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Abstract. Binary pulsars are a valuable laboratory for gravitational experiments. Double-
neutron-star systems such as the double pulsar provide the most stringent tests of strong-field
gravity available to date, while pulsars with white-dwarf companions constrain departures from
general relativity based on the difference in gravitational binding energies in the two stars.
Future observations may open up entirely new tests of the predictions of general relativity.
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1. Introduction: Observing and Using Pulsars
The 1974 discovery of a pulsar in a binary system (Hulse & Taylor 1975) provided

the experimental gravity community with a precision clock embedded in the distorted
space near a compact object. The tremendous potential of such a system for testing
gravitational theories was quickly recognized (Wagoner 1975; Eardley 1975; Damour &
Ruffini 1974; Barker & O’Connell 1975). Since then, pulsars have been discovered in
similar and in even more relativistic orbits, and many of these binary systems can be
used to test aspects of general relativity (GR) and other theories of gravity. This article
gives an overview of these tests; see also Stairs (2003) for a fuller though somewhat dated
description of much of this material, and Stairs (2005, 2006) for slightly updated versions.

Pulsar observing and timing are discussed thoroughly in other sources (e.g., Lorimer &
Kramer; Bailes 2009), but a few relevant points are worth mentioning as background to
gravitational tests. Pulsar timing relies on the observed reproducibility of pulse profiles
when averaged over timescales of minutes to hours. This allows the determination of pulse
Times of Arrival (TOAs) by cross-correlation with a “standard profile” for a given pulsar.
TOA precision improves for pulsars with high signal-to-noise ratio and sharp pulse-shape
components. Pulsar timing is accomplished by enumerating the pulsar rotations between
TOAs and fitting ephemerides that include spin, astrometric and dispersion parameters
as well as full descriptions of any binary orbits. Many gravitational tests depend on
thorough understanding of pulsar orbits.

By considering a pulsar’s spin and spin derivative, estimates can be made of its surface
dipolar magnetic field strength as well as its spin-down or “characteristic” age. Most of
the pulsars used in relativity tests have been recycled by transfer of mass and angular
momentum as their binary companions evolve (e.g., Tauris & van den Heuvel 2006), and
have millisecond spin periods and surface magnetic fields of 108–109 G. A millisecond
pulsar (MSP) in a nearly circular orbit typically has a white-dwarf companion, and there
is an expectation that both stellar spin vectors will have been aligned with the orbital
angular momentum during the mass transfer phase (e.g. Phinney 1992). A pulsar in an
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eccentric orbit is more likely to have a companion that is also a neutron star, such that
the last event in the system was a supernova explosion that could have misaligned one
or both spins with the post-explosion orbital angular momentum (e.g. Wex et al. 2000).

Pulsars in both types of orbits (and, indeed, some isolated pulsars as well) find uses
in gravitational tests. It should be noted that, although the pulsar orbits known to date
do not test strong-field gravity in the sense of approaching the event horizon, the use of
pulsars and white dwarfs (and someday perhaps black holes) in these tests does mean
that the tests must consider the theoretical predictions for objects that are strongly self-
gravitating. For example, many of the tests rely on a extension of the definitions of the
Parametrized Post-Newtonian (PPN) parameters (Will & Nordtvedt 1972; Will 2006) to
generalized tensor-multiscalar gravitational theories (Damour & Esposito-Farèse 1992a;
Damour & Esposito-Farèse 1996). In this description, for example, the PPN parameter
α1 becomes α̂1 = α1 + α′

1(c1 + c2) + · · ·, where ci describes the “compactness” of mass
mi . The compactness is ci = −2∂ ln mi/∂ ln G � −2(Egrav/(mc2))i , where G is Newton’s
constant and Egrav

i is the gravitational self-energy of mass mi. Compactnesses are about
−0.2 for a neutron star (NS) and −10−4 for a white dwarf (WD).

2. Equivalence Principle Violations
Equivalence principles are thoroughly described in, e.g.,Will (1993). General relativ-

ity incorporates even the Strong Equivalence Principle, predicting gravitational results
independent of self-gravity, but this and other equivalence principles may be violated in
alternate theories of gravity.

Pulsar timing sets limits on α̂1 , which would imply preferred-frame effects by violation
of Lorentz invariance, and α̂3 , which would additionally imply non-conservation of mo-
mentum if non-zero. Pulsar can also constrain other SEP-violation effects produced by
various combinations of the (modified) PPN parameters: the Nordtvedt effect, dipolar
gravitational radiation, and changes in Newton’s constant.

2.1. Orbital Polarization Tests
Nordtvedt (1968) proposed direct tests of the SEP through Lunar Laser Ranging (LLR)
experiments. The principle behind these tests is that the different contributions of self-
gravitation to the masses of the Earth and Moon would cause them to accelerate differ-
ently in the gravitational field of Sun, resulting in a “polarization” of the orbit in the
direction of the Sun. LLR tests have set a limit of η = (4.4± 4.5)× 10−4 (Williams et al.
2009), where η is a combination of PPN parameters.

Binary pulsar tests of the SEP and of α̂1 and α̂3 look for the same type of phenomenon:
polarization of orbits of pulsar–white-dwarf systems in preferred directions given by the
projection of “extra” acceleration vectors onto the planes of the orbits. The prototype of
these tests is the Nordtvedt-equivalent SEP test, which considers a strong-field version
of η labeled Δi, with pulsar–white dwarf systems constraining the difference Δnet =
Δpulsar −Δcompanion (Damour & Schäfer 1991). The extra acceleration in this case would
be in the direction of the Galactic acceleration of the system (Damour & Schäfer 1991),
accessible through potential models of the Galaxy (e.g., Kuijken & Gilmore 1989). For
the α̂1 test, the direction is given by the velocity of the pulsar system relative to the
Cosmic Microwave Background (Damour & Esposito-Farèse 1992b; Bell et al. 1996). For
α̂3 the direction comes from the cross-product of this absolute velocity and the pulsar
spin direction (Nordtvedt & Will 1972; Bell & Damour 1996) and the test relies on the
evolutionary assumption of alignment between the pulsar spin and the orbital angular
momentum. All of the tests attempt to distinguish the strength of a forced eccentricity
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component against that of the “natural” eccentricity, which should fall within a certain
range based on the orbital period (Phinney 1992) and whose direction evolves according
to the general-relativistic advance of periastron. The time-dependent eccentricity vector
may be written as (Damour & Schäfer 1991): e(t) = eF + eR (t), where eR (t) is the
rotating “natural” eccentricity vector, and eF is the forced component.

Applying the tests requires making two important decisions. The first is the selection
of pulsars. For the Δnet test, the figure of merit is P 2

b /e (Damour & Schäfer 1991), where
Pb is the orbital period, while for α̂1 it is P

1/3
b /e (Damour & Esposito-Farèse 1992b)

and for α̂3 it is P 2
b /(eP ) (Bell & Damour 1996), where P is the pulsar’s spin period.

This makes MSPs in long-period orbits the logical choice for Δnet and |α̂3 |, and those
in shorter-period, low-eccentricity orbits the choice for α̂1 . However, the pulsars must
also satisfy other restrictions: they must be old enough that eR (t) can be assumed to be
randomly oriented, and have ω̇ (advance of periastron) larger than the rate of Galactic
rotation (Damour & Schäfer 1991; Damour & Esposito-Farèse 1992b; Bell et al. 1996;
Wex 1997). A related issue is ensuring that a set of pulsars is used representing the full
related population, even those systems that might have a low figure of merit (Wex 2000).
The set of pulsars to be used is reasonably clear for Δnet and α̂3 , for which the optimal
pulsars have likely all followed the same evolutionary path (e.g. Rappaport et al. 1995),
but the situation is less clear for the shorter-orbital period pulsars used for α̂1 .

The other decision is the method for obtaining the limit. Some sampling or averag-
ing is typically needed for the orbital inclination angle i, the masses m1 and m2 , the
sky orientation of the binary and the pulsar distance, though these are reasonably well-
constrained in some cases (Verbiest et al. 2008; Splaver et al. 2005). One place where
progress has been made is the issue of how to treat the unknown angle between eF and
the “natural” eccentricity eR. Limits derived from “worst-case” cancellation scenarios
have been obtained for the various tests using individual pulsars (Damour & Schäfer
1991; Damour & Esposito-Farèse 1992b; Bell et al. 1996) and an ensemble of pulsars
(Bell & Damour 1996; Wex 1997, 2000); Wex (2000) attempted to account for popula-
tion selection effects by using a larger set of pulsars as discussed above. An alternative
analysis uses a Bayesian formalism and more of the known pulsar parameters such as the
longitude of periastron, again operating on the full set of pulsars that likely have similar
evolutionary histories, to obtain a 95% confidence upper limit on |Δ| of 5.6 × 10−3 and
on |α̂3 | of 4 × 10−20 . (Stairs et al. 2005). These limits will soon be updated with the
inclusion of new pulsars, improved timing parameters for known pulsars and some small
error corrections (Gonzalez et al., in prep.). For |α̂1 |, the most recent limit is 1.4×10−4 at
95% confidence (Wex 2000). This test could be updated with the Bayesian analysis, but
the selection of pulsars is less straightforward. It should be noted that isolated pulsars
can also be used to set a limit on α̂3 based on the average value of the observed period
derivatives (Will 1993; Bell 1996; Bell & Damour 1996).

2.2. Orbital Decay Tests

The difference in self-gravitation contributions to the masses of pulsars and white dwarfs
makes such binary systems targets of scrutiny for anomalous orbital decay other than that
due to the quadrupolar gravitational radiation emission predicted by GR. Theories that
violate the SEP may predict dipolar gravitational radiation, for example. The decrease
of the period of a circular orbit due to dipolar emission can be written as (Will 1993;
Damour & Esposito-Farese 1996):

Ṗb Dipole = −4π2G∗
c3 Pb

m1m2

m1 + m2
(αc1 − αc2 )

2 , (2.1)
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where G∗ = G in GR, and αci
is the coupling strength of object “i” to a scalar gravita-

tional field (Damour & Esposito-Farese 1996). In a complementary fashion, these obser-
vations may also be used to set limits on variations of Newton’s constant, which would
affect the binding energies of the stars as well as the angular momentum of the system.
The expected orbital period derivative may be written as (Damour et al. 1988; Nordtvedt
1990): (

Ṗb

Pb

)
Ġ

= −
[
2 −

(
m1c1 + m2c2

m1 + m2

)
− 3

2

(
m1c2 + m2c1

m1 + m2

)]
Ġ

G
. (2.2)

The challenge is to quantify the various possible contributions to a measured or con-
strained orbital period derivative (e.g., Lazaridis et al. 2009). The quadrupolar prediction
is expected but may be too small to be measurable. There may be terms corresponding
to mass loss or other binary evolution effects in the system. The dipolar and Ġ con-
tributions can be estimated with the compactness or coupling strengths remaining as
parameters. Another expected contribution to any observed value is the “Shklovskii ef-
fect” (Shklovskii 1970) due to the pulsar’s transverse velocity: Ṗpm = Pμ2d/c, where μ
is the proper motion and d is the distance to the pulsar. This term can be difficult to
estimate well in the absence of a good distance measurement. A similar term comes from
the differential acceleration of the solar system and the pulsar in the gravitational field of
the Galaxy (Damour & Taylor 1991; Nice & Taylor 1995); its determination also requires
good knowledge of the pulsar’s spatial position.

Not surprisingly, then, the best tests come from pulsar–white-dwarf binaries with short-
period orbits and reliable distance estimates, often through parallax. The best dipolar
radiation limit in a recycled-pulsar system comes from PSR J1012+5307, which sets a
95% confidence limit of (αc1 − αc2 )

2 = (0.5 ± 6.0) × 10−5 (Lazaridis et al. 2009). For
Ġ/G, there are several similar limits: PSR J1713+0747 yields a 95% confidence limit of
Ġ/G = (1.5 ± 3.8) × 10−12 yr−1 (Splaver et al. 2005; Nice et al. 2005, D. Nice, private
communication), while Deller et al. (2008) report a 95% upper limit of (0.5 ± 2.6) ×
10−12 yr−1 using the Damour et al. (1988) expression for Ġ/G and the pulsar J0437−4715
with slightly different error estimation. Recently, that result has been combined with
timing of PSR J1012+5307 to yield a combined limit on Ġ/G and dipolar radiation that
does not need external input such as LLR limits (Lazaridis et al. 2009).

An especially interesting case is the young-pulsar–white-dwarf system PSR J1141−6545
(Kaspi et al. 2000), which is eccentric and should therefore be a strong emitter of gravita-
tional radiation and and an excellent constrainer of dipolar gravational radiation (Gérard
& Wiaux 2002; Esposito-Farese 2005). The orbital period derivative is well-measured
(Bhat et al. 2008) and agrees with the GR predictions to within 6%, setting a limit on
(αc1 − αc2 )

2 � α2
0 < 3.4 × 10−6 in the case of strongly non-linear coupling of the pulsar

to the scalar field and α2
0 < 2.1×10−5 in the case of weakly non-linear coupling (Damour

& Esposito-Farèse 1992a; Esposito-Farese 2005; Bhat et al. 2008).
While double-neutron-star (DNS) systems can also limit dipolar gravitational radiation

(e.g., Will 1977; Will & Zaglauer 1989), this is of less interest because of their symmetry.
However, their observed decrease in orbital periods can rule out those theories that
predict an increase (e.g., Rosen 1973; Ni 1973; Lightman & Lee 1973; Weisberg & Taylor
1981). A different pulsar-derived limit to G variation uses pulsar spin-down as a limit
on changes due to the gravitational binding of the neutron star (Counselman & Shapiro
1968; Goldman 1990), with MSPs being especially suitable for this task and yielding
limits on Ġ/G of a few 10−11 yr−1 (e.g. Arzoumanian 1995). In the past, a limit also could
be derived based on similarities in pulsar masses in old globular clusters and younger
galactic field systems (Thorsett 1996), but the recent profusion of pulsars in globular
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clusters, some with possibly quite large mass estimates (e.g. Ransom et al. 2005; Freire
et al. 2008), throws the validity of this test into question.

3. Highly Relativistic Systems
3.1. Self-consistency Tests

Measurement of orbital period derivatives is also a component of the best-known real-
ization of binary pulsar tests of GR: verification of self-consistency between relativistic
observables in DNS and similar systems. This is achieved by measuring the relativistic
corrections to the Keplerian orbit (i.e., the “post-Keplerian” or “PK” parameters, which
besides Ṗb and ω̇ include the time-dilation/gravitational-redshift term γ and the r and s
Shapiro delay parameters) in a manner that does not assume that any particular theory
of gravity is correct (Damour & Deruelle 1985). For any theory of gravity (e.g., GR, or
a tensor-scalar theory with its parameters fixed), these PK parameters will be functions
only of the two stellar masses, which are the two unknowns in any single-lined spectro-
scopic Keplerian orbit. Thus measurement of two PK parameters will yield the masses,
and measurement of three or more will result in an over-constrained system that may
be checked for internal consistency. In GR, the equations describing the PK parameters
in terms of the stellar masses are (Damour & Deruelle 1986; Taylor & Weisberg 1989;
Damour & Taylor 1992):

ω̇ = 3
(

Pb

2π

)−5/3

(T�M)2/3 (1 − e2)−1 , (3.1)

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3 m2 (m1 + 2m2) , (3.2)

Ṗb = − 192π

5

(
Pb

2π

)−5/3 (
1 +

73
24

e2 +
37
96

e4
)

(1 − e2)−7/2 T
5/3
� m1 m2 M−1/3 , (3.3)

r = T� m2 , (3.4)

s = x

(
Pb

2π

)−2/3

T
−1/3
� M 2/3 m−1

2 . (3.5)

where x is the projected semi-major axis of the orbit of m1 in light-seconds, s ≡ sin i, M =
m1 +m2 (all masses in units of solar mass), and T� ≡ GM�/c3 = 4.925490947μs. Other
theories of gravity will have somewhat different mass dependencies for these parameters.

The self-consistency test is often illustrated by a “mass-mass diagram” such as the one
for the double pulsar J0737−3039A/B in GR in Figure 1. When the curves intersect in a
common region, as they do in this case, the parameters are said to agree with the theory
being tested. This type of test was pioneered for the first DNS PSR B1913+16 (Hulse
& Taylor 1975; Taylor & Weisberg 1982, 1989) and has now also been accomplished for
PSRs B1534+12 (Stairs et al. 2002), the double pulsar (Kramer et al. 2006), J1756−2251
(to low precision; Ferdman 2008) and the white-dwarf binary J1141−6545 (Bhat et al.
2008). Of these, B1534+12, J0737−3039A/B and (again to low precision) J1756−2251
allow tests that do not include the orbital period decay and hence provide an important
“quasi-static” complement to the Hulse-Taylor case (Taylor et al. 1992). Combination of
results from all the pulsars has potential to set significant constraints on deviations from
GR (e.g., Taylor et al. 1992; Esposito-Farese 2005). Such systems can also be used to
limit preferred-frame effects in a novel way (Wex & Kramer 2007).
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Figure 1. A section of the mass-mass diagram for the double pulsar J0737−3039A/B within
GR, based on the measurement of 5 PK parameters in the recycled “A” pulsar and the mass
ratio R, which is derived from the relative sizes of the“A” and “B” orbits (Kramer et al. 2006).
Only the lower curve for γ falls within this plot. The grey-shaded regions are those forbidden
by the mass functions of the two pulsars, with the deepening shades of grey illustrating the
sizeable uncertainty in the mass function for B. The intersection of all the curves in one area
(shaded black) indicates that GR passes the self-consistency test in this system. Note that 1)
the similar plot in Stairs (2008) mistakenly used incorrect uncertainties for xB and for s and 2)
the s curves plotted here correspond directly to the asymmetric 68% range in s listed in Kramer
et al. (2006), slightly different from the plotting approximation used in that paper.

The double pulsar has another crucial advantage in the measurement of the mass ratio
R, which has the same dependence on the masses in all gravitational theories, at least
to order (v/c)2 (Damour & Taylor 1992). For this system, the combination of R and ω̇
allows an estimate of the masses and prediction of all the other PK parameters, with
the Shapiro delay s parameter agreeing with the prediction to within 0.05%, the most
stringent test to date of strong-field gravity (Kramer et al. 2006). In future, this system
may allow measurement of high-order corrections to ω̇, such as that due to spin-orbit
coupling of the recycled “A” pulsar; in turn this may provide a constraint on the NS
equation of state (e.g,. Lattimer & Schutz 2005).

3.2. Geodetic Precession
As discussed above, the supernova explosion that creates a DNS (or similar) system is
expected to leave the spin axes of the stars misaligned with the orbital angular mo-
mentum. This will result in geodetic precession of the NS spins about the total angular
momentum (dominated by the orbital component) (Damour & Ruffini 1974; Barker &
O’Connell 1975). Example precession periods are roughly 700 years for PSR B1534+12,
and 75 and 71 years for PSR J0737−3039A and B, respectively.

One means of identifying this effect is through secular changes in the observed pulse
profiles, as different parts of the emission region come into view. Such changes were soon
noticed in the Hulse-Taylor binary (Weisberg et al. 1989): a difference in the relative
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Figure 2. Changing eclipses in the double pulsar. The plots show the relative flux density of
the A pulsar as a function of orbital phase at two different epochs (solid lines) as well as fits
to the Lyutikov (2005) model (dashed lines). The secular changes in the short-term modulation
indicate the changing precession phase of B’s spin axis. Figure courtesy of René Breton.

heights of the two profile peaks over several years. In the 1990s, the peaks began to draw
together, suggesting a spin-orbit misalignment angle of about 22◦ and allowing a predic-
tion that the pulsar will disappear from view in about 2025 (Kramer 1998). Profile shape
changes as well as polarization changes are seen in PSR B1534+12 (Arzoumanian 1995;
Stairs et al. 2004); the profile changes are also reflected in orbital-timescale aberrational
variations, allowing a beam-model-independent, though low-precision, test of the preces-
sion rate, which agrees with the GR prediction (Stairs et al. 2004). Geodetic precession
has also been observed in the pulsar–white-dwarf system PSR J1141−6545 (Hotan et al.
2005, Manchester et al., in prep.) and there is good evidence for the effect in the recently
discovered PSR J1906+0746 (Lorimer et al. 2006, Kasian et al. 2008).

Once again, the double pulsar provides a unique and fascinating view on the problem.
Profile shape changes are seen in the young “B” pulsar (Burgay et al. 2005), which also
shows large orbitally-dependent profile variations (Lyne et al. 2004). The recycled “A”
pulsar shows no changes, however, which may have interesting implications for the “B”
supernova (Manchester et al. 2005; Ferdman 2008; Ferdman et al. 2008, and references
therein). But the combination of the two pulsars allows an even more powerful probe.
Because the orbit is nearly edge-on to the line of sight, the A pulsar is eclipsed by
the magnetosphere of B for about 30 seconds per orbit (Lyne et al. 2004; Kaspi et al.
2004; Lyutikov & Thompson 2005), with the flux of A showing strong modulation at
the spin period of B and its second harmonic (McLaughlin et al. 2004). The overall
behaviour is nicely described by a simple dipolar field structure for the B pulsar with a
well-defined orientation (Lyutikov 2005). Changes in the A flux modulation pattern over
time (see Figure 2) can be matched up to changes in the B spin orientation, resulting in
a 13% measurement of B’s spin-orbit precession rate that agrees beautifully with the GR
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prediction (Breton et al. 2008). Moreover, because the sizes of both orbits are known,
this test in fact applies to a large generic class of fully conservative, Lagrangian-based
gravitational theories (Damour & Taylor 1992; Breton et al. 2008).

The planned Square Kilometre Array will vastly improve all of these tests, and fur-
thermore has great potential for finding highly exotic systems such as pulsar–black-hole
binaries, which would open new realms of gravitational exploration (Kramer et al. 2004).
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—. 1986, Ann. Inst. H. Poincaré (Physique Théorique), 44, 263
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