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Abstract. The largest solar flares, of class X and above, are often associated with strong en-
ergetic particle acceleration. Based on the self-similar distribution of solar flares, self-organized
criticality models such as sandpiles can be used to successfully reproduce their statistics. How-
ever, predicting strong (and rare) solar flares turns out to be a significant challenge. We build
here on an original idea based on the combination of minimalistic flare models (sandpiles) and
modern data assimilation techniques (4DVar) to predict large solar flares. We discuss how to
represent a sandpile model over a reduced set of eigenfunctions to improve the efficiency of the
data assimilation technique. This improvement is model-independent and continues to pave the
way towards efficient near real-time solutions for predicting solar flares.
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1. Introduction
Solar eruptive phenomena have multiple impacts on the heliosphere and on the en-

vironment around our Earth (e.g. Schwenn 2006; Pulkkinen 2007). Along with Coronal
Mass Ejections (CMEs), the solar flares are one of the most studied space weather phe-
nomenon and can be accompanied by the acceleration of highly energetic particles. The
energy and duration of solar flares have been shown to be distributed as power-laws (for
a review, see Aschwanden et al. 2016), spanning more than eight orders of magnitude in
energy. This striking self-organization (Charbonneau 2013) over the whole corona have
led multiple authors to use basic, toy models such as sandpiles (e.g. Lu & Hamilton 1991)
to model the statistical distribution of flares.

In the context of space weather, and also to better constrain the physical mechanisms
behind flares, it is thus interesting to try to predict their occurence. Such a task was
recently shown to be very difficult (Barnes et al. 2016), as all of the modern techniques
developed to predict flares most often fail. Alternative methods and ideas are thus needed
today to explore other paths to provide robust predictions of solar flares. We build here
on an idea first developed by Bélanger et al. (2007); Strugarek & Charbonneau (2014)
based on the combination of simple sandpile models reproducing the solar statistical
distribution (Strugarek et al. 2014), and modern data assimilation techniques using the
solar X-ray flux observed with the GOES satellites.

The aim of this proceeding is to report on an attempt to facilitate the data assimilation
algorithm by reducing size of the state vector of the model. This is achieved by projecting
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Figure 1. Left. 2D Sandpile model. Right. Four representative eigenfunctions of the sandpile.

the model itself on a basis of eigenfunctions (§ 2), which we couple to the data assimilation
package (§ 3) that was originally developed in Strugarek & Charbonneau (2014). We
conclude and lay out the perspective of this preliminary work in § 4.

2. Deterministically-driven sandpile and eigenvalue decomposition
We base our analysis on the deterministically-driven sandpile model developed by

Strugarek et al. (2014). However, the procedure described here is independent of the
model and could be applied to other types of modelling (e.g. Hung et al. 2017).

The aim of data assimilation is to adjust a set of control parameters (a ’state vector’)
of the model to get an optimal fit to observed (or synthetic) data. One straightforward
strategy is to consider the initial condition of the model as this state vector. The ad-
vantage of this approach is that we ensure that we do not tune the model itself (i.e.
the model retains its statistical properties no matter what we do to the set of control
parameters), but we rather try to find a moment in the evolution of the model that fits
the observational data.

One big disadvantage of this approach lies in the size of the set of control parameters.
Indeed, the size of our set will be N 2 (N being the number of points in our 2D sandpile
model), which will become quickly numerically prohibitive for most minimization tech-
niques as N gets large. In order to mitigate this limitation, we explore here the possibility
to project the model on a series of eigenfunctions to reduce the size of our state vector,
e.g. by adjusting only the most relevant ones. We now describe in details our procedure.

We construct the eigenfunction basis of our model using its covariance matrix. Let us
define the state of our sandpile model at time t by S(t), taken as a 1D vector of size N 2 .
We define S0 = S(t0). A covariance matrix C of our model is a N 2 × N 2 matrix that is
defined as

C = (S(t) − S0)
ᵀ · (S(t) − S0) , (2.1)

where the overline denotes a time average. We diagonalize the covariance matrix to obtain
a set of N 2 eigenvectors of our model. This decomposition is illustrated in Figure 1 where
we show the sandpile model itself along four representative eigenfunctions (out of 2304
in this case).

Now that we have a systematic method to derive a set of eigenfunctions of our model,
we want to assess whether a subset of the eigenfunctions is enough to robustly control
the large events triggered by the model in a given time window. We first choose one
random state of our model S, which we project on the eigenfunctions basis to obtain a
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set of eigenvalues. We run the sandpile model for 104 iterations to define our reference
case. Then, we iteratively perturb each eigenvalue and compare the result of the sandpile
model when using the perturbed initial state. We use a cost function J to estimate how
much the perturbation affects the evolution of the sandpile, which we define as

J = 1 −
(

α
∑

match

Eobs

Etot
− β

∑
miss

Eobs

Etot
− γ

∑
FalseAlarm

Ei

Etot

)
, (2.2)

where Eobs is the energy of the events in the reference model, Ei the energy of events
in the model being compared, Etot =

∑
Eobs is the total energy of all the events in

the reference model, and α, β and γ are adjustable coefficient that we set here to 1, 0.5
and 0.25. This cost function gives more weight to the large events that we most want to
predict reliably. It also gives more weight to matching events, then missed events, and
finally less weight to false alarms. If the model fits perfectly the reference model, J = 0.
Conversely, if none of the events fit the reference model, J ∼ 1.75 (no match, all events
are considered as false alarms).

We repeat this procedure for 10 different random number sequences used in the sandpile
model to ensure that the subset of eigenfunctions we are trying to isolate is robust and
order the eigenfunctions in ascending order with their score J . We now use this ordered
basis of our model to perform data assimilation over synthetic data.

3. Data assimilation using the eigenvalue decomposition
The data assimilation procedure was briefly described in Strugarek & Charbonneau

(2014) and can be summarized as follows.
We first construct synthetic data (upper right panel in Figure 2) by running our model

over 4000 iterations and filtering events higher than 104 E0 (E0 being the energy nor-
malization of our adimensional model, see Strugarek & Charbonneau 2014). This will be
our target observation that we will try to match by finding a new initial state for our
system. Then, we generate random states of our model that will be used as initial states
for our data assimilation algorithm. We project these initial states on our ordered eigen-
function basis. After these initialization steps, we minimize the cost function J (Eq. 2.2)
with a simulated annealing algorithm. The set of control parameters for this algorithm
is defined by the amplitude of the first Ne eigenvalues, which we allow to evolve. The
remaining N −Ne eigenvalues are thus kept fixed during the assimilation procedure. We
tested our algorithm for values of Ne ranging from 10 to Nmax (Nmax = 2206 < Ne due
to the boundary conditions of the sandpile forcing it to zero on its edges). The resulting
final state and execution time of the data assimilation procedure are shown in Figure 2.

On the top left panel we display the final cost function after the data assimilation
procedure. The blue bars denote assimilation with varying Ne , while the orange bar
corresponds to a standard assimilation run for which no eigenfunction decomposition
was used (thus the set of control parameters corresponds to the N 2 points in the initial
sandpile, see Strugarek & Charbonneau 2014). We immediately remark that if we use
too few eigenfunctions in the data assimilation procedure, the system is too constrained
and we are not able to reproduce satisfactorily the reference model. When Ne � 50, we
empirically observe that we are able to match equally or better the reference model (J
is smaller) than the standard assimilation case, and with a much faster execution time
(lower left panel). The reference model used in the data assimilation procedure is shown
in the right panels in black and grey. Three realisations of the model resulting from the
assimilated initial states are shown in the three other panels.

https://doi.org/10.1017/S1743921317007244 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921317007244


Sandpile Models and Solar Flares 253

Figure 2. Left. Final cost function (top) and execution time (bottom) of the assimilation proce-
dure, as a function of the number of eigenfunctions Ne involved in the assimilation. The orange
bar corresponds to an asssimilation with no eigenvector projection, using all the N 2 = 2304
points in the sandpile. Right. Results from the sandpile models. The reference case being assim-
ilated is at the top and reported in gray in all panels. The three lower panels are representative
cases.

4. Conclusions
We have shown in this proceeding how to automatically decompose a sandpile model

on a set of eigenfunctions. We found that the shape of the eigenfunctions described both
the large-scale structure of the sandpile, as well as nested structures associated with
locations in the sandpile likely to give rise to avalanches (see Figure 1).

In the context of data assimilation for predicting solar flares (Strugarek & Charbonneau
2014), this decomposition allows to reduce significantly the number of control parameters
in the data assimilation procedure. Only a subset of eigenvalues can be used to control the
subsequent evolution of a sandpile, keeping the other eigenvalues constant. This opens
promising perspectives in designing a predictive tool based on sandpile models, even
using expensive numerical minimization techniques such as simulated annealing.

We plan to make use of the eigenfunction decomposition to test our data assimilation
procedure on real data in a future work. The speed up allowed by this decomposition will
allow us to explore the parameter space of the minimization procedure on a large sample
of flaring epochs for the Sun, and ultimately characterize the predictive capabilities of
sandpiles when applied to a real system such as the flaring Sun.
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