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ABSTRACT 

Avalanche run-out distances have a prominent statistical 
character which is not usually featured in calculations 
derived from avalanche dynamics models. In order to 
predict run-out distances in a rational manner, the statistical 
element should be included. Here, we present and analyze 
data on extreme run-out from four mountain ranges. When 
the data are fitted to extreme-value distributions, we are 
able to show how (and why) extreme-value parameters vary 
with terrain properties of the different ranges. 

INTRODUCTION 

When decisions must be made about definition of safe 
areas and placement of structures in snow-avalanche terrain, 
estimation of avalanche-stopping positions is the primary 
consideration. Speed measurements show that large 
avalanches slow down very rapidly , and, therefore, use of 
defence structures will only be possible near the end of the 
avalanche path. Given all the uncertainties about avalanche 
velocities, decelerations, and impact pressures, the best 
policy is to avoid threatened areas. 

In spite of the need for high precision in defining safe 
areas, data show that run-out distances have a statistical 
character. When reliable long-term data are unavailable or 
discontinuous, we feel that at present statistical prediction 
(based upon terrain features) represents the only rational 
quantitative method for determining run-out distances. The 
alternative (traditional) approach is based upon attempts to 
specify friction coefficients in an avalanche-dynamics model 
to calculate run-out. Uncertainties about flowing snow and 
its interaction with the terrain make this method highly 
speculative. 

The pioneering efforts in statistical run-out prediction 
(Bovis and Mears, 1976; Lied and Bakkehoi, 1980; Bakkehoi 
and others, 1983) were based on regression analyses of 
topographic parameters. However, McClung and Lied (1987) 
analyzed data from western Norway and concluded that the 
data obey a Gumbel (extreme value) distribution. We believe 
this approach is superior and we have employed it here. 

In this paper, we present and analyze extreme run-out 
distance data from three more mountain ranges: Purcell and 
Rocky Mountains of Canada, Sierra Nevada of California, 
and the Colorado Rocky Mountains. These new data are 
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compared with data from western Norway. When all the 
data are fitted to extreme-value distributions , we are able 
to show how (and why) the extreme-value parameters vary 
with the terrain properties of a given range. The variations 
in predictions also yield the important result that reliable 
predictions in a given mountain range must be based on a 
data set for that range. 

DESCRIPTION OF DATA 

The four data sets analyzed in this paper consist of 
"100 year" avalanches. The extreme posi tion reached by 
avalanche debris was deduced by vegetation damage or the 
historical record. Although we have attempted to select a 
100 year return period, the true return period probably 
ranges from 50 to 300 years in the data, thus introducing 
an unavoidable random error into the analysis. This error 
should diminish in importance as the sample size (number 
of avalanche paths) increases for a given mountain range. 

The data for each mountain range consist of three 
angles (ex,l3, 6) and three lengths (H, tu, X 13) (Fig. I). The 
angle ex is defined by sighting from the extreme point 
reached by avalanches in the past (extreme run-out position) 
to the starting point; 13 is obtained by sighting from the 
position where the slope angle first declines to 100 from 
the starting point; 0 is the angle defined by sighting 
between the positions marked for ex and 13. 

We have chosen the position defined by 13 (the 13 
point) as a reference point from which to calculate run-out. 
The run-out distance (nx) is the horizontal reach from the 
13 point to the extreme run-out position. The length (X 13) is 
the horizontal distance between the starting point and the 13 
point, and H is the total vertical displacement from the 
starting point to the extreme run-out pOSItIOn. 

We have also defined a dimensionless run-out ratio 
(Fig. I) 

tan 13 - tan ex 

tan ex - tan6 
(I) 

A total of 397 avalanche paths from the four ranges 
were included in the analysis: (I) western Norway (J27); 
(2) Rocky Mountains and Purcell Mountains, Canada (125); 
(3) Rocky Mountains, Colorado (98); (4) Sierra Nevada, 
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Fig. I. Geometry and definition of angles and distances. 

California (47). Two of these ranges (western Norway and 
Sierra Nevada) are in maritime climate areas, and the other 
two are considered continental. 

The data-collection methods employed were slightly 
different for the different ranges, and for completeness we 
have included the procedures for each below: 

(I) Western Norway (McClung and Lied, 1987). The angles 
(a, S) were determined by field measurements or high-quality 
maps, and a was measured in the field using a clinometer. 
Extreme run-out positions were determined from long-term 
historical records. Values for H were calculated by fitting a 
curve, y = ax2 + bx + c, to the terrain profile. The value 
of y' at y = 0 was substracted from the height of the start 
position to give H . From Equation (I), approximate values 
of l!.x were calculated using values of H and simple 
trigonometry. 

(2) Rocky and Purcell Mountains, Canada. The angles ( a, 
a,6) were measured in the field using a clinometer. Values 
for tu were measured in the field using a series of 
distance and angle measurements. The lengths H were 
estimated from maps by assuming a start position and an 
extreme run-out position (observed in the field) . Vegetative 
damage (mature timber, approximately 100 years old or 
older) was used to determine the extreme run-out position. 
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(3) Rocky Mountains, Colorado, and Sierra Nevada, 
California. The extreme run-out positions were observed in 
the field as in Canada. The angles (a,a,s) were measured in 
the field on the shorter paths and determined from maps on 
the longer ones. The values for H and X a were scaled from 
maps, and l!.x was determined from maps or measured on 
the ground. 

We believe that the values for the angles are within 
±0.5° both for estimates from maps and for those measured 
in the field. Values of l!.x are within 30 m when determined 
from maps, and within 20 m from field measurements. 
Assuming the start positions were correctly identified, H is 
within about 30 m when determined from maps. In the 
present analysis, we have taken only paths for which H > 
340 m in an attempt to minImize the effects of 
avalanche-deposit length scale on the run-out ratio . We 
regard the center of mass - stop position as more fundamental 
than the position of extreme reach but we have no 
information about the former for our data sets. The extreme 
run-out posItIOn is the quantity of most interest in 
engineering aspects of zoning. 

CHARACTERISTICS OF DATA: DESCRIPTIVE STATIS
TICS 

The mean , standard deviation , and range for all 
variables used in the analyses are listed in Table I. 

Differences in the terrain of the mountain ranges are 
shown by the values of ex (the bar denotes a mean value), 
IT, and 6. The steepest set of profiles is that from western 
Norway (ex = 29.4 0, IT = 32.6

0
, 6 = 6.4 0), while the 

gentlest are from Sierra Nevada a = 20.7 0, IT = 26.1 0, 

6 = 4.7°). The longest run-out usi ng either l!.x or l!.x/ Xa is 
from the gentle terrain of Sierra Nevada and Colorado 
Rockies. From Table I, the steeper paths generally produce 
lower t:.x and t:.x/ X a, but this is not always the case. In 
general, however, the difference between IT and ex ranks the 
same as either l!.x and t:.x / X a. The difference between IT 
and a is from Table I: 2.0

0 
(Canada); 3.2

0 
(Norway); 4.8

0 

(Colorado); 5.4 0 (Sierra Nevada), and it can be seen that 
both the mean values of l!.x and l!.x / X a rank in that same 
order. 

By centering and scaling the data, we get the following 

TABLE I. DESCRIPTIVE STATISTICS FOR RUN-OUT PARAMETERS FOR FOUR MOUNTAIN 
RANGES 

Mountain range 

Canadian Rockies 
and Purcells 

Western Norway 

Colorado Rockies 

Sierra Nevada 

Variable 

a 
a 
s 
H(m) 

l!.x (m) 
l!.x/ Xa 

a 
a 
s 
H(m) 

l!.x (m) 
l!.x/ Xa 

a 
a 
6 
H(m) 

l!.x(m) 
l!.x/Xa 

a 
a 
6 
H(m) 

l!.x (m) 
l!.x/ Xa 

Mean value Standard 
deviation 

27.8 3.5 
29.8 3.1 

5.5 5.3 
869.0 268 .0 
168.0 131 .0 

0.114 0.100 

29.4 5.2 
32.6 5.4 

6.4 3.5 
827.0 255.0 
224.0 170.0 

0.176 0.1/1 

22.6 3.1 
27.4 3.6 

5.3 3.3 
641 .0 165 .0 
366.0 195 .0 

0.345 0.235 

20.7 3.9 
26.1 4.0 

4.7 2.8 
590.0 225.0 
450.0 253.0 

0.425 0.223 

Range of Number of 
values avalanche paths 

20.5 40.0 127 
23.0 42.0 126 

- 21.5 20.6 125 
350.0 1960.0 124 

-190.0 524.0 124 
- 0.185 0.404 125 

18.0 42 .0 127 
21.0 45.0 127 

0.0 16.0 12 7 
342.0 1539.0 131 

-119.0 823.0 131 
-0.121 0.523 127 

15 .5 30.7 98 
18 .8 37 .7 98 

-2.9 10.0 98 
366.0 1134.0 98 
107 .0 1200.0 98 

0.07 1.57 98 

14.0 35.9 47 
18.0 40. 7 47 

0.0 9.0 47 
350.0 1145 .0 47 
120.0 1433 .0 47 

0. 15 1.12 47 

181 https://doi.org/10.3189/S0260305500007850 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500007850


McClung alld others: Extreme avalanche rUlI-out 

regression equations for the different ranges C" denotes 
predicted values): 

ex 0.93/3 Canada (r2 = 0.75, N = 126), 

ex 0.90/3 western Norway (r2 = 0.87, N 127), 

ex 0.82/3 Colorado (r2 = 0.60, N = 98), 
(2) 

ex 0.72/3 Sierra Nevada (r2 = 0.75, N = 47) 

where r is the Pearson (ordinary) correlation coefficient, and 
N is the number of avalanche paths. When a more general 
regression equation, ~ = Co/3 + Cl' is used , the constant Cl 
is not significant except for the data set from Colorado. 
Therefore, for the other three data sets, Equations (2) 
represent the best linear regressio n equations. For example, 
with the Canadian data, the t statistic for /3 is 19.1, while 
for Cl it is -0.52, and calculations with the more general 
equation show that Cl is not signif!.:ant. 

From Equation (1). 6 (or 6) will also affect the 
run-out ratio , but it has a smaller effect than the 
difference between /3 and ex illustrated by Equations (2). 
From Equation (I) and the values in Table I, it can be 
stated that a large difference between /3 and ex, as well as a 
low value of ex, produces the longest run-out by our 
definition. 

The values in Table I also show that the mean value 
of run-out (either tu or b.x/ X /3), decreases as the mean 
value of H increases for some of the data. Since b.x and 
tu/ X J3 are not Gaussian variables, rank-correlation 
coeff,cients are preferable for determining their relation to 
other variables. For the individual mountain ranges , the 
rank correlation coefficients, rs' for b.x/ X /3 correlated with 
Hare: 0.051 (Canada); -{l.05 (Norway); -{l.41 (Colorado); 
-{l.30 (Sierra Nevada). These results show that, within the 
data sets, b.x/ X /3 does not have a significant correlation 
with H for the data from Canada and Norway, but there is 
a small negative correlation with H for the data from the 
U.S.A. We do not have a complete explanation of these 
results but we note that the terrain is steeper and the 
vertical relief is higher on average for the data sets from 
Canada and Norway. 

All of the data sets have a non-zero but relatively 
weak rank correlation for "'x/ X /3 with ex: -0.58 (Canada); 
-0.39 (Norway); -0.33 (Colorado); -0.51 (Sierra Nevada), but 
nearly insignificant correlation with /3: -0 .06 (Canada); -0.07 
(Norway); 0.23 (Colorado); 0.04 (Sierra Nevada). If /3 is 
taken as an index of path steepness, we conclude that the 
run-out ratio is almost statistically independent of path 
steepness. 

QUANTITATIVE RUN -OUT PREDICTION 

Previously (McClung and Lied, 1987), it was shown 
that the dimensionless run-out ratio may be fitted to a 
Gumbel (extreme value) distribution for the data from 
western Norway. We shall now derive similar predictions for 
the other data sets. The chosen procedure is to derive 
approximate estimates of the two parameters for the extreme 
value distribution: the scale parameter b and the location 
parameter u by fitting a linear regressio n equation through 
plotting pOSItIOns defined as a function of the non
excedance probability p for the extreme-value distribution. 
Let x = b.x/ X S' then if I(x) is the probability density 
function, the non-excedance probability is defined as p = 

p r( x ~ xp) where 

xp 

J I(z)dz [
X - U] 

exp - exp - T . (3) 

Given a value x
P

' lOO x p% va lues of x in the distri
bution have values less than xp' With the size of our data 
sets (approximately 100 points), values of p of interest 
range from about 0.5 to 0.99, corresponding to the median 
and I : 100 run-out ratio, respectivel y. If run-out distances 
are found to be much greater than the prediction for 
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p = 0.99, we conclude that there is a strong probability 
that such data belong to a different population of values. 
There are two related reasons why values of p less than 0.5 
are not of major interest: (1) in land-use planning, interest 
is mainly on the extreme values (long-running avalanches), 
and (2) for data from Norway and Canada the fit to the 
extreme-value distribution worsens for p < 0.5, and 
therefore the accuracy of prediction decreases for the 
long-running avalanches if values less than 0.5 are included. 
This is not true for the data from Colorado and Sierra 
Nevada, but for a consistent comparison of data from all 
four ranges we have censored all the data in a similar 
way. 

We have 
terms of N 

defined the non-excedance probability 
values of the run-out ratio, ranked 

decreasing value xN > xN _l > Xl: 

in 
in 

- 0.4 

N 
(4) 

In Equation (4), i is the rank of the observation Xi' Thus, 
for the largest run-out ratio xN ' PN = (N - O.4)/N and for 
the smallest Pi = 0.6 / N. Equation (4) can be shown to be 
a good choice for censored extreme-value distributions 
(paper in preparation by D.M. McClung and A.I. Mears). 

We have censored each data set to include values of 
probability between r and I, where r = 0.57721 ... is 
Euler's constant. Thus, about 42% of the highest values for 
run-out were used in each data set. For the extreme-value 
distribution, the equation of the model for the regression 
line through the plotting positions defined by Equation (4) 
is: 

[::J 
u - bln(-Inp) + E (5) 

p 

where E is an error term. 
The least-squares procedure above gives values of b 

and u for each mountain range (the values are listed in 
Table 1I). Figure 2 shows the run-out data and regression 
lines. From Figure 2, the general conclusions from our 
previous analysis of mean values of run-out are retained . 
Given a value of p, run -out distances generally decrease in 
the following order: Sierra Nevada, Colorado Rockies, 
western Norway, Canadian Rockies, and Purcells. The wide 
variation in extreme-value parameters and run-out clearly 
shows that it would be unwise to use an equation such as 
Equation (5) developed from avalanche paths in one 
mountain range to predict run-out distances in another. 

EXTREME- VALUE PARAMETERS AND GEOMETRICAL 
INTERPRETATION OF RUN-OUT 

For either a full extreme-value distribution or a limited 
distribution, the scale and location parameters depend only 
on the mean x and standard deviation (J x of the extreme 
values. For a distribution limited at p = r, approximate 
estimates of the scale and location parameters are: 

b (6) 

and u = x - 1.61 a x . (7) 

An approximate value for x = (b.x/ X S) may be calculated 
using Equation (I) with the mean values of ex, /3, and S. 
For example, with data from Canada, the mean values are: 
a = 25 .8°, g = 29.4°, and 6 = 4.3 °, for the extreme values 
in Figure 2 (N = 53). Calculation using Equation (I) gives 
x = 0.20, which is the same as the mean of the extreme 
values. Similar conclusions follow from the other data sets. 

From Equations (6) and (7), the scale parameter 
depends only on the standard deviation of the extreme 
values, and therefore it characterizes terrain variations 
within a mountain range. The location parameter depends on 
both the mean value of the run-out ratio (related to terrain 
steepness) and the standard deviation (terrain variations) in 
a mountain range. 

Figure 3 illustrates a geometrical interpretation of 
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TABLE H. EXTREME VALUE SCALE AND LOCATION PARAMETERS (b,u) FOR FOUR 
MOUNTAIN RANGES. ALSO GIVEN ARE CORRELATION COEFFICIENT, r, AND STANDARD 

ERRORS, S.E., FOR THE REGRESSION LINES THROUGH THE PLOTTING POSITIONS 

1.6 

1.2 

x 0.8 
~ 

Mountain range 

Canada 
(Rockies, Purcells) 

Western Norway 

Colorado Rockies 

Sierra Nevada 

U b 

0.092 0.065 

0.155 0.072 

0.118 0.236 

0.266 0. 199 

0 

Of 

o . o ~--------~--------~----------~----~ 
0.5 2.0 3.5 

~n-{ Inp) 

5.0 

Fig. 2. Plotting positIOns and regression lines for extreme
value predictions for four mountain ranges. (*) Sierra 
Nevada, (D) Colorado Rockies, (ll) western Norway, (0) 
Canadian Rockies and Purcells. 
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Fig. 3. Geometrical interpretation of run-out ratio using ex, 
13", and 6. (-) western Norway, (----) Canadian Rockies 
and Purcells . 

run-out for data from Norway and Canada. We have used 
the same vertical drop distances (scaled to unity) with 
values of ex, 13", and 6 from Table I. The value of llx is 
about 1/ 3 higher for the Norwegian profile in Figure 3, 
and the values of llx (Table I) differ by this same amount 
(33%). For this particular example, the mean values of ex, 
IT, and 6 are all higher for the Norwegian data than those 
from Canada. Thus, steeper terrain angles produce higher 
run-out for the Norwegian data set. This result is, however , 
the exception rather than the rule . Similar constructions with 
data from the U.S.A. have shown that the highest mean 

0.97 

0.98 

0.97 

0.95 

run-out (using 
differences on 
combined with 
combination is 
Nevada). 

S.E. Number of 
avalanche paths 

0.012 53 

0.010 54 

0.046 42 

0.052 20 

our definitions) is produced by the greatest 
average between S and ex (Equation (2» 
the lowest value of ex. For our data, this 
fulfilled by the gentlest terrain (Sierra 

SNOW CLIMATE 

Since our definition of extreme run-out is based on a 
time-scale of approximately 100 years, we expect that 
climate regime should not have a strong influence. 
Experience shows that large dry avalanches have the longest 
run-out in the majority of cases. Normall y, a greater 
percentage of dry avalanches is expected in a continenta l 
climate, with fewer avalanches overall due to smaller 
amounts of precipitation . We believe that , for time-scales of 
100 years, large dry avalanches will occur in either climatic 
regime to dominate the run-out statistics . By our 
definitions, the two ranges with the longest run-out 
distances encompass a maritime climate (Sierra Nevada) and 
a continental one (Colorado). Similarly, in the case of th e 
shortest run-out, one of th e areas is maritime (Norway) and 
one is continental (Canada). As discussed previously, the 
tendency for long run-out can be explained by analysis of 
avalanche-path profiles , but we cannot explain the observed 
differences through snow-climate classification . 

DISCUSSION 

Based on our definiti ons and analys is, the following 
conclusions are evident: 

There is a significant difference in predicted run-out as 
terra in in mountain ranges varies. It would not be advisable 
to predict run-out in one range based on data from another 
us ing the methods we have discussed. 

If our definition of run-out is accepted, there is no 
discernible effect based on snow-climate classificatioll. This 
is expected because of the time-scale our data represent 
("'100 yea rs ). 

The highest run-out ratio occurs for mountains with the 
greatest difference between S and ex, and low values for ex. 

We prefer extreme-value prediction of run-out ratio as a 
measure of run-out rather than the traditional approach 
based on a regression analys is of ex (respo nse variable) as a 
function of S and other terrain variables. In regression 
analyses with the four data se ts, we found that addition of 
6 improves predictions of ex in a multiple regress ion analysis 
with S (see McClung and Lied, 1987). However, if S is 
chosen as a reference point, 6 does not qualify as a 
predictor variable (in general, it would be unknown) . Also, 
no other variables (except 5) have been found in 
combination with S to improve predictions of ex. The 
run-out ratio t.x/ X S includes the effects of the terrain in 
the run-out zone (6) and therefore we feel it is superior. 

There is a "scale" effect in so me of the data if run-out is 
defined using the run-out ratio. We have found this in the 
data from Colorado and Sierra Nevada, but not in data 
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from Canada and Norway. Correlation analysis shows that 
higher vertical drop H te nds to produce shorte r run -out in 
Colorado and the Sierra Nevada. With o ur definition , the 
mean value of run-out also dec reases as the mean value of 
H increases for individual data se ts (Table I) . It is possib le 
that the mean value o f vertical drop for paths in the two 
data se ts from the U.S.A. is small enough that the scale 
effect is present. Our attempt to circumvent this proble m 
by choosi ng paths with H > 340 m may not have been 
entirely successful. This questio n will not be resolved until 
da ta on actual avalanche depos its are a nalyzed to stud y the 
differe nce betwee n statisti cs for the center of mass-s top 
pos ition and the pos itio n o f the ex tre me tip of the debris. 

The run- out ratio is stati sti ca ll y indepe ndent of path 
steep ness (/3 or tan /3) for data from Canada, Norway, and 
the Sierra Nevada, but there is a small pos itive correlation 
(rs = 0.23) for the data from Colorado. The correlations of 
!J.x wi th respect to /3 (o r ta n /3) are somewhat larger a nd 
negative . These result s partially justify our preference for 
the dimensionless run- out ratio, rat her tha n !J.x, as a 
measure of run-out. Since we are attempting to relate 
run- o ut to the non- excedance probability alone, it is 
preferable tha t run-out sho uld have minimum correlation 
with other variables which might qualify as predictors. 

We believe that acc urate prediction of run-out distances 
is the most impor tant element in the quantitat ive 
engineering aspects of land - use planning in ava lanche 
terrain. We also feel that , when accurate long-te rm 
continuous records are not available, prediction based on 
terrain variables is the only rational method for 
mathematical prediction so far proposed . Philosophically, o ur 
preference would be to specif y friction parameters as input 
to a ph ys icall y based d ynamics model and calculate the 
speed profile a long the incline and the stop position as one 
problem. This is the traditional approach to the proble m 
(Yoellm y, 1955; Pe rla and others, 1980). With the small 
amount of information about flowing snow properties 
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available at present , we fee l this ultimate goal is somewhat 
in the future. 

In this paper , we have compared data from the four 
mounta in ranges by treating and censoring the data in a 
co nsistent manner. None of the equations presented is 
suitab le for actual zon ing applications because they are not 
the optimal eq uatio ns for the data se ts presented. 
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