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Abstract

We present a theory for describing the inner structure of the electron bunch in the bubble
regime starting from a random distribution of electrons inside the bubble and subsequently
minimizing the system’s energy. Consequently, we find a filament-like structure in the direc-
tion of propagation that is surrounded by various shells consisting of further electrons. If we
specify a two-dimensional (2D) initial structure, we observe a hexagonal structure for a high
number of particles, corresponding to the close packing of spheres in two dimensions. The 2D
structures are in agreement with the equilibrium slice model.

Introduction

In contrast to conventional accelerators, plasma-based acceleration has the advantage of attain-
ing higher particle energies over shorter acceleration distances due to the higher electric field
that can be applied (Pukhov and Meyer-ter Vehn, 2002; Malka, 2012; Kostyukov and Pukhov,
2015). In laser-driven plasma wake-field acceleration (LWFA), a highly non-linear broken
wave regime in form of an electronic plasma cavity called the “bubble regime” can occur.
The bubble regime arises for a0 = eA0/(mc2) > 4 and S = ne/(a0 nc)≪ 1, where a0 is the normal-
ized amplitude of the laser vector potential and S is the similarity parameter. Here, e is the
elementary charge, m is the mass of the electron, c is the speed of light, ne is the electron den-
sity, and nc is the critical density (Gordienko and Pukhov, 2005).

The bubble potential is a nearly harmonic potential with electric fields of more than 100
GV/m. In general, plasma wakefields similar to the bubble can also be excited by dense and
high energetic particle beams (Muggli, 2016). The bubble is surrounded by an electronic
layer from which electrons can be trapped and focused into the bubble center (Kalmykov
et al., 2009). The trapped electrons form the so-called electron bunch (or beam load).

Besides this self-trapping mechanism, there exist several other injection methods, including
pre-acceleration, ionization, and density modulation techniques (Faure et al., 2006; Li et al.,
2013; Tooley et al., 2017). In all cases, the objective is to create electron bunches with as
small beam emittances as possible. The currently most promising methods are the ionization
injection and the density down-ramp. Both methods produce electron beams with sub-fs dura-
tion, high peak currents in the range of several kA, energy spreads well below 1% and excellent
transverse emittances (Baxevanis et al., 2017; Gonsalves et al., 2017; Huang et al., 2017; Tooley
et al., 2017; Wang et al., 2018). The density-down ramp is achieved by longitudinally modu-
lating the plasma density with extremely large gradients (Gonsalves et al., 2011; Swanson et al.,
2017; Xu et al., 2017a, 2017b). Ionization injection requires a small amount of higher-Z gas,
added to the gas used for acceleration (Pak et al., 2010; Tochitsky et al., 2016). In the case of
the wakefield being driven by a short electron beam, the Trojan horse regime of underdense
photocathode plasma wake-field acceleration is reached (Hidding et al., 2012a, 2012b). It can
be used to decouple the electron bunch generation process from the excitation of the acceler-
ating plasma cavity. The combination of the non-relativistic intensities required for tunnel ion-
ization, a localized release volume as small as the laser focus, the greatly minimized transverse
momenta, and the rapid acceleration leads to dense phase-space packets. In homogeneous
plasma, they can have ultra-low normalized transverse emittance in the bulk of μm mrad
and a minimal energy spread in the 0.1% range (Hidding et al., 2012a; Chen et al., 2014).

Some rough descriptions of the bunch’s structure already have been made using shadowg-
raphy or X-ray betatron radiation (Schnell et al., 2012; Saevert et al., 2015). We, however, are
interested in the finer sub-structure of the bunch, which is interesting for the field of short
wavelength radiation. Here, a counter-propagating laser pulse is scattered back by a relativistic
electron bunch, such that spatially incoherent photons of a wide energy spectrum are obtained.
If the electron bunch exhibited a regular sub-structure, higher brightness and spatial coherence
could be achieved (Apostol and Ganciu, 2011; Petrillo et al., 2012).

The are two approaches to describe the bunch’s structure that calculate the prevalent fields
in different ways. Originally, the sub-structure was described in Thomas et al. (2017) using a
Taylor expansion of the retarded Liénard–Wiechert potentials up to second order in v/c.
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There, electronic filaments along the propagation direction of the
bubble and hexagonal lattices in the transversal were observed.
These regular electron structures are similar to Wigner crystals,
known from other areas of plasma physics than wake-field accel-
eration (Wigner, 1934; Crandall and Williams, 1971; Meissner
et al., 1976; Dubin and O’Neil, 1999; Morfill and Ivlev, 2009;
Radzvilavičius and Anisimovas, 2011). The advantage of using a
Taylor expansion is that the calculation of the implicitly given
retarded time

tret = t − 1
c
|ri − rj(tret)| (1)

can be circumvented. Here, index j indicates the radiation of a sig-
nal at time tret from position rj, while index i denotes an observer
at time t and position ri receiving the signal. This approach yields
incorrect inter-particle distances, as radiative terms are neglected.
In the frame of this theory, a phase transition was observed: For
emittances below a certain critical value depending on the system
parameters, the crystalline structure persists in dynamical simula-
tions. If the threshold is exceeded, the structure becomes a degen-
erate electron fluid. In the second ansatz, the equilibrium slice
model (ESM) uses the full Liénard–Wiechert potentials but only
examines two-dimensional (2D) slices transverse to the direction
of propagation (Reichwein et al., 2018). This approach leads to
hexagonal lattices as well, however with different inter-particle
distances since the full Liénard–Wiechert potentials are taken
into account. The scaling of these distances regarding particle
momentum and plasma wavelength were explained analytically
by a heuristic two-particle model. Contrary to the approach via
the Taylor expansion, the ESM is restrained to only two-spatial
dimensions and a static description of the bunch as calculating
the dynamics would require to save the particles’ history making
it computationally expensive.

In the present paper, we derive a new model for the three-
dimensional (3D) structure of the bunch in the static case using
a Lorentz transformation of the electromagnetic fields under the
assumption that the velocity of the particles is constant. This
allows us to avoid the calculation of the retarded times while
still describing the structure of the bunch with more precision
than in Thomas et al. (2017). In the following section of our
paper, we will cover the Lorentz transformed fields which use
the approach of Jackson et al. (2013). Using the terms for the
focusing force of the bubble potential and the ones for the repul-
sive Coulomb interaction between the electrons, we can formulate
an equilibrium state. This state will represent the structure the sys-
tem will want to attain. In Section "The 3D equilibrium state", we
will cover the numerical algorithm for minimizing the total force
of the system and the choice of the step size. Further, we will dis-
cuss the dependencies of the mean inter-particle distance since
the propagation direction will show different scaling than the
transverse direction due to the different strength of the electro-
magnetic fields in different directions. Finally, we will present
the results of our simulations and particularly discuss the scaling
regarding the total number of electrons.

Mathematical model and scaling laws

In the following, we derive the 3D inter-particle force in a system
of interacting alongside propagating relativistic electrons in an
external bubble potential in a moving coordinate system. For
the potential, we choose the strongly simplified quasi-static 3D

bubble model for electron acceleration in homogeneous plasma
from Kostyukov et al. (2004). Here, relativistic electrons are accel-
erated by the normalized force Fz =−(1 +V0)ξ/4, where ξ = z −
V0t is the longitudinal position inside of the moving bubble
with the velocity V0. The focusing to the ξ-axis is provided by
the force Fr = −(pz + g)

��������
x2 + y2

√
/(4g). Due to the cylinder

symmetric form of the bubble potential, the electrons are also
focused in the ξ-direction, namely to the bubble center, where
they have maximum energy. Since

dv
dt

≈ F
2mg3

(2)

for relativistic particles, we have |v̇| ≈ 0 and ġ ≈ 0 in a suffi-
ciently small domain around the bubble origin.

From the previous work in Thomas et al. (2017), we can expect
that the equilibrium configuration will be located in or at least
near the bubble center. If we want to circumvent computing a
Taylor series of the retarded electromagnetic potentials, we have
to find a different way evaluating retarded times. In principle,
this is impossible for accelerated particles. Thus, we use the sen-
sible approximation |v̇i| = 0 and vi = v for all particles i, allowing
for a Lorentz transformation of the electromagnetic fields from
the rest frame to the laboratory frame. In this case, the
Coulomb interaction between all electrons is determined by the
electric field

E = qr

r2g(1− b2 sin (c))3/2
(3)

and the magnetic field

B = b× E, (4)

where β = |β| is the velocity v normalized with the speed of light c
and n is the unit vector pointing from the charge moving, respec-
tively, to the resting observer (Jackson et al., 2013). Further, we
have c = arccos (n · v̂) with v̂ = v/|v| (Fig. 1). For all cases but
β = 0, we see that the electric field is anisotropic. For angles ψ =
0, π, we see a weaker field by a factor of γ−2 since the sine term van-
ishes, whereas for ψ = ±π/2, the field is stronger by a factor of γ.

Having calculated the electromagnetic fields, we can calculate
the forces affecting a given particle. The total force onto the ith
electron is

Fi = Fext,i + FC,i, (5)

where Fext,i is the force exerted by the bubble potential and FC,i is
the sum over all Coulomb forces between electrons i and j, such
that

FC,i =
∑N
i=1

FC,ij. (6)

The forces can be calculated by using the electromagnetic
fields and the equation for the Lorentz force

FL = q(E + b× B). (7)

Minimizing the total forces Fi for all particles i in the system,
we find its energetic minimum and thereby the corresponding
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structure. The equivalence of a Hamiltonian approach as in
Thomas et al. (2017) and Reichwein et al. (2018) to our force bal-
ance here can be seen by writing the forces as the gradient of the
Lagrangian L from the references above such that

d
dt

pi = d
dt

∇viL = ∇riL. (8)

If we split up the momentum and the Lagrangian into external
and Coulombic parts in a similar fashion to the forces, we have

d
dt

pext,i = ∇riLext,i +∇riLC,i −
d
dt

pC,i, (9)

d
dt

pC,i = ∇viLext. (10)

Therefore, we can rewrite the total force as follows:

Fi = d
dt

pext,i −
qi
c
d
dt

Ari + ∇ri −
d
dt

∇vi

( )
LC, (11)

finally leading to our equation for the force (5), showing that the
force balance is an equivalent way of describing the energy
minimization.

Before conducting the simulations, we already can estimate the
scaling of the mean inter-particle distance regarding the parame-
ters momentum p and plasma wavelength λpe. For this, we are
able to use the heuristic approach of Reichwein et al. (2018) for
the transverse direction, giving us

Dr =
�
[

√
3] re
2p3

lpe��
g

√
( )2/3

/p−1/3l2/3pe (12)

for the distance between two nearest neighbors in the 2D lattice.
Due to the structure of the fields, the particles sense a 1/γ times
weaker interaction force in the propagation direction, such that
for a balance of the bubble force with the interaction term, we
have

Dj

4
= re

lpe

1
g2

1

(Dj)2
(13)

with the normalization of Reichwein et al. (2018). Here, the var-
iable re = 2πe2/(mc)2 represents the classical electron radius.

Therefore, the scaling of the inter-particle distance in the propa-
gation direction is

Dj/ p−2/3l2/3pe . (14)

The heuristic analytical model cannot explain the scaling regard-
ing the total number of particles N at the moment. We will, how-
ever, look at this dependency numerically and give some ideas to
what influences this behavior in the Discussion section.

The 3D equilibrium state

In order to find the equilibrium structure of the electron bunch,
we use the so-called steepest descent method. At a given position
Xk = (rk1, . . . , r

k
N ), we calculate the gradient ∇f (Xk) of the func-

tion f (X) that is to be minimized (in our case, the magnitude of
the total forces Fi). The gradient always points in the direction of
steepest ascent, so going in the opposite direction brings us closer
to the structure with minimal energy where (∇Xf )[X0] = 0.
Therefore, we can write our iterative algorithm as follows:

Xk+1 = Xk − ak∇kf (X
k), (15)

where αk is a parameter for the step size at iteration k. The choice of
this step size is crucial for our algorithm to converge since large steps
lead to jumping over the position of the minimum, while too small
step sizes lead to slow convergence. In our case, the choice of

ak = Dx · Dg
Dg · Dg (16)

according to Barzilai and Borwein (1988) is sufficient. Here, Δx and
Δg are the differences in position and gradient between the iterations
k and k− 1, respectively. Using the steepest descent method, we find
a local minimum. Generally, this does not need to be a global min-
imum as well. However, using the technique of stochastic tunneling
(Hamacher andWenzel, 1999; Metropolis et al., 1953), we are able to
show that the structures we obtain actually are the global minima of
the system. In these methods, a random vector is added onto the
position Xk, such that valleys in the potential landscape, that nor-
mally would have been hidden from the gradient descent method
due to surrounding hills, can be reached.

We distribute a fixed number of N particles randomly inside a
spherical volume with a given momentum p and plasma wave-
length λpe. The main structure we observe is a central filament
on the ξ-axis (Fig. 2). For a sufficiently high number of particles
surrounding elliptic shells can form (Fig. 3b).

In order to generate a strongly simplified 3D depiction of the
electron distribution at hand, we need to classify the various shells
and filaments. To do so, we look at the transverse cross section in
Figure 3a and plot the corresponding radial density profile
(Fig. 4). Then, after having fitted a multi-Gaussian (red curve)
to the distribution, we define: A shell is the set of all electrons
inside the

��
2

√
s environment of one Gaussian distribution. A

final visualization of the structure in Figure 3 is shown in Figure 5.

Numerical scaling

For our first series of simulations, we vary the momentum
between 50 and 500 MeV/c for N = 1000 electrons and a plasma
with λpe = 100 μm. The resulting structure is a single filament in

Fig. 1. Depiction of the setting for the Lorentz transformation: the charged particle
moves along the x′1 axis and is seen by an observer at position P (Jackson et al.,
2013).
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the propagation direction (Fig. 2). We obtain a dependence
according to our previously calculated scaling laws, that is,

Dj/ p−2/3. (17)
The inter-particle distances are in the region of some picometers
in the longitudinal direction (see Fig. 6). These distances are well
under the diameter of an atom. Thus, we need to consider if
quantum effects could play any role in this regime, even though
electrons can be considered as point-like particles. The ratio
between inter-particle distance and de Broglie wavelength λdB
gives some indication regarding that. The wavelength is given
by ldB = 2ph− /(pc), where h− is the reduced Planck constant
and p = γmc is the relativistic momentum of the electron. For a
Lorentz factor γ = 100, we obtain λdB≈ 24 fm, which is orders
of magnitude below our simulation results for the inter-particle
distance. Therefore, we can neglect quantum effects here.

Scaling regarding λpe (Fig. 7) is in agreement with our analytic
results as well and therefore yields

Dj/ l2/3pe . (18)

Lastly, we keep p and λpe fixed but vary the number of elec-
trons for each simulation. For a sufficiently high number of par-
ticles, we observe additional shells surrounding the main filament

Fig. 2. Formation of the central filament for increasing gradient descent iterationsit with decreasing error err from left to right. Notice the particles twirling onto
the ξ-axis. A similar behavior can be seen for too many particles that are being forced into one filament; they try to escape into the x–y plane.

Fig. 3. Cross section of the 3D equilibrium structure for N = 20,000 electrons. (a)
Transverse cross section in the plane where ξ = 0. (b) Longitudinal cross section for
x = 0.

Fig. 4. Histogram of the number of particles in the final distribution depending on
the radius R of the total distribution. The different peaks represent the occurring
shells with a certain thickness that are fitted using a multi-Gaussian.

Fig. 5. Simplified schematic depiction of the resulting structure for N = 20,000 elec-
trons. Notice the central filament surrounded by several ellipsoid shells. Depending
on the number of particles, the main filament (here shown as a continuous red
line) is broken up into little pieces, and some of its electrons are assigned to the sur-
rounding shells.
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we have seen before (Fig. 3). The central filament now is discon-
tinuous as some of the electrons go to the various shells. The
resulting dependence of the inter-particle distance on N is

Dj/ N−0.75, (19)

which can be seen in Figure 8. We further specify an initial dis-
tribution on a 2D slice (such that ξ = constant for all electrons)
and embedding it in the 3D model. As a result, the 2D structure
persists and hexagonal lattices are observed. The scaling of the
mean inter-particle distance Δr in the slice regarding the different
parameters is given by

Dr / p−1/3l2/3pe N
−0.14, (20)

which is in excellent agreement with the ESM.
The exponents for the dependency on N cannot be explained

by our two-particle model, in fact scaling laws regarding the

number of particles are a problem in further fields of physics
(James, 1998). We can, however, explain the behavior phenome-
nologically to some extent.

Discussion

Considering the case of the 2D structure, for N = 2 we see a
straight line for the equilibrium structure, and for N = 3, an equi-
lateral triangle since the repelling Coulomb force causes the elec-
trons to be apart as far as possible from each other (see Fig. 9).
Opposing to that the parabolic bubble potential confines the elec-
trons and focuses them to its center. The interplay of these to
effects leads to the close packing of spheres in two dimensions
with an hcp lattice. For N = 7, we have one particle in the middle
surrounded by one full shell of six further electrons. Adding
another particle to the densest packing, we break the symmetry,
meaning that we now see different distances for the electrons
while before, every electron had the same distance to one another.
Only if a sufficient amount of further electrons are supplied, we can
fill up the next shell, such that the maximum symmetry is restored.
For higher shells, a lot more particles are needed than the six that
make up the first shell (see the case for N = 20 in Fig. 9).

If we move on to the 3D case, we now have two competing
effects. At first, only the central filament is being filled for a
low number of electrons due to the different strength of the elec-
tric field in the different spatial directions. Increasing the number
of particles is accompanied by reducing the inter-particle dis-
tance. If this distance cannot be further reduced without sacrific-
ing minimal energy, the filament starts to curl into a helix-like
structure (similar to the modus operandi of the algorithm seen
in Fig. 2). This is comparable to the 2D zigzag structure observed
in Pyka et al. (2013). Even higher number of particles break up
this structure; the main filament is broken up into various pieces
that cannot be clearly assigned to one single shell. This is the tran-
sition to additional shells surrounding the one at the center: the
structure still does not have enough particles to completely fill
those new shells but starts to build up the hcp structure in the
transverse direction. These two competing minima, one being
the central filament structure, the other being the surrounding
shells, leads to the scaling of Δξ∝N−0.75. The same structural

Fig. 6. Dependence of the mean inter-particle distance for a constant number of N =
1000 electrons and λpe = 10

5 nm in the propagation direction (Δξ) and the transverse
direction (Δr). The circles represent the simulation data, while the lines show the
power fit.

Fig. 7. Scaling of the mean inter-particle distance with the plasma wavelength λpe for
N = 1000 electrons and p = 100 MeV/c. The circles represent the simulation data, while
the lines show the power fit.

Fig. 8. Simulation results for λpe = 10
5 nm and p = 100 MeV/c for a varying number of

particles. The circles represent the simulation data, while the lines show the power fit.
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behavior but at different length scales has also been observed in
the field of circular accelerators with storage rings (Schiffer,
1996; Ikegami et al., 2006). The main differences here are the
vastly different length scales of milimeters instead of our findings
of some nanometers or even picometers. Furthermore, these two
structures occur at different time scales due to their methods of
acceleration.

In the considered density regime, we can neglect the effect of
resting single ions onto the lattice structure since the ion density
scales as

nion = 1

l2p

m
pe2

. (21)

Thus, for a plasma wavelength of λp = 105 nm, we get nion≈
1.1 × 1023 m−3. Looking at the volume of the structure for
20,000 electrons in Figure 5, which roughly amounts to 32 nm3,
we would expect a total of approximately 3.52 × 10−3 ions to be
inside this volume. For larger bunches, the higher number of
ions inside the volume would be compensated by an even larger
amount of electrons since the density ratio remains constant.
Therefore, we are able to further neglect any larger effects by
ions onto the lattice structure.

In comparison to the model of Thomas et al. (2017), where the
Taylor expansion in v/c was used, we now see one intact filaments
throughout the whole length of the structure, whereas then many
short filaments could be seen. This is due to the incorporation of
more relativistic effects in our model, also leading to smaller dis-
tances in the range of picometers rather than nanometers like in
Thomas et al. (2017). We do however still see those hexagonal lat-
tices, albeit with smaller inter-particle distances. As we have
already seen in the ESM (Reichwein et al., 2018), this again is
due to retardation effects. Instead of those additional filaments,
we now observe the formation of shells that exhibit some pattern-
ing on their surface for a high precision of the steepest descent
algorithm.

Conclusion

We have presented a theory for describing the 3D structure of the
electron bunch in the bubble regime. The basis of our model is the
Lorentz transformation of the electromagnetic fields, allowing us
to avoid the calculation of implicit retarded times. Our model uses

a quasi-static picture and considers the electron bunch in equilib-
rium being around the center of the bubble. The electrons used
are perfectly mono-energetic. This approach leads to the observa-
tion of electronic filaments in the propagation direction of the
bubble. For a low number of particles, instead of many fragmen-
tary filaments as in Thomas et al. (2017), one main filament con-
taining all electrons of the bunch can be seen. A higher number of
particles leads to the breaking of this filament and finally various
surrounding shells, similar to structures previously found in sim-
ulations for circular accelerators (Schiffer, 1996; Ikegami et al.,
2006). The formation of these additional shells corresponds to
the genesis of the outer shells of the ESM . Scaling laws regarding
the dependence of the mean inter-particle distance on momen-
tum and plasma wavelength are derived by a heuristic two-particle
model. The distances in the sub-nanometer regime in the trans-
verse direction or even tens of picometers in the propagation
direction are smaller than previously observed due to the higher
incorporation of relativistic effects. Since, however, the de
Broglie wavelength is in the range of some femtometers, we can
neglect quantum effects at this point in time.
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