D. RECENT SOFTWARE DEVELOPMENTS

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

SYSTEM SOFTWARE APPROACHES TO THE
ANALYSIS OF MULTIDIMENSIONAL DATA STRUCTURES

Rudolf Albrecht
Institute for Astronomy, University of Vienna
Space Telescope Science Institute, Baltimore

'ABSTRACT

In this review paper on software techniques, the concepts of
"software system" and "data base interface" are defined in the context

of astronomical data analysis requirements. Principles of software
design and maintainance over are discussed.

A deliberate effort was made to stay as close as possible to the
astronomical application and not deviate too much into computer science.

1. INTRODUCTION

The analysis of multidimensional data structure is more commonly
known as Image Processing. Image processing is of growing importance
for modern astronomical data analysis. At the Space Telescope Science
Institute, a data analysis system for data generated by the Science
Instruments of the Space Telescope is being defined. Although I will in
this presentation frequently refer to Space Telescope oriented applica-
tions, this is meant as an example only; the development has just begun,
and the design has not been finalized (Albrecht, 1981)

2. DATA

Image~type data usually come from panoramic detectors. These are
devices which transfer an intensity distribution into an array of digi-~
tally represented data points. Already, such detectors are in
widespread use and they will become more common with evolving technology
and lower prices.

But even data obtained with the more conventional technique of the
photographic process quite often are available in digital form. Micro-
densitometers are being used to digitize astronomical platese. Aside
from the fact that data generated by two-dimensional electronic
detectors are linear with intensity and data obtained by digitizing a

87

C. Jaschek and W. Heintz (eds.), Automated Data Retrieval in Astronomy, 87—97.
Copyright © 1982 by D. Reidel Publishing Company.

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

88 R. ALBRECHT

photographic plate are recorded in density units, there is no difference
in principle between processing data from two-dimensional detectors and
processing microdensitometer data.

Data in such sets consist of different elements. The data points
of the image itself are usually referred to as pixels or picture ele-
ments. In addition to the pixel data, there is additional information
needed to interpret the pixels. This part of the data set is known as
the header. Note that there is no difference between pixel data and
header data as far as their presence in the data set is concerned.

Other data 1logically belonging to the header data are the
engineering data. Engineering data are not of immediate astronomic
interest but rather refer to events on, for example, a spacecraft. The
engineering data might become astronomically relevant once they indicate
situvations which affect the image data. A recent example is the
temperature of the onboard computer of the IUE satellite.

There are auxiliary data, for instance, comments given by the
observer at the time of measurement. Auxiliary data can also be

accumulated during the processing of the data. In some systems such
auxiliary data are collected in a trailer file. Ideally, the trailer

file is open-ended, so all additional information can be accommodated.

The pixels within an image are wusually structured in some
approximation of a rectangular coordinate system. In theory, it could
be a system other than a rectangular one, but for technical reasons,

this is the system most often used. Within such a rectangular
coordinate system the pixels are arranged in lines, lines are grouped to
frames, and sometimes frames are grouped to cubes. There is no

theoretical limit to the dimension of a data set, but for practical
reasons, data dimensionality ends usually at three.

Examples for data cubes are: sgeveral two-dimensional frames,
stacked in time. Another case, occuring very often in radio~astronomy,
is & number of two~dimensional frames, stacked in frequency, to examine
velocity distributions in a field. ’

Data coming from the detector or a microdensitometer are usually
represented in integer notation. For further data analysis it is useful
to convert the data into floating point notation. Although this is
somewhat more costly in terms of storage and processing speed, it more
than pays for itself in terms of ease of programming and safety during
the reduction. Anybody who has ever divided a heavily exposed flat
field frame into a low signal data frame will appreciate that.

A serious problem in image processing is the quantity of the
data. A typical frame of 500 x 500 pixels holds a quarter million data
points. As we begin to arrange many such frames into cubes, the data
quantity grows by orders of magnitude. It is obvious that efficient

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

ANALYSIS OF MULTIDIMENSIONAL DATA STRUCTURES 89

strategies have to be used for retrieving such data from a storage
medium.

Most -data are stored on magnetic tape as the result of a data
acquisition process. For data analysis, they have to be transferred to
a faster medium, which today is the magnetic disk. On the disk, the
data have to be arranged in a structure convenient for retrieving them
and in a format suitable for analysis. Note that there are two
different data formats: an internal format and an external format. The
internal format is the representation of the data on the system bulk
storage. Different strategies can be used here depending on system
design. Header files can be connected with the image file or kept
separate., Auxiliary files can be kept in image format or in the
operating system provided format. The disk can be structured in block
format or data can be arranged in some kind of hierarchy.

Completely independent of the internal format is the data
- representation on an external storage medium, for instance, a magnetic
tape for transporting images from one system to another. B2An agreed upon
and already widely used standard is the FITS (Flexible Image Transport
System) format (Wells and Greisen, 1979). For anybody transporting
images, I strongly recommend adhering to the FITS standard. Not because
it is an extremely elegant or philosophically pleasing design, but
because it works and it is already supported by several major
institutions.

3. DATA ANALYSIS REQUIREMENTS

A data analysis system, such as the one designed to reduce the data
produced by the Science Instruments of the Space Telescope, must be
designed in such a way as to, in principle, allow the full exploitation
of the data. This is not to say that at the very beginning the system
has to be capable of analyzing all data in all possible ways, but it
means that the system design has to allow for later upgrading of the
existing software. Such improvements are necessitated both by the fact
that we learn more about how to treat the data as we gain experience
with the new instruments, as well as by developments in the field. It
is therefore imperative that the design of the system does not preclude
later updates of the baseline.

There also has to be a healthy margin of capacity. If the system
resources are only sized to handle the requirements of the baseline
system, very soon user demands will outgrow the hardware capabilities of
the system. This usually results in efforts to circumvent hardware
limitations by software. Not only does this make the system much more
complicated and much harder to maintain, in the long run, it will also
‘be more expensive in terms of effort and manpower. Today, hardware has
become very affordable and no attempt should be made to economize on
hardware.

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

90 R. ALBRECHT

One of the major requirements of any data analysis system is that
it must be user-oriented and problem-oriented. Especially at visitor-
oriented institutions, the scientist cannot be expected to familiarize
himself with rules dictated by and tailored to a particular computer
system within the short time he spends at the observatory. In other
words, the command language must be as close as possible to plain
English, and the individual commands must be meaningful in the context
of astronomy.

The data analysis system also has to be interactive. This means
that it must be possible for the astronomer to explicitly initiate every
step in his reduction procedure and check the result in near real
time. Depending on these intermediate results, the astronomer will
decide on and initiate execution of the next step. This procedure makes
it possible for the astronomer to determine a reduction procedure
approprate for his data.

Of course, interactivity also has disadvantages, especially when
dealing with image data: given the amount of data points, "near real
time" can be up to several minutes, depending on the operations
performed. Interactivity becomes dangerous as soon as machine reaction
time exceeds the human attention span, because the user will engage in
other parellel activities, ultimately losing control over the reduction
procedure.

Another disadvantage of interactivity is that, by definition, it
requires the physical presence of the user during the reduction proce-
dure. While this is desirable during establishing a proper procedure,
it will slow down routine data reduction to an unacceptably low
throughput rate. To remedy that, it must be possible, after
interactively establishing the best reduction procedure, to switch to a
mode of processing, in which the system executes (loops through) a set
of reduction procedures for a large number of data frames. This capa-
bility is called batch-processing, or macro-processing.

A key issue in every data analysis system is the system
documentation. :

Not too long ago, the typical scientific program did not even have
comments within the program, and there certainly was not any kind of
high-level documentation. This situation has somewhat improved, but it
is still far from ideal.

In addition to the documented source code, there have to be at
least three different manuals: The User's Manual, which is designed to
tell the user (the astronomer) how to operate the system, and, in
particular, exactly what kind of operation is performed on his data;
there has to be an Application Programmer's Manual, explaining how to
write, maintain, and modify application programs for the system, how the
data are stored on disk, and how to invoke system services; and finally,

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

ANALYSIS OF MULTIDIMENSIONAL DATA STRUCTURES 91

a System Programmer's Manual is”required, explaining matters like the
system architecture.

It is imperative that the documentation be maintained along with
the corresponding programs, so no gap will develop between the software
and its documentation. For the documentation to keep pace with rapidly
developing software, this means that word-processing and self-
documentation techniques have to be employed.

Another form of documentation which has to be available in an
interactive data analysis system is on-line documentation. This form of
documentation is usually referred to as the "Help" function. Such a
system feature allows the user to ask for help and explanations from the
system at any time during the analysis session. A well-designed help
function, guiding the user through the system, eliminates the need to
consult the printed version of the User's Manual to a high degree and
can make the data analysis much more efficient.

Information also has to be provided in a different area: on the
scientific background of the system operations. Not only is it
important to know how to operate a program to determine the instrumental
magnitudes of stars in a two-dimensional frame, for the scientist it is
even more important to know which method (algorithm) is used to
determine these magnitudes. 1In other words, application programs of a
data analysis system should not be used as black boxes. Of course, this
is only possible to a certain degree--it is, after all, not possible to
understand just what every single statement in every single program
does. However, sufficient information about the program has to be
provided to change the "black box" at least to a "gray box." Only in
this way will it be possible for the scientist to assume responsibility
for the scientific results derived from his data.

4. SYSTEM SOFTWARE

In the case of a computerized data processing system, there are
usually two levels of system software to consider. The first level is
the host operating system. This operating system is usually vendor-
supplied and consists of an ensemble of programs which control and
supervise the computer. This host operating system maintains a direc-
tory of files on the disk, interprets and executes user commands and
provides a number of system services., It is called the host operating
system because it provides the environment in which the actual data
processing system works. While the host operating system is computer
oriented and the commands it accepts are tailored very much to the
computer system, the actual data processing system software is much more
oriented towards the actual application. The structures of both the
host operating system and the data analysis system are very similar.
Both consist of a central program, which understands and interprets
commands submitted for execution by the user. These commands are
executed by invoking other programs known as application programs (Fig
1)« The application programs are loaded into the central memory from

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

92 R. ALBRECHT

the disk and exit after execution. Control is then transferred back to
the command decoder (Fig 1) There are two reasons for having a data
analysis subsystem residing within a host operating system environ-
ment: one reason is that the commands of the data analysis subsystem
can be made much more understandable to the user, the astronomer; the
other reason is that in this way the data analysis software subsystem
can be made transportable between computers using different host
operating systems.

COMMAND
ENTRY [DECODER — EXIT

I
| Y { Y

PROG | PROG 2 PROG N

FIG. 1: Overall System Structure

A similar consideration applies to the application programs. As
indicated in Figure 2, the central part of an application program
consists of the algorithm, for example, a clever way of obtaining a
stellar magnitude in crowded fields. This algorithm needs connections
to the outside world. User parameters, for instance stellar
coordinates, have to be transferred to the algorithm. Access to the
data base where the pixels are stored has to be provided for the
algorithm. The algorithm has to have a library of mathematical and
astronomical routines available for the program. Finally, an interface
must exist hetween the algorithm and the host operating system. This
interface provides the algorithm with access to system services of
various kinds, for instance a system time service, but also to more
complicated system services like disk I/O. This modular structure of
the application programs ensures transportability of such programs
between different data analysis systems. It is also helpful during the
development of the programs. Modular application programs with minimum

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

ANALYSIS OF MULTIDIMENSIONAL DATA STRUCTURES 93

interaction to other application programs are easy to develop and easy
to debug. Communication between the different modules is done by clean
and well defined interface routines (Allen and Ekers, 1980).

USER

HOST

LIB ALGORITHM 0S

DATA BASE

FIG. 2: Application progham structure. The shaded
boxes indicate software Antergaces.

There also has to be communication between different application
programs. Following the previous example, after determining a stellar
magnitude in one application program, the brightness has then to be
communicated to a different application program for use in further
processing. Such inter-program communication can be provided in the
form of communication files and system variables or stacks.

While the internal structure of the data analysis system and the
application programs define the way the system works, this is usually
not visible to the user. The user working at the terminal is confronted
with a completely different aspect of the system, namely the command
language. The syntax of the command language determines the way the
user has to communicate with the data analysis software system. The
command language syntax also determines to a large extent how easy or
how Adifficult it will be for the user to actually work with the data
analysis system. As can be seen in Figure 1, the command language
syntax is defined by the command decoder. The communication between the
command decoder and the application programs is completely independent
of the command language syntax. It is therefore possible to communicate
with a set of application programs through more than one command
decoder, defining more than one ccmmand language. Another possibility

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

94 R. ALBRECHT

is to have coammand decoders who understand more than one command
language.

on the other hand, it is possible to use application programs from
different systems as long as their respective software interfaces are
supported. It is therefore conceivable to have a hypothetical system
consisting of application programs from many systems and invoke them in
the command language of a completely different system. A data analysis
system following these considerations is currently under development for
the analysis of data generated by the Faint Object Camera of the Space
Telescope.

5. DATA BASE INTERFACE

As already discussed in the first chapter, data ready for
processing usually reside on a magnetic disk. Access to the magnetic
disk is provided through the low level device driver interface provided
by the host operating system. Such low level interfaces are very
specific for the individual computer and the individual hardware
configuration. Using such low level interfaces in an application

program therefore makes them non-transportable and also difficult to
read and understand: low 1level interfaces access the disk in the

hardware specific form of sectors, blocks, or cylinders. For the
application program, a high level interface is desirable, accessing the
disk in the astronomy oriented terms of pixel coordinates.

High level data base interface routines can also be standardized
and seperated from the computer dependent low level interfaces by layers
of communication routines, thereby making the applications program and
to some extent, even the high 1level interface transportable between
different computers. Standardization and transportability are important
considerations in an enviromment where software is being developed by
more than one group. For the Space Telescope Science Data BAnalysis
System, software will be provided by the teams developing the different
Science Instruments for the telescope. At the Institute, we are
currently developing a system of standardized interfaces so the software
developed in different places is usable and useful to groups working at
other installations.

Standardization of the data base access is of particular importance
for the software development for the Space Telescope: the data
generated by the majority of the Science Instruments are image data, as
discussed in Chapter 2. All programs have to access those data. The
access has to be very efficient, so as to optimize throughput. To fully
utilize software developed at other institutions, in particular software
developed at the Teams developing the Science Instruments, it is clearly
necessary to achieve standardization as early as possible.

Being able to use software that was developed elsewhere also

implies that the software be transportable between . different
computers, It is clearly not possible to develop software that will run

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

ANALYSIS OF MULTIDIMENSIONAL DATA STRUCTURES 95

on all computers without modifications. However, following a few rather
basic rules, it is easily possible to develop software that will run on
many computers with only small modifications. Following those basic
rules also has another beneficial byproduct: it forces a modular,
structured design, which makes the software easier to develop, to
understand, and to maintain.

Adequate software maintainance is a key issue, especially for
developing software in a research environment, where input comes from
many different sources, and the problems to be solved themselves are
changing. A program, which is, for instance, developed at the wWide
Field Camera Instrument Team, even though it may be transportable, is
not necessarily usable for Faint Object Camera Data: the WF/PC
generates 12-bit data, while the FOC generates 16-bit data. Even after
the program has been generalized to handle data from both instruments,
it will have to be changed again to follow suggestions of the astrono-
mers, who have been using it.

It is also clear that such changes, even though they might be
beneficial and actually improve the program, have to be implemented with

considerable care. Evidently, it is impossible to replace a particular
program by another program, even a better one, just as it is impossible

to replace the photomultiplier in a photometer in the middle of an
observing run.

Such changes in the software have to be made in a carefully
controlled fashion. First, it has to be made certain that the requested
change to the program does not jeopardize its performance otherwise
(e.g., increasing processing time by an order of magnitude). After
making the change and implementing it, the new version will have to be
tested, both to make sure that the change produces the desired results,
but also to verify that other results produced by the program have not
been impacted by the change. Finally, the program documentation has to
be updated and the program is released to the users. This process is
called Configuration Control. It is one of the most important aspects
of a large software development project.

Applying these considerations to the problem of data base
interfaces, we find the following situation: at the device driver
level, the interface 1is machine-oriented and thus difficult to
standardize and certainly not transportable. At the highest 1level,
which is visible to the applications program, standardization is an
absolute necessity. This leads to the concept of interface routines
consisting of several layers of software between the standardized front
end and the machine dependent device driver. Using this concept, it is
even possible to maintain transportability of the uppermost layers.
Figure 3 shows this concept as used in the Tololo-Vienna Interactive
Image Processing System. On the highest level, the user accesses the
image like a large FORTRAN array, using an image name and the pixel
coordinates as subscripts. This makes it very easy for the astronomer
to write programs performing operations on pixel data.

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

96 R. ALBRECHT

| pPDP-11
FRONT END: IPIX=IMAGE (IX,IY)
STRING 1/0: CALL QREAD (LINE, IBUF. IWORDS, IERR)
BLOCK 1/0: CALL QI0 (vuvws)
e DEVICE-1/8+———Mot-accessible : P
HARRIS-DATACRAFT _ ‘
FRONT END: IPIX=IMAGE (IX, IY)
STRING 1/0: CALL GREAD (LINE, IBUF, IWORDS, IERR)
BLOCK 1/0: CALL IFXXYY (vunns)

——— DEVICE-1/0:——Not—accessible

VAX, PHYSICAL I/0

FRONT END: IPIX=IMAGE (IX, 1Y)
STRING 1/0: CALL GQREAD (LINE, IBUF, IWORDS, IERR)
BLOCK I/0: CALL SYS$QIO (uuuws)

‘ o e —accessible FIG. 3: Layered inferfaces

for different host.

B uaX, VIRTUAL 170

computens.
FRONT EWD: IPIX=IMAGE (IX,1IY)
STRING 1/0:)} Mapping
BLOCK I/O Y} Harduware
ceessible— — —-- - .

As can be seen, in this particular interface even the second level
is standardized, making the complete first layer transportable. Contact
with the host operating system is established only at the third level,
where system services are being used to access the disk. This is not
applicable to virtual I/0 on the VAX, where the VAX-specific mapping
features are being used in the first level.

The question of the efficiency of such interfaces has been
raised. Clearly, the fastest way of accessing the data is to skillfully
use the machine-dependent features of the device driver. However, it is
also clear that most astronomers are not willing to write programs at
this level.

On the other hand, there is undoubtedly some overhead associated
with the high level access of the data base, sometimes slowing down
processing considerably. The solution we have adopted is to make the
lower layers also accessible to the application program. Thus, if it
becomes necessary to speed up a program developed by an astronomer,
using front end calls, a system programmer can replace them by faster,
low level access calls.

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

ANALYSIS OF MULTIDIMENSIONAL DATA STRUCTURES 97

6. CONCLUSION

The recent advances in hardware technology and their application to
astronomical data acquintion as examplified by panoramic detectors and
orbiting observatories, have brought about the necessity to refine the
software tools needed to analyze the data. These tools exist, however,
astronomers have not quite learned how to use them efficiently. It must
be emphasized that the long term return on investments in hardware and
manpowe¥ ultimately depends on the quality of the software used for the’
analysis of the data.

References

Albrecht, R. 1981, Proceedings of the Space Telescope Science Data
Analysis Reconnaissance Meeting. ST Scl, Baltimore, MD.

Wells, D., Greisen E., 1979, FITS: A Flexible Image Transport
System. In: Image Processing in Astronomy, G. Sedmak et. al.
(Eds). Osservatorio di Trieste, Italy.

Allen, R.J. and Ekers, R.D. 1980, Creating Durable Software in a

Research Group Environment. In: IUE ~ Data Reduction, Weiss et. al
(Eds.) Vienna, Austria.

https://doi.org/10.1017/50252921100082737 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100082737

