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A B S T R A C T . In this work , we present another proof o f the theoretical existence o f super 

resolut ion, under certain condit ions. The proof relies on an ideal model in which a prototypical 

discrete image is formed by summation o f many discrete pulses placed anywhere on a regular gr id. 

I f the model is then band- l imi ted in spatial frequency, the or ig inal , grid-resolution pulse image may 

be reconstructed f rom the band-l imited informat ion. The reconstruction uses "phase-gradient 

unrave l l ing" — i.e., f rom a very l imi ted number o f terms o f the discrete Fourier transform o f an 

image, wh ich defines a very l imi ted spatial-frequency band, we extract or unravel the indiv idual 

phase-gradients wh ich , together, define the or ig inal image. 

1 . Introduction 

W e offer another proof o f the theoretical existence of super resolution, under certain 

conditions, which also provides a simple conceptual model for such a process, and a 

possible means for obtaining super resolution in practice — to this end, some numerical 

examples of the method have been tested. The proof requires an ideal model in which a 

prototypical discrete image is formed by summation of many discrete pulses existing 

anywhere on a regular grid, similar to Frieden's model [1] , but not restricted to binary 

data. Such a model has the spatial resolution of the grid, with more or less significantly 

quantized pixel values if the prototype pulses have unit amplitude, but may be coincident. 

The question we consider is, if the model is subsequently band-limited in spatial 

frequency, can the original, grid-resolution pulse image be reconstructed from the band-

limited information? 

Consider a single, unit pulse, in a "sea" o f zeros. Such an image has a very simple 

Fourier transform, having constant amplitude and phase gradient proportional to the 

distance o f the pulse from the origin. A more general pulse image may be formed from 

the sum of such single-pulse images, and this has a Fourier transform in which the phase 

gradients o f the single-pulse Fourier transforms are "intertwined" by the corresponding 

complex summation in the Fourier domain. From a limited number o f terms o f the 

discrete Fourier transform (DFT) of an image, which defines a limited spatial frequency 

bandwidth, we extract or unravel the individual phase-gradients which define each 

single-pulse image. Once unravelled, we can reconstruct an original, high grid-resolution 

pulse image by summation of single pulse images. As in other ill-conditioned problems, 

additional information is required to provide a solution, which, in this case, is the number 

of unit pulses which form the prototypical image. 
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2. Theory Based on Simultaneous Equations 

The theoretical development is based on two, somewhat different approaches, o f which 

there is only space to discuss one, here. As an example, consider a prototypical image, in 

one dimension, 

η 

f (χ) = Σ ρ ( χ - χ : ) , x = 0 , l , 2 , . . , N - l , (1) 
i=l 

1 x = 0, 

0 otherwise, 
where p ( x ) = 

and where {x^: i = 1, 2 , . . , n} is a set o f η arbitrary, integer pulse positions, each in 

the range xj = 0 , 1 , 2 , . . , N - l . 

The N-point DFT of f (x), can be written 

η 

F ( u ) = E W : U , u = 0 , l , 2 , . . , N - l , (2) 
i=l 

where W- = exp (- j 2 π χχ I Ν ) , and j = Vi . 

Each term W ^ u in the summation o f Eq. (2) is a term in the DFT of a unit pulse, at 

offset X j , which has constant amplitude and phase gradient in u o f 2 π x̂  / N, which is 

proportional to xj. Eq. (2) may be viewed as a set o f non-linear, simultaneous equations, 

to be solved for unknown W^, given F (u). E.g., when η = 2, and using only two terms 

of the DFT, we have 

F ( l ) = ψ γ + W 2 

F (2) = W t

2 + W 2

2 . (3) 

Solving for W j and W 2 , given F ( l ) and F (2), we obtain 

W l , 2 = F ( D / 2 ± V F ( 2 ) / 2 - F ( l ) 2 / 4 (4) 

from which the prototypical pulse positions, x j and x 2 , are easily found. Eqs. (3) and 

(4) show that, given only the first two terms (after the zero frequency term) o f the DFT 

of a one-dimensional image, we can reconstruct an original, high-resolution prototype 

image, having Ν pixels , if we have the additional information that all pixels are zero, 

except for two (arbitrarily positioned), unit-amplitude pixels. 

W e can extend this argument to cover η = 3, or more, prototypical pulses, and two or 

more dimensions, by increasing the number o f equations appropriately, through the use 

of additional DFT coefficients, corresponding to a wider bandwidth. Unfortunately, the 

non-linearity o f the equations rules out an analytic solution in general, so that optimizing 

search methods have to be used instead. 

3. Results 

To test our ideas, we simulated one-dimensional images, formed as in Eq. (1), with 

Ν = 128. For reasons of uniqueness in position, we only allow the pulses to occupy the 

first N/2 grid positions, but can choose exactly where to put each pulse. W e carry out a 

DFT of the image, and then select a small band of DFT coefficients as our low-

resolution "data", ignoring all the other coefficients, to begin a search. A test image, 
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which has the same number o f unit pulses as the original, is constructed, with unit pulses 

placed at random grid points, initially. From the DFT of the test image, and within the 

chosen narrow band o f coefficients, only, the magnitudes are compared with the 

magnitudes o f the prototype image DFT coefficients, by forming a mean-square error, 

e 2 , which is used as a cost function, to be minimized in a Monte Carlo fashion. 

In Fig. 1 the result o f a search for a set o f unit pulses, positioned as shown on the 

bottom line (the final result o f the search) is shown. In the top line, the random, initial 

position guess is shown, and successive lines show each guess whenever e 2 is reduced 

from a previous minimum. On the right of each line, the iteration count and mean-square 

error are printed, requiring, in this case, nearly 40,000 guesses to find the solution. Thus, 

we see the pulses gradually "marching in" towards their final resting positions. At about 

iteration 900, in this case, a different search strategy is adopted, in which the current, 

guessed pulse positions were considered likely to be fairly close to the final positions, 

and a local search around the current positions was applied, having a Gaussian random 

distribution over a small range o f positions. 

1 0 [ ' Thu Nov 15 14:21:35 1990 Filé: fûl83581217182325.dot ' ] 

- 2 0 0 20 40 60 80 
Pulse Position 

Fig. 1 Example Monte Carlo search 

4. Conclusion 

W e have presented some preliminary results showing super resolution at work in a 

special case — a prototype image which can be modelled as a sum of unit pulses in a sea 

of zeros. Our work represents a different attempt to look at super resolution. The effect 

o f noise has yet to be investigated, while the a priori assumption that we "know" the 

number of unit pulses in the prototype may or may not be useful in practice. A similar 

constraint in other methods is that o f prior knowledge o f support size, or extent of the 

non-zero part of a prototypical image [2]. 
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