that

λv = Mv = MM
nq

v = Mλv
nq

= λ2v
nq

. (24)

Considering that v ̸= 0, λ − λ2

nq
= λ

(
1 − λ

nq

)
= 0. Therefore, either λ = 0 or

(
1 − λ

nq

)
= 0, i.e.

λ = nq. Since, by definition, the trace of a square matrix is the sum of its diagonal elements, we

have that tr(M) = nq = ∑nq

i=1 λi, hence it must hold that only one λ = nq and all the other nq − 1

eigenvalues must be equal to 0. Similarly, consider Ψq = diag
(
1nq (1 − c2

q)
)

= (1 − c2
q)Inq , then

ΨqΨq = (1 − c2
q)Ψq and therefore Ψq = ΨqΨq

(1−c2
q) . Since λv = Ψqv = ΨqΨq

(1−c2
q)v = Ψqλv

(1−c2
q) = λ2v

(1−c2
q) , we

have that either λ = 0 or
(
1 − λ

(1−c2
q)

)
= 0, i.e. λ = 1−c2

q . Given that tr(Ψq) = nq(1−c2
q) = ∑nq

i=1 λi,
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it must hold that λi = 1−c2
q for all i = 1, . . . , nq. As a consequence, the matrices W Rq, q = 1, . . . , Q,

are each one associated with a unidimensional factor, as they have only the largest eigenvalue greater

than 1. ■

It is worth stressing that UFA’s structural constraints serve to limit the solution space and

substantially reduce the likelihood of encountering improper solutions, such as negative variances

or non-convergent estimates. Unlike traditional EFA, UFA imposes strict structural constraints on

the factor loading matrix, ensuring a well-defined hierarchical and nested factor structure. These

constraints effectively limit the solution space, preventing issues like Heywood cases or inflated

factor loadings. As a result, UFA is less prone to the common estimation problems associated with

unconstrained factor models, offering a more stable and reliable solution for analyzing data with

hierarchical structures.

4. UFA Algorithm and Maximum Likelihood estimation

The ML estimation of UFA is performed by minimizing the following discrepancy function

with respect to C̈, V̈, and Ψ

D(C̈, V̈,Ψ) = ln |
2Q−1∑
q=1

vqc
2
qv′

q + Ψ| − ln |R| + Tr
(
(
2Q−1∑
q=1

vqc
2
qv′

q + Ψ)−1R
)

− J

= ln |V̈C̈2V̈′ + Ψ| − ln |R| + Tr
(
(V̈C̈2V̈′ + Ψ)−1R

)
− J, (25)

such that
V̈ = {vjq : ∀ vjq ∈ {0, 1}} (binary) (26)

VQ1Q = 1J (row stochastic) (27)

vQ+q = vs + vt, s, t ∈ {1, . . . , Q+ q − 1}, s ̸= t, q = 1, . . . , Q− 1 (nestedness) (28)

C̈ = diag([c1, . . . , cQ, cQ+1, . . . , c2Q−1]), cq > 0, q = 1, . . . , 2Q− 1 (diagonal, non-null) (29)

rjl ≥ min{rjh, rlh}, j, l, h = 1, . . . , J,where Eq. (23) holds (ultrametric). (30)

Given Q, the estimation of the UFA parameters is performed via a cycling block coordinate

descent algorithm composed of the following four steps, which are sequentially repeated until a

stopping rule is satisfied.
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Step 0 [Initialization] The matrix V̂Q = [v̂1, . . . , v̂Q] is randomly generated from a multinomial dis-

tribution with equal probabilities 1/Q and under the constraint that the Q groups are not

empty. The initial values for ĈQ are obtained taking the square root of R̂W = [(V̂′
QV̂Q)2 −

V̂′
QV̂Q]+diag(V̂′

Q(R − IJ)V̂Q), as in Cavicchia et al. (2020). Thus, matrices ˆ̈V and ˆ̈C are

initialized as

ˆ̈V = [V̂Q, v̂Q+1, . . . , v̂2Q−2,1J ], where v̂Q+1, . . . , v̂2Q−2 are (J × 1) vectors of zeros,
ˆ̈C = [ĈQ,diag(ĉQ+1, . . . , ĉ2Q−2, ĉ2Q−1)], where ĉQ+1, . . . , ĉ2Q−1 are set equal to zero.

The initial (J × 2Q− 1) UFA loading matrix ˆ̈A is computed as ˆ̈V ˆ̈C. Matrix Ψ̂ is obtained as:

Ψ̂ = IJ − diag( ˆ̈A ˆ̈A′). (31)

Step 1 [Update V̈]

Step 1.1 [Update VQ] Matrix VQ = [v1·, . . . ,vj·, . . . ,vJ.]′, where vj· denotes the generic

row j of VQ, is updated row-by-row by assigning each MV j to the group q that most decreases

the discrepancy in Eq. (25). Formally,
v̂jq = 1 if q = argmin

m=1,...,Q
D( ˆ̈C, [v1·, . . . , im·, . . . ,vJ ·]′, [v̂Q+1, . . . , v̂2Q−2,1J ]′, Ψ̂)

v̂jq = 0 otherwise
, (32)

where im. is the m-th row of the identity matrix of order Q.

Then, correlations are updated as in Cavicchia et al. (2020), i.e.,

R̂B = (V̂+
QRV̂′+

Q ) ⊙ (1Q1′
Q − IQ) (33)

R̂W = [(V̂′
QV̂Q)2 − V̂′

QV̂Q]+diag(V̂′
Q(R − IJ)V̂Q) (34)

Step 1.2 [Update last Q − 2 columns of V̈] Given R̂B, we update the (Q + q)-th vector

vQ+q, q = 1, . . . , Q − 2, by aggregating the two vectors vq and vh corresponding to the two

factors with maximum between correlation Brqh, q, h = 1, . . . , Q, h ̸= q. This is the agglomer-

ative part of the algorithm that considers the correlations between groups. Note that, if after

https://doi.org/10.1017/psy.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.6


Psychometrika Submission March 4, 2025 16

the q-th iteration columns q and h are aggregated, the labels of R̂B in positions q and h will

be both replaced by Q + q. Thus, after each iteration, we move from Q groups of MVs to

Q− 1, . . . , 1.

Step 2 [Update C̈]

Step 2.1 [Update CQ] Given ˆ̈V and R̂W , the first Q values of matrix C̈ are updated as

ĉq =
√

W r̂qq −
∑Q−1

s=1
1

nq

∑J
j,l=1

j,l∈Gq

v̂jsĉ2
Q+sv̂ls, q = 1, . . . , Q.

Step 2.2 [Update the last Q − 1 columns of C̈] Given ˆ̈V and R̂B, the Q − 1 higher order

levels are updated as ĉQ+q =
√√√√B r̂qh −

∑Q−1
s=1

1
(nq+nh)

∑J
j,l=1
j∈Gq

l∈Gh

v̂jsĉ2
Q+sv̂ls, q, h = 1, . . . , Q, h ̸= q.

Step 3 [Update Ψ] Given ˆ̈A = ˆ̈V ˆ̈C, the discrepancy function D(Ä,Ψ) in Eq. (25) is minimized with

respect to Ψ by Ψ̂ = IJ − diag( ˆ̈A ˆ̈A′).

The last three steps are alternated repeatedly, and with each iteration, the discrepancy function

decreases, or at least does not increase. If the decrease of the discrepancy is larger than an arbitrarily

small positive constant, the algorithm continues to iterate; otherwise, it stops and it is considered

to have converged to a solution which is at least a local minimum. To avoid the well-known

sensitivity of the coordinate descent algorithms to the starting values and to increase the chance

of finding the global minimum, the algorithm should be run several times starting from different

initial estimates of VQ, retaining the best solution. The algorithm generally stops after a few

iterations. In our simulation study reported in Section 6, this number is always less than 15, and

it can be observed that the algorithm accurately identifies the hierarchical structure in factors of

MVs generated according to the UFA model.

Remark 3. V̈ defines a set of subgroups of MVs, described by their binary vectors, such that vl

is the binary vector identifying the non-empty l-th subgroup of V = {1, 2, . . . , J}, and if vj ,vl ∈

V̈ ⇒ (vj ∩ vl) ∈ {vj ,vl,∅}. This structure is a J-tree formed by J leaves corresponding the MVs

{j}, with j ∈ V . Then, the first Q groups of MVs, corresponding to the first Q internal nodes

of the tree, define a partition of V in Q disjoint groups. The successive Q − 1 steps specify the

agglomeration of the Q groups in Q− 1 steps of group-fusions up to the root of the tree.
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Figure 2: Path diagram for the given example.

Remark 4. In general, there is no reason why the optimal estimation of UFA should include the

PDFA solution at the Q-th level. However, if one wants to improve the algorithm’s computational

efficiency, the estimates in Step 1.1 and Step 2.1 can be replaced by the PDFA solution at

convergence. This avoids computing Eqs. (32), (33) and (34) at every iteration. Therefore, we

define a new constrained algorithm for UFA that is forced to include the optimal solution of PDFA

for the given Q.

The following example is provided to help the reader better follow the UFA modeling.

Example. We apply UFA to the set of eleven MVs in the example of Fig. 1. In the cor-

relation matrix in Fig. 1a, Q = 4 groups of highly correlated variables are clearly visible:

G1 = {V1,V2,V3}, G2 = {V4,V5,V6}, G3 = {V7,V8,V9}, G4 = {V10,V11}. The specific Q

first-order factors are characterized by loadings ĉ1 = 0.45, ĉ2 = 0.40, ĉ3 = 0.39 and ĉ4 = 0.30,

as reported in Fig 2. The loadings are computed considering the within correlations in Fig. 1a

as reported in Step 2.1 of the algorithm and detailed in Remark 1. The membership matrix for

this partition is identified by the first four columns v̂1, v̂2, v̂3 and v̂4 of matrix ˆ̈V. The within and

between correlations of groups/factors are given by
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R̂W =


0.98 0 0 0

0 0.94 0 0
0 0 0.89 0
0 0 0 0.83

 R̂B =


0 0.78 0.67 0.67

0.78 0 0.67 0.67
0.67 0.67 0 0.74
0.67 0.67 0.74 0


.

Let us now consider the hierarchical structure of factors – from the most specific ones (first-

order) to the most general, through second- and third-order SFs – as shown in the higher lay-

ers of the path diagram in Fig. 2. The second-order SF (2nd layer) agglomerates the first

two groups of MVs since their correlation is the highest in R̂B (equal to 0.78). Therefore,

G1 ∪ G2 = G5 = {V1,V2,V3,V4,V5,V6}, where this aggregation is identified by the vector

v̂′
5 = v̂′

1+v̂′
2 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] representing the fifth column of matrix ˆ̈V. The correspond-

ing loading is ĉ5 = 0.33. Having merged these two groups, the third-order SF (3-rd layer) lumps

together groups G3 and G4 (the correlation equals 0.74), i.e., G3∪G4 = G6 = {V7,V8,V9,V10,V11},

obtaining the additional vector v̂′
6 = v̂′

3 + v̂′
4 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] and ĉ6 = 0.26. The last

aggregation corresponds to G5 ∪ G6 = G7 = {V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11}, where

v̂7 is the unitary vector of dimension eleven and ĉ7 = 0.82. All higher-order loadings can be found

by considering the between correlations in R̂B, as reported in Step 2.2. As a result, the UFA

membership matrix and the corresponding loading matrix are given by

ˆ̈V =



1 0 0 0 1 0 1
1 0 0 0 1 0 1
1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 1 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 1 0 0 1 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1



ˆ̈A = ˆ̈V ˆ̈C =



0.45 0 0 0 0.33 0 0.82
0.45 0 0 0 0.33 0 0.82
0.45 0 0 0 0.33 0 0.82

0 0.40 0 0 0.33 0 0.82
0 0.40 0 0 0.33 0 0.82
0 0.40 0 0 0 0.26 0.82
0 0 0.39 0 0 0.26 0.82
0 0 0.39 0 0 0.26 0.82
0 0 0.39 0 0 0.26 0.82
0 0 0 0.30 0 0.26 0.82
0 0 0 0.30 0 0.26 0.82


,

where the first Q columns of ˆ̈V correspond to V̂Q. Finally, Ψ̂ =

diag([0.02, 0.02, 0.02, 0.06, 0.06, 0.06, 0.11, 0.11, 0.11, 0.17, 0.17]).
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5. Model selection and choice of Q

In this section, we discuss the choice of the optimal UFA model, among a set of candidates that

consider different values of Q. The optimal model is the one that strikes the best balance between

complexity and ability to accurately fit the observed data. Through this careful selection, we

determine the appropriate number of factors Q to retain, ensuring both efficiency and effectiveness

in our analysis. To assess the complexity of the model, we start from noticing that the population

correlation matrix has J(J−1)
2 parameters to be estimated (the correlations on the diagonal are

always equal to 1) in terms of J(2Q − 1) + J unknown parameters in Ä and Ψ. However, note

that the first Q columns of Ä have only one loading different from 0 for each row. Thus, we have

J(Q− 1) constraints in Ä. Moreover, we have other Q constraints on Ä to ensure that each of the

first Q columns of Ä is not empty. Finally, we suppose that all MVs loading on the same factor have

the same coefficient (Ä = V̈C̈), therefore we do not have to estimate J coefficients but only Q; this

corresponds to have J −Q additional constraints on Ä. This latter condition also holds for the last

Q−1 columns of Ä: we do not have to estimate J(Q−1) coefficients but only Q−1 and thus we have

additional J(Q−1)−(Q−1) constraints on Ä. Since we have the same coefficient for all MVs loading

onto the same factor, also for the diagonal of Ψ we do not have to estimate J parameters but Q, and

therefore there are J −Q constraints on Ψ. Hence, the effective number of unknown parameters in

UFA is pUF A = J(2Q− 1) +J −J(Q− 1) − (J −Q) −Q− [J(Q− 1) − (Q− 1)] − (J −Q) = 2Q− 1.

Note that, due to the factorization of Ä, pUF A does not depend on J . The degrees of freedom of

the model are therefore df = J(J−1)
2 − 2Q+ 1.

Two popular model selection criteria are the Akaike Information Criterion (AIC, Akaike, 1998)

and the Bayesian Information Criterion (BIC, Schwarz, 1978), which can be easily estimated for

the UFA model, given Eq. (25) and pUF A. Among a set of candidate models (i.e., different values

of Q), the preferred is the one for which AIC and BIC are minima. Alternatively, a goodness of fit

index frequently used to address this task is the Adjusted Goodness of Fit Index (AGFI, Mulaik

et al., 1989), which is computed as follows

AGFI = 1 − J(J − 1)
2df (1 − GFI), (35)
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where GFI is the Goodness of Fit Index (GFI, Jöreskog, 1981) obtained as GFI = 1− tr[(R−1
X R−IJ )2]

tr[(R−1
X R)2] .

This selection criterion chooses Q such that AGFI is maximized.

It is worth stressing that even if these criteria are well-recognized and commonly used, AIC

and BIC can be more helpful for model comparison (i.e., selecting the optimal Q), while AGFI is

more appropriate for evaluating model fit once the number of first-order factors Q has been chosen.

Furthermore, in practice, combining multiple methods – both statistical and conceptual – typically

leads to the most robust factor solution.

Remark 5. Note that when performing non-parsimonious DFA, the number of parameters to be

estimated is pDF A = 2J −Q (Vichi, 2017), whereas for PDFA, this number is pP DF A = 2Q−Q =

Q. It can be immediately seen that pP DF A corresponds to UFA without considering the Q − 1

parameters of the factorial hierarchy. In fact, pP DF A = pUF A − (Q− 1) = 2Q− 1 − (Q− 1) = Q.

6. Simulation study

The proposed model is evaluated through an extended simulation study that considers twelve

different scenarios and involves 3,000 data samples, generated according to the following procedure.

First, the matrix VQ is randomly generated. Then, a random binary J-tree is generated starting

from VQ and including Q − 1 random agglomerations of subsets (couples). The matrix V̈ is

identified by this J-tree. As a second step, a diagonal matrix C̈ with non-increasing values in

[0, 1] is generated, and the loading matrix Ä is obtained as Ä = V̈C̈. The matrix Ψ is then

computed accordingly using Eq. (31). The correlation matrix is obtained as RX = ÄÄ′ + Ψ, and

it is (2Q − 1)-ultrametric by construction. Finally, the observed correlation matrix R is obtained

adding to RX a uniform error ER in [0, σe], which is symmetrized. The psd of R has been verified:

if this property is not satisfied, we add the absolute value of the smallest eigenvalue of R to its

main diagonal, so that the resulting matrix is positive semi-definite (Cailliez, 1983).

Twelve different scenarios have been taken into account to test the proposed model. We

considered J = 30, 70 MVs, Q = 4, 7 factors and three error levels σe = 0.01, σe = 0.5 and σe = 1.

In Fig. 3, examples of simulated correlation matrices for each scenario are illustrated. The groups

and their hierarchical structure are clearly visible in the first row of Fig. 3. In the four plots of the
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second row, corresponding to the medium error level, the hierarchical structure of the Q first-order

factors is still quite visible while the one for higher-order aggregations tends to disappear. Finally,

for the high error case (third row of Fig. 3), the whole hierarchical structure among both MVs and

LVs almost disappears.

Figure 3: Examples of simulated correlation matrices with different levels of error, J and Q.

6.1. Random starts assessment

UFA does not guarantee the identification of the global optimal solution, which is expected

since the partitioning problem is known to be NP-hard (Křivánek and Morávek, 1986). To increase

the chance of find the global optimum, the multistart technique is used and in this subsection it is

discussed how the number of random starts is chosen. To address this, the UFA algorithm is run

250 times with a high error level and J = 70, Q = 7, using different numbers of randstarts values:

[1, 5, 10, 20, 30, 50, 100]. For each case, the percentage of local minima is recorded.

From the results in Tab. 1, the number of random starts for the simulation study is set equal

to 50.
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Table 1: Local minima occurrences (%).

randstarts 1 5 10 20 30 50 100
% Local minima 80.40 36.80 16.80 3.60 1.60 0.00 0.00

6.2. Model performance and comparison with competing procedures

The proposed model is evaluated according to the Adjusted Rand Index (ARI, Hubert and

Arabie, 1985), which compares the generated J-tree with the estimated one. First, the ARI between

the true and estimated matrices VQ for the first Q aggregations is computed. Then, an ARI is

computed for each of the remaining Q−1 aggregations levels. For each q = 1, . . . , Q−1, the ARI is

computed between the two factors aggregated by the algorithm at level Q+q and the two generated

ones. As a result, the generated J-tree is optimally recovered if the overall ARI equals to Q, since

it is obtained as the sum of one ARI for the first Q levels and Q− 1 ARIs for the factors’ hierarchy.

Finally, this value is rescaled, dividing it by Q, to range in [0, 1]. We will denote with ARIQ the

ARI referring to the first Q levels and with ARIJ the overall ARI for the J-tree. Furthermore,

the fit of the (2Q − 1)-ultrametric correlation matrix resulting from UFA to the generated R is

evaluated through the AGFI. The discrepancy between the generated loading matrix, denoted with

A∗ = V̈∗C̈∗ and the estimated one Â = ˆ̈V ˆ̈C is evaluated considering the Root Mean Squared Error

(RMSE) defined as ∥ÂÂ′−A∗A∗′∥2

JQ since the loading matrix is not unique.

UFA performance is compared with the ones of several well-established factor rotation methods,

such as geomin (geo), promax (pro), and quartimax (qua), as well as with the prenet penalization

method for factor analysis proposed by Hirose and Terada (2023). Geomin, introduced by (Yates,

1987), minimizes the complexity of factor loadings by reducing the number of near-zero values.

Promax, a widely used oblique rotation method proposed by Hendrickson and White (1964), allows

factors to correlate, thereby enhancing the interpretability of the factor solution. Quartimax,

introduced by Neuhaus and Wrigley (1954), seeks to simplify the rows of the factor loading matrix

by maximizing the variance of squared loadings across variables. The Sparse and Simple Structure

(SSS) estimation method developed by Hirose and Terada (2023) employs the prenet penalization to

achieve a factor solution that is both sparse and interpretable. This estimation requires tuning two
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Table 2: Simulation study results.

Low error Medium error High error
J 30 70 30 70 30 70
Q 4 7 4 7 4 7 4 7 4 7 4 7

UFA 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.97 0.72 1.00 0.93
SSS 0.66 0.78 0.65 0.77 0.63 0.68 0.65 0.72 0.41 0.19 0.65 0.72

Mean ARIQ pro 0.66 0.78 0.65 0.77 0.66 0.78 0.65 0.77 0.66 0.77 0.66 0.77
geo 0.66 0.78 0.65 0.77 0.66 0.77 0.65 0.77 0.65 0.76 0.66 0.76
qua 0.66 0.78 0.65 0.77 0.66 0.78 0.65 0.77 0.65 0.77 0.66 0.76
UFA 100.00 100.00 100.00 100.00 99.60 86.80 100.00 100.00 79.60 3.20 99.60 34.00
SSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

% ARIQ = 1 pro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
geo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
qua 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mean ARIJ UFA 1.00 0.98 1.00 0.98 1.00 0.85 1.00 0.93 0.96 0.70 1.00 0.83
% ARIJ = 1 UFA 100.00 86.00 100.00 86.40 97.20 4.80 100.00 38.40 62.40 0.00 98.80 3.60

UFA 1.00 1.00 0.99 1.00 0.78 0.78 0.79 0.79 0.77 0.77 0.78 0.79
SSS 0.86 0.91 0.83 0.89 0.51 0.54 0.69 0.69 0.43 0.46 0.67 0.62

AGFI pro 0.98 0.97 0.99 0.98 0.64 0.45 0.74 0.71 0.63 0.44 0.74 0.70
geo 0.98 0.97 0.99 0.98 0.65 0.51 0.75 0.72 0.65 0.52 0.74 0.73
qua 0.98 0.97 0.99 0.98 0.65 0.52 0.75 0.72 0.65 0.53 0.74 0.73
UFA 0.00 0.00 0.00 0.00 0.16 0.08 0.60 0.19 0.28 0.14 0.88 0.30
SSS 1.22 0.44 2.72 0.97 1.08 0.39 2.31 0.81 1.48 0.40 7.86 0.82

RMSE AA′ pro 1.26 0.44 2.95 1.03 1.03 0.40 2.23 0.79 1.03 0.37 2.24 0.79
geo 1.25 0.44 2.93 1.02 0.98 0.36 2.18 0.77 0.98 0.34 2.16 0.77
qua 1.26 0.44 2.95 1.03 0.98 0.36 2.20 0.77 0.98 0.33 2.17 0.77

parameters, denoted by ρ and γ, and has been carried out to maximize AGFI. By comparing these

techniques with UFA, which offers an innovative approach to factor analysis, we aim to highlight

its strengths and potential advantages in achieving more interpretable and accurate factor solutions

when data exhibit a hierarchical structure.

Simulation results, obtained considering 50 random starts for all cases, are shown in Tab. 2.

For each scenario, nsim = 250 data matrices have been generated and the reported performance

measures correspond to the average over the 250 samples.

Under the low error condition, our method demonstrates best performance across all evaluated

metrics. Specifically, the generated J-tree is always perfectly identified for Q = 4, while the

percentage of times this happens is around 86% for Q = 7 (see Tab. 2). Moreover, the AGFI is

always greater than or equal to 0.99 and the RMSE for the loadings reaches 0. In contrast, the

competing procedures poorly perform in recovering the variables structure in Q groups: the ARIQ

always ranges between 0.65 and 0.78 and it is never equal to 1. Additionally, the high values for the

RMSE of the loading matrix indicate a sub-optimal recovery of the generated loadings across all
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scenarios. This first part of the simulation study indicates that the proposed methodology and the

given algorithm do not fail to identify the correct generated ultrametric correlation matrix when

its ultrametricity is clearly visible, as shown in the first row plots of Fig. 3. In comparison, the

competing procedures fail to achieve an accurate identification under the same conditions.

For the medium error level scenarios, the UFA algorithm achieves best performance in terms

of ARIQ, while the recovery of the higher-order hierarchies starts worsening. Indeed, in the plots of

Fig. 3 corresponding to the medium error level, the structure in Q factors is still visible while the

higher-order correlations start deviating from ultrametricity. For instance, for J = 70 and Q = 7,

the % ARIQ = 1 and the % ARIJ = 1 are 100.00 and 38.40, respectively. Also the model-data fit

in terms of RMSE and AGFI worsens, but the fit is still better than the competing procedures.

Under the high error condition, as expected, the UFA performance also in terms of ARIJ

worsens because the ultrametricity tends to be masked by the error, as can be seen in the last row

of Fig. 3. The true J-tree is never identified for J = 30 and Q = 7 (under the same scenario,

the % ARIQ = 1 is 3.20). However, also under these scenarios, UFA outperforms the competing

procedures, especially in terms of ARIQ and RMSE.

Figure 4: RMSE of factor loadings for UFA and the competing procedures.

As illustrated in Fig. 4, UFA shows the lowest RMSE across all scenarios, with its interquartile

range being very tight, indicating both a low error and consistent performance across simulations.

In contrast, the competing methods exhibit higher median RMSE values and wider interquartile
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ranges, indicating poorer performance and higher variability. These results underscore the efficacy

and accuracy of UFA in capturing hierarchical relationships in data, making it a reliable choice for

this kind of scenarios, compared to traditional methods.

To summarize, simulation results collectively suggest that the proposed algorithm not only

achieves high accuracy in identifying the hierarchical structure of the generated data and finds its

best ultrametric reconstruction, but also exhibits stability and reliability in its performance. The

effectiveness of the algorithm against the benchmark criteria and competing procedures suggests its

potential utility in applications in which phenomena that can be modeled by a hierarchical latent

structures are studied.

7. Application

The proposed model is applied to the data employed by Cattell (1971) for its factorial study

on intelligence, in which the author investigates his theory of crystallized and fluid intelligence

factors. Crystallized intelligence involves the ability to use learned knowledge and experience. It

involves understanding facts, solving problems based on past experiences, and possessing a rich

vocabulary, and it tends to improve with age. On the other hand, fluid intelligence represents the

ability to solve novel problems, independent of any knowledge from the past. It includes skills like

pattern recognition, abstract reasoning, and problem-solving in new situations. Fluid intelligence

is thought to peak in early adulthood and then gradually decline. Cattell’s study used data from

277 8-th grade children, focusing on their abilities across different dimensions. These dimensions

were measured through various tests:

• Thurstone Primaries: four areas (Verbal, Spatial, Reasoning, Number) were each measured by

two different tests, resulting in eight measures (V1, V2, S1, S2, R1, R2, N1, N2). These areas

represent different cognitive abilities as identified by Thurstone (1938), another key figure in

the study of human intelligence.

• Culture Fair Intelligence Tests: developed by the Institute of Personality and Ability Testing

(IPAT), these tests aim to measure intelligence in a way that minimizes cultural and educational

biases. The tests include Series, Classification, Matrices, and Topology, each providing a score
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(IS, IC, IM, IT).

The non-negative correlations among the 12 considered MVs are shown in Fig. 5a. These high

correlations suggest the need to explore how the various aspects of intelligence interrelate and

potentially validate or refine Cattell’s theory of crystallized and fluid intelligence.

(a) Observed correlation matrix. (b) Ultrametric correlation matrix estimated by UFA.

Figure 5: Observed and estimated correlation matrices of Cattell’s data.

The UFA algorithm has been run considering 50 random starts and it has found the expected

partition in 5 first-order factors (Verbal, Spatial, Reasoning, Number and IPAT). It is worth noting

that Q = 5 is the best choice for the number of parameters also according to the AGFI, AIC, and

BIC. The unidimensionality of the identified latent dimensions is ensured by the variance of the

second factor equal to 0.14, 0.21, 0.23, 0.22 and 0.64, respectively. The Cronbach’s alpha values

computed for each factor align with Cattell’s hypothesis: they are greater than 0.95 for F1, F2, F3,

F4, while equal to 0.46 for F5. As it is possible to observe comparing the two matrices in Fig. 5,

the proposed model is able to well reconstruct the correlation matrix of the MVs, simultaneously

identifying its hierarchical structure. The latter is depicted in Fig. 6a: it can be noticed that

the second last aggregation (F5-F8) characterizes the fluid ability and crystallized ability factors

hypothesized by Cattell.

Moreover, the last factor aggregated to build F8 is the one related to the Spatial ability, the
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(a) Hierarchical tree representation. (b) Path diagram of the estimated loadings.

Figure 6: Hierarchical tree and loading structure estimated by UFA on Cattell’s data.

one for which Cattell hypothesized the strongest relationship with the IPAT MVs (F5). This is

confirmed by the lowest Cronbach’s alpha value for F8 (0.37) compared to the values for F6 and

F7 (0.77 and 0.75, respectively); indeed, Cattell hypothesized an high correlation between Verbal,

Reason and Number. A general concept defining Mental Abilities is also defined (F9), its reliability

is ensured by a Cronbach’s alpha value equal to 0.85. The estimated loadings are graphically shown

in Fig. 6b.

Note that the estimated matrix represented in Fig. 5b is ultrametric even if the within deviance

of the IPAT group (0.353) is higher than, for instance, the between deviance of the Verbal and

Spatial groups (0.415). In fact, the ultrametric condition defined in Subsection 2.1 imposes that

the within deviance of the IPAT group must be greater than or equal to the deviance between IPAT

and the other four groups (i.e. 0.353 ≥ 0.275) and not greater than or equal to any of the between

deviances in the correlation matrix.

UFA results on Cattell data represent a great contribution to the state of the art in Cattell’s

factorial study on intelligence. UFA does a step forward with respect to both First Order and

Second Order Confirmatory Factor Analyses (CFA) that Rindskopf and Rose (1988) fitted to these

data. It recognizes the five factors despite the fully exploratory approach and it also accounts for

intercorrelations among them, going beyond the construction of just two second-order factors (with

a correlation of 0.78). UFA model addresses the unexplained correlation among factors building
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Table 3: AIC and BIC values for UFA model and for the two CFAs applied to Cattell data.

Models AIC BIC
First Order CFA 7890.62 8013.84
Second Order CFA 7887.01 7995.73
Ultrametric Factor Analysis 2289.31 2340.04

a hierarchy of Specific Latent Variables. UFA model has been compared with the two CFAs in

terms of AIC and BIC (Tab. 3). As it is possible to observe, the lowest values correspond to UFA,

reflecting the better modeling of the underlying factors’ correlation that characterize Cattell’s data.

The goodness of the fit of the estimated UFA model is further confirmed by an AGFI equal to 0.95.

The results obtained in this application suggest that an UFA can be the proper choice in all

psychometric applications in which the researcher is interested in evaluating an hypothesized hier-

archy of latent concepts and seeks to define and characterize broader dimensions of the phenomenon

under study.

8. Conclusions

In the realm of psychometric studies, hierarchical concepts are pivotal for uncovering and

comprehending fundamental phenomena, such as intelligence. In the literature, hierarchical mod-

els based on sequential procedures of EFA followed by oblique rotations have been proposed to

arrange various facets or subcomponents of a construct into a hierarchical structure, showcasing

their interconnectedness and offering an in-depth comprehension of complex phenomena. Addi-

tional models widely employed in psychometric studies to assess the compatibility of theoretical

hierarchical factorial structures with observed data are CFA and SEM. These statistical tools help

confirm that the used models accurately reflect underlying constructs, offering a reliable framework

for analyzing intricate data. These models are widely used across various psychometric domains,

with the Five-Factor Model of personality serving as just one example. This model categorizes

personality traits into five overarching factors, each subdivided into lower-level facets that depict

specific aspects of these traits.

In this paper, we introduce a novel methodology called Ultrametric Factor Analysis. This ap-

proach expands upon the traditional EFA model with the aim of identifying hierarchical structures
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within factors that represent latent concepts through an exploratory and simultaneous approach,

as opposed to confirmatory or sequential procedures based on EFA and oblique rotations. UFA

proves particularly valuable in studying complex phenomena that exhibit multiple levels of abstrac-

tion and interconnected dimensions. The proposal can be fully exploratory, meaning that no prior

assumptions are made regarding the relationships among MVs, first-order factors, and higher-order

factors. However, it also offers the flexibility to fix some or all of these relationships in a partially or

fully confirmatory approach. UFA involves a mathematical formalization of the hierarchical rela-

tionships among variables, which enables a synthesized representation of latent concepts associated

with complex and multidimensional phenomena. By extending EFA to hierarchical structures, this

methodology empowers researchers to delve into the underlying structure of complex phenomena

with several facets by uncovering factors and their hierarchical relationships in a simultaneous ap-

proach.

Furthermore, the new methodology addresses several crucial properties essential for construct-

ing a hierarchy of factors. These properties include internal consistency, reliability, unidimension-

ality, uniqueness, and content validity. Ensuring that these properties are met guarantees that

the constructed hierarchical model accurately represents the underlying constructs and provide a

comprehensive framework for analyzing complex data. Simulation study results showcased the su-

periority of the UFA method over traditional factor analysis techniques, especially when dealing

with data that have a nested or hierarchical factor structure. While conventional methods often

fail to effectively capture the complexity of such data, leading to sub-optimal factor solutions, UFA

excels in identifying and modeling these intricate relationships, resulting in more accurate and

interpretable factor structures. In summary, the UFA methodology presents a novel approach to

investigate hierarchical concepts in psychometric studies and other disciplines where latent factors

need to be constructed. This methodology offers insights into the multidimensional nature of latent

constructs and facilitates a comprehensive understanding of complex phenomena. It enhances our

ability to analyze data and extract meaningful information from hierarchical structures, contribut-

ing to advancements in various research fields.

Further developments of UFA include relaxing the non-negativity assumption on the correlation

matrix, which, while realistic in many applications – especially in psychometric studies – could be

https://doi.org/10.1017/psy.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.6


Psychometrika Submission March 4, 2025 30

too restrictive in other fields. Additionally, when the phenomenon under study does not show a

hierarchical structure, the ultrametricity assumption could also be restrictive, and an hypothesis

test to determine how far the data are from this condition could be useful for discriminating the

applicability of the proposal.
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