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In industrialized nations, potable water is often provided through sophisticated water distri-

bution systems. If pathogenic bacteria are introduced into the water distribution network,

the presence of a biofilm can lead to biofilm-assisted retention of the pathogens, affecting the

potability of the water. To study the dynamics of planktonic and biofilm-bound pathogens

within the large network of pipes in a water distribution system, we develop a network model

governing the concentration of introduced pathogens within the bulk fluid and the biofilms

lining the pipes. Under time-constant flow regimes within the network, we prove that the

long-time behaviour of the entire network is dependent on the Lyapunov exponents for each

connection in the network when viewed in isolation and the network connectivity. An efficient

algorithm is developed for predicting the long-time behaviour of the pathogen population

within large networks using the network’s topological ordering. The algorithm’s predictions

are validated using numerical simulations of the full non-linear system on a range of water

distribution network sizes.

Key words: 05C20 directed graphs, 34D20 stability, 92B05 general biology and biomathem-

atics, 92D99 biology and other natural sciences.

1 Introduction

The availability of potable (drinking) water is essential for human health and wellness. In

industrialized nations, many but not all consumers receive potable water through drinking

water distribution systems. These systems consist of a network of pipes along with storage

facilities (reservoirs, water towers, etc.) and pressurized components (pumping stations) to

deliver the water to consumers.

Water quality is the measure of the condition of water within the network relative

to some standard for the safety of the water for human contact and consumption. Con-

taminants such as microorganisms, salts, metals, pesticides, herbicides, pharmaceuticals,

and radioactive materials can negatively affect the water quality. In particular, biological

contamination from accidental exposure to fecal matter due to cracks, back-flow incidents,
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unsecured reservoirs, or leaching pipes can create a significant health risk (LeChevallier

et al., 2003; Momba et al., 2000; Murray et al., 2006; Uber et al., 2004). The presence of

coliform bacteria such as Escherichia coli are used as a marker for fecal contamination.

Waterborne diseases such as botulism (Clostridium botulinum), cholera (Vibrio cholerae),

dysentery (Shigella dysenteriae), and typhoid fever (Salmonella typhi) are thought to be

responsible for 1.8 million deaths worldwide every year with an estimated 88% due to

unsafe water supplies (World Health Organization, 2002).

There has been extensive research on the design of water distribution networks to

optimize flow rates and water quality while reducing costs as well as the optimal main-

tenance of existing systems. For an introduction to water engineering, see Mays (2010)

and Davis (2011). Of particular interest is the dynamics of non-native bacteria, possibly

pathogenic, released into the water distribution system. Deterioration of water quality as

it passes through drinking water distribution systems, especially as it relates to micro-

bial contamination, has been well documented (Besner et al., 2002; Camper et al., 1996;

Carabeţ et al., 2011; Carter et al., 2000; LeChevallier et al., 1996; Power and Nagy, 1999;

Skraber et al., 2005; van der Kooij, 1992; Zhang and DiGiano, 2002).

In water pipes, indigenous bacteria colonize the solid surfaces in structures called

biofilms. Biofilms are aggregates of various microorganisms that attach themselves to

solid surfaces using secreted extracellular polymeric substances. Biofilms are ubiquitous

and are a crucial element in a wide range of harmful as well as beneficial phenomena

including tooth decay, remediation of wastewater, maintenance of naval ships, bacterial

growth on surgical implants, and complications in cystic fibrosis patients. While the

existence of heterotrophic biofilms in a drinking water distribution system does not

directly correlate with human health risk (Bartram, 2003), the presence of a biofilm may

encourage the retention and possibly even growth of pathogens released within the system.

Bacteria within a biofilm have a distinct survival advantage compared with planktonic

(free-swimming) bacteria in a water distribution system. It has been observed that biofilms

assist in the survival of microorganisms under inhospitable conditions found within

distribution systems through improved nutrient absorption and improved resistance to

disinfectants (Camper, 1998; LeChevallier et al., 1996; Szabo, 2006). In particular, the

improved resistance to disinfectants makes the removal of potentially pathogenic bacteria

difficult.

The attachment of planktonic pathogens to an established biofilm can lead to a reservoir

of contamination (Camper, 1998) where pathogens survive disinfection and possibly grow,

reappearing long after their initial introduction into the system (Camper and McFeters,

2000; Szabo, 2006) when detachment occurs and mobilizes them once again within the

distribution system. Changing flows related to changes in the instantaneous demand within

water distribution systems have been shown to contribute to detachment of biofilm and

increases in water turbidity (Lehtola et al., 2006).

A significant body of research on the growth and structure of bacterial biofilms has

appeared over the last four decades. A classic resource on the subject is the Costerton

et al. (1995) review in Annual Review of Microbiology, and, more recently, Flemming

and Wingender (2010) provide a comprehensive discussion of the biofilm matrix in

Nature Reviews: Microbiology. There has also been extensive research in the mathematical
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modelling of biofilms. A comprehensive resource is a review by the IWA task force on

biofilm modelling (Eberl et al., 2006).

A key mechanism in the dynamics of non-native bacteria is the attachment/detachment

processes, which involves the exchange of bacteria from the biofilm to the fluid

(detachment) and vice versa (attachment). In the case of detachment, large-scale pieces

of the biofilm can separate from the mass in a process called sloughing (Trulear and

Characklis, 1982; van Loosdrecht et al., 2002). When the detachment involves individual

or small numbers of bacteria, the process is called erosion (van Loosdrecht et al., 2002).

Of particular interest is the macroscale dynamics of non-native bacteria introduced into

a water distribution network. The microscale and mesoscale dynamics of biofilms have

been extensively studied theoretically (Eberl et al., 2006) but there is a need to incorporate

this research with the larger scale network dynamics. This requires network-level models

of fluid dynamics within the network (Eiger et al., 1994; Rossman, 2000; Rossman

and Boulos, 1996) coupled with models of various complexity describing the interaction

between the network topology, fluid mechanics of the flow, the planktonic bacteria, and

the biofilms. Previous work on modelling the dynamics of biological contaminants have

focused on quantitative behaviour such as numerical measures of water quality (Murray

et al., 2006; Uber et al., 2004). We are interested in qualitative predictions of the system’s

behaviour such as possible colonization of indigenous biofilms within the network by

pathogens, leading to persistent biofouling of the drinking water, and the predictions of

the critical pipes that dominate the contamination.

There exists a significant body of research on dynamical systems on networks. For

example, coupled oscillators models on networks in neuroscience where the oscillators

can exhibit phase locking and synchronization (Ashwin et al., 2016). The classic model is

the Kuramoto model (Kuramoto, 1984; Strogatz, 2000), which typically has an all-to-all

or nearest-neighbour network topology. Other examples include epidemiological models

on networks (Brauer et al., 2012), where subpopulations are modelled as nodes on a

graph whose edges describe the interconnection between the different subpopulations,

and dynamics of influence on social networks (Castellano et al., 2009). For more thorough

reviews, see Barrat et al. (2008), Vespignani (2012), and Porter and Gleeson (2016).

In these different examples of dynamical systems on networks, master stability con-

ditions and functions could be used to understand the stability of their steady states.

By relating the eigenvalues of adjacency matrix to the dynamics, one can determine the

stability of the steady states for the entire network. In this paper, our approach differs in

that we do not examine master stability conditions or functions but we use the structure

of the adjacency matrix to identify specific locations within the network where the trivial

steady state would be stable or unstable.

Additionally, water distribution networks often have network topologies that can both

make parts of the analysis easier or more difficult. For example, distribution networks

typically have sources (towers, tanks, reservoirs, etc.) and sinks (usages points) that create

a directed flow within the network. This property is what we use in this paper to aid in our

analysis. Distribution networks can also contain directed cycles or be a dynamic network

where the connectivity changes within the directed graph, both of which complicate the

analysis. While we do not study these cases here, the results of this paper suggest those
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Figure 1. The compartmental model of pathogen dynamics within a single connection.

cases will be tractable by our analytical framework and are currently the subject of future

study.

This paper is organized as follows. We introduce a model for the dynamics of non-

native bacteria in a single network connection with a time-constant flow and discuss its

dynamics in Section 2. We introduce a model for the dynamics of non-native bacteria in

a distribution network with a time-constant flow in Section 3. Proofs regarding the linear

stability of the trivial steady for the network model is given in Section 4. An efficient

algorithm for determining the long-time behaviour of the pathogen concentration within

the network is presented in Section 5. Results are given for example networks in Section

6 and conclusions and future directions are discussed in Section 7.

2 Single connection model

A water distribution system is constructed from a network of collection points, purification

facilities, pipes, pumping stations, storage components such as reservoirs, water towers,

water tanks, and usage points. For our model, we will assume that the system consists of

a collection of one or more pipes that we call a ‘connection’ and ignore the other system

components. For a single connection, we develop a compartment model governing the

concentration of pathogenic bacteria. We assume that the interior surface of a fluid-filled

connection is lined with a drinking water biofilm that is native to the distribution system.

Pathogenic bacteria are introduced into the connection with the total concentration in the

connection partitioned into two compartments: planktonic bacteria in the bulk fluid and

sessile (biofilm-bound) bacteria. We assume that the pathogens can attach to the biofilm,

detach from the biofilm into the bulk fluid, grow within the biofilm, and be transported

out of the connection with the effluent as shown in Figure 1. Since our goal is to introduce

a model for a distribution network, we assume that growth of the pathogens within the

bulk fluid is negligible for mathematical simplicity.

Assuming well-mixed compartments, the concentrations of planktonic pathogens in the

bulk fluid, Cf , and the biofilm-bound pathogens, Cb, are governed by the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ′
f = −Q

V
Cf + β

SA

V
Cb − αCf

C ′
b = α

V

SA
Cf − βCb + rCb

(
1 − Cb

K

)
,

(2.1)

https://doi.org/10.1017/S0956792518000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000281


Pathogen persistence in time-constant flow networks 995

where Q is the fluid flow rate in hr−1, V is the fluid volume in the connection in

mL, SA is the surface area of the connection in cm2, α is the attachment rate in hr−1,

β is the detachment rate in hr−1, r is the logistic growth rate in hr−1, and K is the

pathogen carrying capacity of the biofilm in colony forming units per square centimeter(
CFU cm−2

)
. The units of Cf are CFU cm−3 and Cb are CFU cm−2. All parameters are

assumed to be positive constants.

Since we are interested in the dynamics of pathogens introduced into the system, we

assume that the pathogens are initially only in the bulk fluid and there were no pathogens

initially within the biofilm. Hence, the initial conditions are Cf (0) = C0 and Cb (0) = 0.

Using the scales Cf = K
(
SA/V

)
u, Cb = Kv, and t = r−1τ, the dimensionless equations

are ⎧⎪⎨
⎪⎩

u′ = β̂v −
(
α̂ + Q̂

)
u

v′ = α̂u− β̂v + v (1 − v) ,

(2.2)

with the initial conditions u (0) = u0 and v (0) = 0, where α̂ = α/r, β̂ = β/r, Q̂ = Q/ (Vr),

and u0 = C0V/ (SAK).

The dynamics of the dimensionless system (2.2) are straightforward. There are two

possible steady states: the trivial steady state (u∗, v∗) = (0, 0), which we denote as the

‘washout’ steady state where there are no pathogens in the system, and

(
u∗, v∗

)
=

(
β̂

α̂ + Q̂
v∗, 1 − β̂Q̂

α̂ + Q̂

)
, (2.3)

which we denote as the ‘persistence’ steady state. The persistence steady state, (2.3), is

positive when either

β̂ � 1 (2.4)

or

β̂ > 1 and Q̂ <
α̂

β̂ − 1
= Qc. (2.5)

It is trivial to show that the eigenvalues are real so there are no oscillations in the

system and the persistence steady state is linearly stable when β̂ � 1 or β̂ > 1 and Q̂ < Qc.

In the phase plane, shown in Figure 2 for the three possible cases, it is straightforward to

prove that all trajectories for u, v � 0 approach the linearly stable steady state.

The first condition (β̂ � 1) indicates that the pathogens reproduce faster or at the same

rate as they detach from the biofilm so they persist regardless of the fluid flow. The second

condition (β̂ > 1 and Q̂ < Qc) indicates that the pathogens detach from the biofilm faster

than they grow in the biofilm but they are not removed from the system by the fluid

rapidly enough, giving them enough time to reattach and persist in the system.

The dynamics of the washout steady state mirror the persist steady state. For β̂ > 1

and Q̂ > Qc, the washout steady state is linearly stable. Here, the fluid flow rate is large

enough to remove the bacteria from the system. For Q̂ < Qc or β̂ � 1, the trivial steady

state is linearly unstable.
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Figure 2. Phase portraits of the non-linear system (2.2) for the three cases. The dotted blue line

indicates the v-nullcline, the green dashed line the u-nullcline, the red arrows that direction field,

and the purple lines are individual trajectories. An open circle denotes a linearly unstable steady

state and a filled circle a linearly stable steady state. The case where β̂ < 1 is shown in (a). In

this case, there are two steady states and all trajectories approach the non-trivial steady state. For

β̂ > 1, there are two steady states when Q̂ < Qc with all trajectories approaching the non-trivial

steady state as shown in (b). When β̂ > 1 and Q̂ > Qc, there is only the trivial steady state and all

trajectories approach it as shown in (c).

Figure 3. Numerical results for the three different cases. The pathogen concentration within the

biofilm, v̂, is shown in (a) for the case β̂ < 1. Here, the pathogen increases until it reaches the

non-zero steady state, indicating the pathogens will persist for all t > 0. For β̂ > 1 and Q̂ < Qc,

shown in (b), the pathogen concentration approaches a non-negative steady state, again indicating

the pathogens persist within the pipe for all t > 0. When β̂ > 1 and Q̂ > Qc, the trivial steady state

is stable and the pathogen washes out of the system, as shown in (c).

Numerical results using MATLAB’s ode45 function (Shampine and Reichelt, 1997) are

shown in Figure 3 and confirm the analysis. For β̂ < 1, the pathogens always persist in the

connection and the pathogen concentration in the biofilm increases monotonically. For

β̂ > 1, the system undergoes a bifurcation were the pathogens transition from persisting

to washing out of the connection as Q̂ increases through the critical flow rate Qc. There

is an initial increase in the pathogen concentration within the biofilm before decreasing

to the persist steady state or zero depending on Q̂.
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Figure 4. A model water distribution network. The circles are junctions and the lines are connec-

tions with the arrow indicating the direction of the flow. Junctions 1 and 4 are water sources, 7 and

8 are usage points, and 2, 3, 5, and 6 are interior junctions.

3 Network model

To model the entire distribution network, we assume that it can be described as a collection

of connections joined at junctions, as shown in Figure 4, with the direction of the flow

through the connections indicated by the arrows. In this example distribution network,

junctions 1 and 4 are water sources, junctions 7 and 8 are usage points, and the remaining

junctions are internal junctions. When modelling real-world networks, a connection in the

network could be a collection of individual pipes within the actual distribution network,

where the connection would have some averaged or aggregated properties.

Mathematically, we model the network as a directed graph (digraph)

D = (V (D) , A (D)) =
(
{v1, . . . , vN} , {a1, . . . , aM}

)
, (3.1)

with N vertices (junctions) v1, . . . , vN and M arcs (connections) a1, . . . , aM . We will use

vertex and junction as well as connection and arc interchangeably.

For each arc a, we have an incident map ID (a) = (u, v) where the vertex u is the

tail of a and v is the head of a. An arc a is called incident out of u and incident into

v. For our model, we assume the digraph is simple (no multiple arcs or graph loops)

and is strongly connected since an unreachable vertex or arc would not be part of the

distribution network and can be ignored.

The incidence matrix of digraph, A (D) ∈ �N×M , is defined by

A (D)i,j =

⎧⎨
⎩

1 if the jth arc is incident out of the ith vertex

−1 if the jth arc is incident into the ith vertex

0 otherwise.

(3.2)

For each vertex v, we define the outdegree of v, deg+ (v), as the number of arcs that are

incident out of v, the indegree of v, deg− (v), as the number of arcs that are incident into

of v, and the degree of v as deg (v) = deg+ (v) + deg− (v). We define a leaf vertex v as a

vertex where either deg− (v) = 0 or deg+ (v) = 0 and we denote a non-leaf vertex as an

interior vertex.

To derive our model for the pathogen concentration within the network, we need to

construct an internal incidence matrix, AI (D) ∈ �NI×M , where NI is the number of interior
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vertices, by deleting the rows that correspond to each leaf vertex. AI (D) is a submatrix

of A (D) where each row that corresponds to a leaf vertex is removed. For the digraph

shown in Figure 4, the incidence and the internal incidence matrices are

A (D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0

1 −1 −1 −1 0 0 0 0 0

0 1 0 0 1 −1 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 1 0 0 0 1 −1 0

0 0 0 1 0 1 −1 0 −1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

and

AI (D) =

⎡
⎢⎢⎣

1 −1 −1 −1 0 0 0 0 0

0 1 0 0 1 −1 0 0 0

0 0 1 0 0 0 1 −1 0

0 0 0 1 0 1 −1 0 −1

⎤
⎥⎥⎦ . (3.4)

3.1 Determining the flow rate

To compute the dynamics of pathogens within a water distribution network, we need a

method for computing the fluid flow profile within the network. For each connection in

the network, we define a fluid flow rate, Q, and for each junction in the network, we

define the fluid pressure and the system demand. The system demand at each junction

models the water removed from the network by various usage points. Since our focus is

on the dynamics of the pathogens and not on the actual flow, we will assume that the

flow is constant in time throughout the network and each connection can be modelled as

a linear resistance pipe with pressures defined at each junction. The flow rate through a

linear resistance pipe is

Q =
Pa − Pb

R
, (3.5)

where Pa and Pb are the pressures at the ends of the pipe and R is the hydraulic resistance

of the pipe. For a network, the flow rates are computed using the incidence matrix, A, in

the relation

rf ◦ q = ATp, (3.6)

where q ∈ �M is the vector of flow rates for each connection, rf ∈ �M is the vector of

hydraulic resistances for each connection, the ◦ operator denotes the Hadamard (element-

wise) product, and p ∈ �N is the vector of pressures at the junctions.

Note that we use the incidence matrix for a directed graph before we know the direction

of flow in each connection. This is compensated by the sign of the flow rate, where Q > 0

indicates that the fluid flows in the direction of the arc from the tail to the head and Q < 0

indicates flow from the head to the tail. For convenience, we will assume Q > 0 for all

connections and compensate by flipping the head and tail vertices of the corresponding

arcs.
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For each interior junction, we prescribe a demand, Di, and for each leaf junction, we

prescribe a pressure, Pi. From (3.6) and the pressure conditions at the leaf junctions, we

have M + (N −NI ) equations for M + N unknowns. The remaining NI equations come

from conservation of mass at each interior junction (Kirchhoff’s law). At each interior

junction, we have the relationship

Minflow∑
k=1

qj︸ ︷︷ ︸
Flow Into Junction
from Connections

−
Moutflow∑
k=1

qk︸ ︷︷ ︸
Flow Out of Junction

to Connections

= D︸︷︷︸
Demand at
Junction

. (3.7)

The equations for the entire network, using the incidence matrix, is

ΔAq = d , (3.8)

where Δ ∈ �N×N is a diagonal matrix with Δi,i = 1 if the ith junction is an interior

junction and Δi,i = 0 otherwise. The vector d ∈ �N is the vector of the demand at each

junction. For leaf junctions, the values of d are set to zero. Combining (3.6), (3.8), and

the conditions on the pressure at non-interior junctions, the linear system governing the

flow rates through the connections and the pressures at the junctions is⎡
⎣ I − Δ ΔA

AT Rf

⎤
⎦

⎡
⎣ p

q

⎤
⎦ =

⎡
⎣ b

0

⎤
⎦ , (3.9)

where p is the vector of pressures at each junction, I is the identity matrix, Rf = diag
(
rf

)
is

the diagonal matrix of hydraulic resistances for each connection, and b = Δd +(I − Δ) p0.

Here, p0i
= Pi for each leaf junction. Solving this system provides the flow rate q, which

we use to define the flow rate matrix Q = diag (q).

Since we are only considering distribution networks without pumps, it is not possible

to have a directed cycle, which is a path of arcs and vertices where a vertex is reachable

starting from itself, in the directed graph. Since the fluid flows from higher pressure to

lower pressure, a directed cycle in the network would require the sequence of pressures at

each vertex in the path satisfy

P0 > P1 > . . . > Pj > . . . > PN. (3.10)

Since we assume we have a directed cycle, PN = P0, which implies that P0 > P0. Hence,

we cannot have a directed cycle.

3.2 Pathogen concentration model

Similar to the single connection model, we will partition the pathogen concentration

within each connection into two compartments: bulk fluid and biofilm bound. For each

junction, we assume that the biofilm compartment is negligible and only assume a bulk

fluid compartment. For each compartment, we assume the concentration of pathogens
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Figure 5. Compartmental network model of pathogen dynamics for a single connection and two

junctions.

change due to flow in from the parent junction, flow out to the child junction, and attach-

ment/detachment from the biofilm. We assume no growth in the bulk fluid (see Figure 5).

For the biofilm compartment in the connection, we assume attachment/detachment from

the bulk fluid and logistic growth. For the junctions, we assume the pathogen concentra-

tion only changes due to flow in from parent connections, flow out to child connections,

and flows out of the system due to demands at the junctions. The governing equations

are

u′ = Zc − Qu + f (u, v) ,

c′ = Wu − (T + D) c,

v′ = g (u, v) ,

(3.11)

where u is the vector of the pathogen concentration within the bulk fluid for each connec-

tion, v is the vector of the pathogen concentration within the biofilm for each connection,

and c is the vector of the pathogen concentration within the fluid in the interior junc-

tions. The vector functions f (u, v) and g (u, v) describe the attachment/detachment/growth

dynamics of the pathogens. They are diagonal operators and are defined as

f (u, v) = Γ−1Bv − Au (3.12)

and

g (u, v) = ΓAu + (R − B) v + Y−1R (v ◦ v) , (3.13)

where the v ◦ v indicates the Hadamard product of the vectors. The matrices A, B, Γ, R,

and Y ∈ �M×M are all diagonal matrices. For the ith connection, Ai,i = αi is the pathogen

attachment rate from the bulk fluid to the biofilm, Bi,i = βi is the pathogen detachment

rate from the biofilm to the bulk fluid, Γi,i = γi = Vi/SAi
is the bulk fluid volume to

connection surface area ratio, Yi,i = Ki is the carrying capacity of the pathogens within

the biofilm, and Ri,i = ri is the pathogen growth rate in the biofilm. Each are considered

to be constant and positive so each diagonal matrix is invertible.

The matrices Z and W indicate the flow into the connections and junctions, respectively.

The matrix Q is a diagonal matrix that denotes the flow rate through the connections

into the child junctions with Qi,i > 0. The matrices T and D denote the flows out of the

junction into the child connections and demands at each junction, respectively. The inflow
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matrices are defined by

Z = Q
(
AT

I < 0
)
∈ �M×NI and W = (AI > 0) Q ∈ �NI×M, (3.14)

and the outflow matrices are T = (AI < 0) Q
(
AT

I < 0
)
∈ �NI×NI and D ∈ �NI×NI , which

is a diagonal matrix where Di,j = Di is the demand at the ith junction. Note that the

notation M = (A < 0) indicates

Mi,j =

{
1 if Ai,j < 0

0 otherwise.
(3.15)

Following EPANET’s model of mixing at junctions (Rossman, 2000), we assume that

under realistic flow conditions the pathogen concentration within the junctions respond

quickly to changes in concentration so we use a quasi-steady-state assumption, c′ ≈ 0, to

obtain

c ≈ (T + D)−1 Wu. (3.16)

Substituting (3.16) into (3.11), we obtain the quasi-steady-state network model for the

pathogen concentrations within the connections:

u′ = (K − Q) u + f (u, v) ,

v′ = g (u, v) ,

(3.17)

where the matrix K = Z (T + D)−1 W ∈ �M×M denotes the connection-to-connection

inflows. It is a singular matrix with a zero diagonal since we have assumed that there are

no flow loops in the digraph.

4 Linear stability of the trivial steady state for the network model

To understand the long-time behaviour of the pathogen concentration in the entire

network, we examine the linear stability of the trivial (washout) steady state where the

pathogen concentration goes to zero in all the connections. We linearize the non-linear

system (3.17) about u = v = 0 to obtain the linear system x′ = Jx where x = [u, v]T and

J =

⎡
⎣K − Q − A Γ−1B

ΓA R − B

⎤
⎦ (4.1)

is the Jacobian matrix for the non-linear system linearized around the trivial steady state.

The stability of the trivial steady state depends on the real part of the eigenvalues of the

Jacobian matrix J.

To predict the linear stability of the trivial steady state for a network with M con-

nections, we need to compute all 2M eigenvalues of J. Using QR decomposition to

approximate the eigenvalues would require O
(
8M3

)
operations, which could be com-

putationally inefficient and the computation could suffer from roundoff errors for large

distribution systems. To reduce the computational cost, we use the structure of the
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network and the Jacobian matrix to develop an efficient approach that we prove predicts

the linear behaviour of the system near the trivial steady state.

We begin by noting that all the matrices in J are diagonal except for the matrix K,

which describes the inflows into each connection. The matrix K will have a zero diagonal

since we assume that the network has no self-loops. Since there are no directed cycles as

shown in Section 3.1, the digraph will have a topological ordering, which is an ordering

of the vertices such that for every arc from vertex u to vertex v, the vertex u will appear

in the ordering before v. We can subsequently order the arcs so that every arc incident

into vertex v appears in the sequence before all arcs incident out of v. For an arbitrary

digraph with no directed cycles, we can compute a topological ordering using Kahn (1962)

algorithm. From the topological sorting, we prove the following:

Theorem 4.1 There exists a permutation matrix P ∈ �M×M that transforms the inflow

matrix K into a lower triangular matrix.

Proof For an arbitrary ordering of arcs in the digraph, we apply a modified version of

Kahn (1962) algorithm that sorts arcs instead of vertices. Let S be the set of all arcs

whose tail vertex is a source (a vertex that is not the head of any arc in the digraph)

and let vj represent the head of aj . Remove an arc aj from S and add it to the end of

the ordered set T . Now remove the aj from the digraph and if vj is now a source vertex,

then add all of the arcs that incident out of vj and add them to S . Remove the next arc

from S and repeat until S is empty. Since the digraph has no directed cycles, every arc

in the digraph will be placed in a topological ordering within the set T . The permutation

matrix, defined by

Pi,j =

⎧⎨
⎩

1 if the ith element of T is the arc aj

0 otherwise,

(4.2)

transforms a matrix such that elements are in a topological ordering. Let L = PK. Since

Ki,j denotes the flow from arc aj into ai, the head vertex of aj is the tail vertex of ai. It

follows that if Lm,n �= 0, when n > m then the head vertex of arc an is the tail vertex of arc

am. This contradicts the topological ordering. Hence, L is a lower triangular matrix. �

We will now assume that K is a lower triangular matrix with zero diagonal elements

without loss of generality.

Next, we prove that the eigenvalues of J are real and are independent of the matrix K.

Theorem 4.2 The eigenvalues of J given in (4.1) are real and independent of K.

Proof The eigenvalues λ of J satisfy the matrix equation:

(J − λI) x = 0, (4.3)

https://doi.org/10.1017/S0956792518000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000281


Pathogen persistence in time-constant flow networks 1003

where x = [u, v]T . This is equivalent to

(K − Q − A − λI) u + Γ−1Bv = 0, (4.4)

ΓAu + (R − B − λI) v = 0, (4.5)

so solving for u, (4.5) yields

u = A−1Γ−1 (R − B − λI) v, (4.6)

since A and Γ are invertible.

We now substitute the value of u from (4.6) into (4.4) to get

(K − Q − A − λI) A−1Γ−1 (R − B − λI) v − Γ−1Bv = 0. (4.7)

Since all the matrices except for K are diagonal matrices, we can simplify (4.7) to obtain

[(K − Q − A − λI) (R − B − λI) − AB] v = 0. (4.8)

The eigenvalue problem is now of the form Lv = 0, where

L = (K − Q − A − λI) (R − B − λI) − AB (4.9)

is a lower triangular matrix since K is lower triangular and the other matrices are diagonal.

Thus, for the null space not to be empty, L must be singular so det (L) = 0. This implies

that
N∏
i=1

Li,i = 0, (4.10)

so
N∏
i=1

(qi + αi + λ) (ri − βi − λ) + αiβi = 0, (4.11)

since Ki,i = 0, Ri,i = ri, Bi,i = βi, Qi,i = qi, and Ai,i = αi. The yields the characteristic

equations

(qi + αi + λ) (ri − βi − λ) + αiβi = 0, (4.12)

for i = 1, 2, . . . ,M and if λ satisfies (4.12) for any i, then λ ∈ σ (J). The characteristic

equations do not depend on any elements of K so the eigenvalues are independent of K.

The determinant of the quadratic equation (4.12) is

(ri − βi − Qi − αi)
2 − 4 [(Qi + αi) (ri − βi) + αiβi] = (ri − βi + Qi + αi)

2 + 4αiβi > 0, (4.13)

so all λ ∈ σ (J) are real. �

Since the communication between connections in the network occurs through the matrix

K, Theorem 4.2 proves that the linear stability of the trivial steady state of the network is

the same as the linear stability of the trivial steady state when each connection is viewed in

isolation outside of the network. This allows us to examine the connections independently
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and we are not required to examine the linear stability for the entire network. If one

connection in isolation has a linearly unstable trivial steady state, then the network will

have a linearly unstable trivial steady state and if all connections have a linearly stable

trivial steady state in isolation, then the trivial steady state for the entire network will be

linearly stable.

To proceed, we will need the following definitions. The set of children of the ith arc, ai,

in the digraph is defined as

C (ai) = {aj | the tail of aj = the head of ai } , (4.14)

the set of parents of the jth arc as

P
(
aj

)
= {ai | the head of ai = the tail of aj } . (4.15)

The set of all descendents of the ith arc is

D (ai) = {aj | aj ∈ C (ai) ∨ aj ∈ D (ak) for any ak ∈ C (i)} , (4.16)

and the set of ancestors of the jth arc is defined as

A
(
aj

)
= {ai | aj ∈ D (ai)} . (4.17)

These sets satisfy the following relations:

C (ai) ⊆ D (ai) , P (ai) ⊆ A (ai) , D (ai)
⋂
A (ai) = ∅. (4.18)

The last relation denotes that there are no directed cycles in the digraph as demonstrated

in Section 3.1. Since the elements of K indicate the inflows into each connection, we note

that the element Ki,j �= 0 implies that the arc aj is a parent of the arc ai
(
aj ∈ P (ai)

)
.

We now prove the eigenvectors of the Jacobian matrix J depend on the matrix K and the

non-zero elements of the eigenvectors indicate the descendants of individual connections.

Theorem 4.3 The eigenvectors of J given by (4.1) depend on the matrix K and the non-zero

elements of the ith v-eigenvector correspond to all the descendants of the ith connection.

Proof To find the eigenvectors of J, we solve Lv = 0. Notice that L can be written as

L = CK + D, where K is a lower triangular with zero diagonal matrix and C and D are a

diagonal matrices with entries

Ci = ri − βi − λ (4.19)

and

Di = − [(qi + αi + λ) (ri − βi − λ) + αiβi] , (4.20)
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so that

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 0 · · · · · · · · · 0

C2K2,1 D2 0 · · · · · · 0

C3K3,1 C3K3,2 D3 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . DN−1 0

CMKM,1
. . .

. . .
. . . CMKM,M−1 DM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.21)

There will be three different cases based on the algebraic and geometric multiplicity

of the eigenvalues λi. We will assume that all the eigenvalues have multiplicity of one,

so λi �= λj , if i �= j for all i, j = 1, 2, . . . , 2M. Also, we will assume that Ci �= 0 for

i = 1, 2, . . . ,M. The proof for higher multiplicities or when Ci = 0 for some i follows the

same arguments given below.

We start by choosing λ1 such that D1 = 0. This implies that v1 = z is an arbitrary

non-zero constant. Looking that the second row, we have

C2K2,1v1 + D2v2 = 0, (4.22)

so

v2 = −C2K2,1

D2
v1 = −C2K2,1

D2
z, (4.23)

since D2 �= 0 under the assumption λ2 �= λ1. Note that v2 = 0 if K2,1 = 0, which implies

that a1 � P (a2).

For the third row, we have

C3

(
K3,1v1 + K2,1v2

)
+ D3v3 = 0, (4.24)

so that

v3 = −C3

D3

(
K3,1v1 + K3,2v2

)
= −C3

D3

(
K3,1 −

C2K3,2K2,1

D2

)
z. (4.25)

To determine if v3 = 0, we examine the values of K3,1, K3,2, and K2,1. If a1 � P (a3) and

either a2 � P (a3) or a1 � P (a2), we have v3 = 0 since K3,1 = K3,2K2,1 = 0. This implies

that a1 � A (a3) and there is no directed path from a1 to a3. If either a1 ∈ P (a3) or

a2 ∈ P (a3) and a1 ∈ P (a2), we have v3 �= 0 and a1 ∈ A (a3). Note that it is not possible

for both K3,1 �= 0 and K3,2K2,1 �= 0 since that implies that the arc a1 is a parent to arc a2

and a3 as well as implying a2 is a parent to a3, making a1 a grandparent of a3. This is

a contradiction since an arc cannot be a parent and grandparent to a single arc without

the digraph having a self-loop.

For any row i > 3, we have

Ci

i−1∑
j=1

Ki,jvj + Divi = 0. (4.26)
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Solving (4.26) for vi yields the recursive relation

vi = −Ci

Di

i−1∑
j=1

Ki,jvj = ac, (4.27)

where a is a constant that depends on K, C, and D. If the jth connection is a parent of the

ith connection, j ∈ P (i), then Ki,j �= 0. Likewise, if j � P (i), then Ki,j = 0. Hence, (4.27)

reduces to

vi = −Ci

Di

∑
j=1

j∈P(i)

Ki,jvj , (4.28)

and, by induction, vi = 0 if a1 � A (ai). As a consequence, the non-zero entries of v

correspond to the descendents of the first connection.

For the mth eigenvalue, λm, with m > 1, we assume the ordering of the eigenvalues are

such that Dm = 0 when λ = λm for m = 1, 2, . . . , N. Note that we still are assuming the

algebraic multiplicity of the eigenvalues are one so Di �= 0 for i �= m. From the first row,

we have D1v1 = 0 so v1 = 0 since D1 �= 0. Likewise, we have

C2K2,1v1 + D2v2 = 0, (4.29)

from the second row, so v2 = 0, since v1 = 0 and D2 �= 0. We now assume vj = 0 for

j = 1, . . . , i− 1. We have

Ci

i−1∑
j=1

Ki,jvj + Divi = 0 (4.30)

for the ith row with i < m. Since vj = 0 for j = 1, . . . , i − 1 and Di �= 0, we have, by

induction, vi = 0 for i < m.

We now examine the mth row of L:

Cm

m−1∑
j=1

Km,jvj + Dmvm = 0. (4.31)

Since vj = 0 for j = 1, . . . , m − 1 and Dm = 0, we have vm = c, where c is an arbitrary

non-zero constant. We proceed as above when λ = λ1 to obtain that the non-zero entries

of mth v correspond to the ancestors of the mth connection. �

5 Algorithm for predicting long-time behaviour in the network

To determine the stability of the trivial steady state for the entire network, one could

linearize the system and compute the 2M eigenvalues of the Jacobian matrix. If any

eigenvalue has a positive real part, the pathogens could persist within the network,

based upon the initial pathogen distribution within the network. For large networks, the

eigenvalues can be computed using a method such as QR factorization, which is O
(
8N3

)
for this problem. For efficiency, we can use the results of Theorems 4.2 and 4.3 to reduce

the effort in determining the eigenvalues and, hence, the stability of the trivial steady state

to O (N).
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We start by noting that the eigenvalues for the entire linearized network model and the

eigenvalues of the linearized model of the individual connections in isolation are the same

from Theorem 4.2. Hence, the trivial steady state for the entire network model is unstable

if the trivial steady state for any individual connection is unstable–if the pathogens would

persist for an individual connection, it will persist within the network.

We can additionally determine the distribution of the pathogens within the entire

network using the eigenvectors computed for each individual connection. Let Ap denotes

the parent incident matrix defined by the relation

Api,j =

⎧⎨
⎩

1 if the arc ai ∈ P
(
aj

)
0 otherwise.

(5.1)

From Theorem 4.3, if the pathogens within a connection persist, the eigenvector will

contain a non-negative entry for each child of that connection. This implies that the

persistence of the pathogens within the parent causes the pathogens to persist within each

child. When the pathogens would washout of a child connection in isolation but the child

has an ancestor where the pathogens persist, the pathogen concentration within the child

approach a non-zero steady state. We say that the child is ‘induced’ in this situation.

To summarize, each connection in isolation can be labelled as persistent or washout

based on the bifurcation conditions for the individual connection (see Section 2). If any

connection is classified as persistent, then the pathogens can persist within the network

and if all connections are classified as washout, then the pathogens washout of the

network. When the pathogens within a connection are persistent, all its descendants are

either persistent (if they ‘persist’ in isolation) or they are induced (if they are ‘washout’ in

isolation).

We can use the parent incidence matrix, Ap, iteratively to determine which connections

within the network are induced. The algorithm is as follows:

(1) Compute the stability of the trivial steady state for each connection in isolation.

Classify each connection as ‘persist’ or ‘washout’ using the bifurcation conditions.

(2) Define the elements of the vector s(0) as s(0)
i = 1 if the ith connection is ‘persistent’

and s(0)i = 0 if the ith connection is ‘washout’.

(3) Define the iteration matrix Z = I + AT
p .

(4) Set s = s0.

(5) Repeat

(a) s = Zs.

(b) If s0
i = 1, then set si = 1 for all i = 1, . . . , N.

(c) If s0
i = 0 and si > 0, then set si = 2 for all i = 1 . . . , N.

Until
∣∣∣∣s − s0

∣∣∣∣ = 0.

After this algorithm is completed, the vector s indicates the connection is ‘persist’ when

si = 1, ‘induced’ when si = 2, and ‘washout’ when si = 0.
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Note that this approach indicates which connections are the biggest concerns since a

connection that is labelled ‘persist’ can cause the pathogens to appear in all its descendants

and if the pathogens were removed from all the ‘persist’ connections by some external

means, then all the descendants would have the pathogens washout. This could aid in the

efficient removal of pathogens from the network.

Using this algorithm, we effectively compute the result predicted by computing both the

eigenvalues and eigenvectors of the linearized system. Since this algorithm using iterative

matrix-vector multiplication, it is an O
(
mN2

)
algorithm, where m < N is the number of

iterations and N is the number of connections in the network. Hence, computing both the

linear stability and the predicted locations of contamination is O
(
mN2

)
complexity while

using a method such as QR factorization is O
(
8N3

)
for both eigenvalues and eigenvectors.

For a more detailed discussion of efficiency and timings of a serial implementation of the

algorithms, see Appendix A.

6 Solutions for example networks

To validate the theorems and the algorithm given in Section 5, we examine some simple

networks. Note that these networks are caricatures of real-world networks and were

generated for testing and illustrative purposes.

6.1 Medium-sized network example

The first is a moderately sized network that consists of M = 11 junctions and N = 11

connections. The topology of the network and the flow through the network is shown in

Figure 6 and the system parameters are given in Appendix B.

We determine the linear stability of each connection independently of the network and

compare it to the steady state numerical solution. Since the linear stability assumes a

general perturbation from the trivial steady state, we introduce pathogens into the bulk

fluid in all connections and no pathogens within the biofilm in any connections.

Figure 7 shows the linear stability of the trivial steady state for each connection using

the algorithm discussed in Section 5. The dashed green on black lines indicate connections

where the linear stability analysis predicts the pathogens to washout. The red connections

indicate the connections where the pathogens are predicted to persist and the yellow

dotted lines on black denote connections that are predicted to be induced by upstream

connections to have a non-zero pathogen concentration as t → ∞. We can see that of the

11 connections, there are eight (4–11) that would what non-zero pathogen concentrations

for long times. Of these eight, four (4, 5, 6, and 11) would persist outside of the network

and the other four connections (7, 8, 9, and 10) would have the pathogens washout if they

were not in the network. This suggests that a possible approach to disinfection would

be to focus on the four persistent connections (4, 5, 6, and 11). If the pathogens were

removed from these connections, the other four connections (7, 8, 9, and 10) would have

the pathogens washout due to the fluid flow. This observation suggests that connections

4, 5, 6, and 11 are possible vulnerable points within the network.

To confirm the long-time behaviour predicted by the linear stability analysis, we

numerically simulated the entire network until a steady state was reached. Figure 8 shows
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Figure 6. Topology and flow for the medium-sized network example. The lines indicate connections

(pipes) and the filled circles indicate the junctions. The triangles indicate the direction of the flow

through the connections. The circled numbers indicate the index of each connection and the

uncircled numbers indicate the index assigned to each junction.

Figure 7. Linear stability of the trivial steady state for the medium-sized network example. The

lines indicate the connections (pipes) and the circles indicate the junctions, which are numbered.

The triangles indicate the direction of flow. The green dashed lines on black denote connections

where the pathogens are predicted by the linear stability analysis to washout. The solid red lines

indicate the connection where linear stability analysis predicts the pathogens persist and dotted

yellow lines on black indicate the connections where the pathogens are are predicted to be induced

by upstream connections.
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Figure 8. Steady-state numerical solution for the medium-sized network example. The lines indicate

the connections (pipes) and the circles indicate the junctions, which are numbered. The triangles

indicate the direction of flow. The dashed black-on-green lines denote connections where the

pathogens will washout. Solid yellow, orange, or red lines indicate that the pathogens persist

within that connection both in the network and in isolation. The dotted black-on-yellow/orange

lines indicate the connections were induced by an upstream connection and have a non-zero

pathogen concentration. The colour indicates the relative pathogen concentration as with the solid

lines. The yellow, orange, and red colours indicate relatively low, intermediate, and high pathogen

concentrations, respectively.

the steady-state numerical solution for this network. The dashed black-on-green lines

indicate the pathogens are washed out of that connection, which is defined by their

concentration going below a certain threshold. Here, the threshold is 10−8. The solid

lines indicate that the pathogens persist within that connection (both in the network

and in isolation) with the colour indicating a continuous mapping between low (yellow),

intermediate (orange), and high (red) concentrations relatively to other connections in the

network. The dotted black-on-colour lines indicate the connections were induced by an

upstream connection and have a non-zero pathogen concentration with yellow indicating

low relative concentration and orange intermediate. Both Figures 7 and 8 give equivalent

results, even though connection 5 appears in different colours. To clarify this point, we

emphasize that none of the ancestors of this connection is contaminated by pathogens

which implies that the contamination is caused by persisting in isolation, and hence it

appears with red colour in Figure 7. On the other hand, the pathogens that introduced

into the fluid grow and are transported within the network and, as the network achieves

the equilibrium, each connection has received a different amount of pathogens. The

pathogens concentration within connection 5, which is labelled persistent, is lower than

the concentration is connection 9, which is labelled induced.
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Figure 9. Topology and flow for the large network example. The lines indicate connections (pipes)

and the circles indicate the junctions. The triangles indicate the direction of the flow through the

connections. The numbers indicate the index assigned to each junction with each connection indexed

sequentially starting for lower junctions to larger junctions.

6.2 Large network example

We present here an example to illustrate how our methodology scales to a larger water

distribution network. Consider a water distribution network with M = 134 junctions and

N = 167 connections. The network parameters given in Appendix C. The topology of the

network and the flow through the network is shown in Figure 9.

We determine the linear stability of each connection independently of the network and

compare it to the steady-state numerical solution. Since the linear stability assumes a

general perturbation from the trivial steady state, we introduce pathogens into the bulk

fluid in all connections and no pathogens within the biofilm in any connections.

Figure 10 shows the linear stability of the trivial steady state for each connection using

the algorithm discussed in Section 5. The line style and colour scheme is the same as the

one used in the figures in Section 6.1.

We can see that there are 30 connections where pathogens persist that induce another

52 connections to have non-zero pathogen concentrations. If one focuses the cleanup

efforts on the 30 persistent connections, the other 52 connections could then be washed

clean as long as there are not pathogens coming in from upstream. This observation could

greatly reduce the cleanup costs from the pathogen introduction into a water distribution

network and illustrates the possible vulnerable points within the network.

To confirm the long-time behaviour predicted by the linear stability analysis, we

numerically simulated the entire network until a steady state was reached. Figure 11

shows the steady-state pathogen concentration within the network. Again, the line styles

and colour schemes are the same as the ones used in Section 6.1.
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Figure 10. Linear stability of the trivial steady state for the large network example. The lines

indicate the connections (pipes) and the circles indicate the junctions, which are numbered. The

triangles indicate the direction of flow. The green dashed lines on black denote connections where

the pathogens are predicted by the linear stability analysis to washout. The solid red lines indicate

the connection where linear stability analysis predicts the pathogens persist and dotted yellow lines

on black indicate the connections where the pathogens are are predicted to be induced by upstream

connections.

We can see that Figures 10 and 11 are equivalent, indicating the algorithm described

in Section 5 is able to predict the steady-state behaviour of the network, except for

the connection between junctions 117 and 120. This is due to the different meanings of

the colours in the figure. In the linear stability results, pathogens would persist in this

connection when it is viewed in isolation and is labelled red since red indicates persist but

in the numerical solution, this connection is labelled yellow. This does not indicate that

this connection is induced by an upstream connection but it indicates that the pathogen

concentration relative to the other connections within the network is lower.

7 Conclusions and future directions

The prevention and mediation of biological contamination of potable water in water

distribution systems is an important aspect of maintaining public health. The interaction

between non-native pathogens introduced into the system and the native drinking water

biofilms can lead to increased biological retention times or possibly persistence leading to a

‘reservoir of contamination’ (Camper, 1998). In an attempt to study and predict when and

where within the system pathogens could colonize the native biofilms, we have developed

and analysed a mathematical model of the dynamics between non-native bacteria and

native biofilms within large-scale water distribution networks under time-constant flow

regimes. This model is able to predict when pathogens might colonize the network and

critical components of the system that leads to persistence.
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Figure 11. Steady-state numerical solution for the large network example. The lines indicate

the connections (pipes) and the circles indicate the junctions, which are numbered. The triangles

indicate the direction of flow. The dashed black-on-green lines denote connections where the

pathogens will washout. Solid yellow, orange, or red lines indicate that the pathogens persist

within that connection both in the network and in isolation. The dotted black-on-yellow/orange

lines indicate the connections were induced by an upstream connection and have a non-zero

pathogen concentration. The colour indicates the relative pathogen concentration as with the solid

lines. The yellow, orange, and red colours indicate relatively low, intermediate, and high pathogen

concentrations, respectively.

For large-scale systems of many connections, the approach of computing the Lyapunov

exponents directly from the Jacobian matrix can be computationally expensive and subject

to accumulation of round-off errors. To address this, we developed an efficient iterative

approach to predicting the linear stability of the trivial steady state and we prove that

the long-time behaviour of the linearized system is the same as predicted by the iterative

algorithm. Results for example networks of different sizes are given and suggest that this

approach can provide insight into vulnerable components of the distribution network.

Since certain connections where pathogens might persist can cause pathogens to appear

in downstream connections, the identification of critical connections by the algorithm

could lead efficient mediation strategies where resources are directed towards disinfecting

these critical connections. This would allow the pathogens to washout of downstream

connections naturally.

This model and analysis are for time-constant flow networks, which do not model

realistic networks in general. To model real-world networks, more accurate submodels

need to be introduced such as time-varying flows within the network, models for water

storage units such as water towers, flow reversal within connections from changing system

demands, and pump-driven flow cycles within the network. This paper introduces a

beginning framework for the modelling and analysis of these more complicated systems.
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In the future, we will study these effects on the pathogen dynamics in the network as well

as more sophisticated models for the fluid dynamics and the attachment and detachment

processes.
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Appendix A Algorithm complexity and efficiency study

To demonstrate the efficiency of the proposed algorithms for computing the linear stability

within the network as well as predicting locations of possible contamination, we ran a

number of trial simulations on a rectangular water distribution network with randomly

generated coefficients. Figure A 1 shows the topology and flow for a rectangular network
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Figure A 1. Topology and flow for the medium-sized network example. The lines indicate connec-

tions (pipes) and the filled circles indicate the junctions. The triangles indicate the direction of the

flow through the connections. The circled numbers indicate the index of each connection and the

uncircled numbers indicate the index assigned to each junction.

with M = 7 rows and N = 8 columns of nodes plus a source and a sink. There are

MN + 2 = 58 nodes and 2MN − (M + N) + 2 = 99 connections. The parameters within

each connection are chosen randomly from uniformly from the following ranges: α ∈ (0, 1),

β ∈ (0, 2), and r ∈ (0, 1). The volumes, V , and surface areas, SA, of each connection is fixed

at one as well as the pathogen carrying capacity, K , for simplicity. The system is driven

by the fixed pressures P57 = 75 at node 57 and P58 = 0. The demands at each junction

are chosen randomly from a uniform distribution with the range D ∈ (0.5, 2.5) to allow

the direction of flow in the network to change randomly.

To determine the efficiency of each algorithm, the initial network connectivity and flow

is held constant for each trial of each algorithm. The linear stability and the predicted

location of contamination are then computed 10 times and then averaged. Each simulation

was performed on a single core of an Intel Core i7-970 processor with 24 GB of memory.

The algorithms presented in this manuscript were implemented in MATLAB v8 (2012b)

on Windows 7 SP1, while the direct computing of eigenvalues and eigenvectors was done

using the built-in MATLAB eig function. Figure A 2 shows the results for networks with

200 to 1,500 connections. We can see that our algorithm for computing the eigenvalues

of the system is significantly more efficient than direct computation. It is 1,700x faster

than direct computation for a 200 connection network and shows a sub O (N) complexity

compared to O
(
N2.49

)
for the MATLAB eig function function. Note that differences
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Figure A 2. Log–log plot of the clock time average for each algorithm. The markers indicate an

average of 10 trials for different network sizes and the trend line is the linear least squares fit of

the log of the data. The slope of each trend line is the exponent of the algorithmic complexity. The

proposed algorithms are orders of magnitude faster than direct computation and also have a lower

algorithmic complexity, which suggests that they will scale better as network size is increased.

between the theoretical and practical complexities is due to various optimizations within

MATLAB. To compute the eigenvalues and the eigenvectors, our algorithm is 280x faster

than direct computation for a 200 connection network and is complexity O
(
N2

)
compared

to O
(
N2.67

)
for MATLAB eig function. Note that our iterative algorithm only required

5–8 iterations to converge.

Appendix B Parameters for moderate-sized network example

The medium network examples consists of M = 11 junctions and N = 11 connections as

shown in Figure B 1. At the interior junctions, we assign a demand, which is zero. At each

non-interior junction, we prescribe a pressure. For this example, we let P1 = 29, P8 = 2,

and P11 = 9. All the hydraulic resistances are set to one. We assume the parameters

governing the pathogen dynamics are the same for each connection with r = 1, and K = 1

with V = 1 and SA = 1 except for α and β, which are given in Table B 1.
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Table B 1. Attachment and detachment rates for each connection for the time-constant

medium-sized network example

i αi βi i αi β i αi βi

1 1.00 6.0 5 0.01 0.8 9 5.00 5.0

2 0.01 11.0 6 1.00 0.3 10 1.00 2.0

3 1.40 9.0 7 1.00 2.0 11 1.00 2.0

4 0.01 0.2 8 1.00 2.0

Figure B 1. Connectivity for the time-constant flow medium network example.

Appendix C Parameters for large network example

The large network examples consists of M = 134 junctions and N = 167 connections as

shown in Figure C 1.

At the interior junctions, we assign a demand, which is zero except for the ones given in

Table C 1. At each non-interior junction, we prescribe a pressure, which is given in Table

C 2. All the hydraulic resistances are set to one. We assume the parameters governing the

pathogen dynamics are the same for each connection and are α = 1, β = 2, r = 1, and

K = 1 with V = 1 and SA = 1. This gives a critical flow rate of Qc = 1.
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Figure C 1. Connectivity of the large network example.

Table C 1. Demands, Di, at the interior junctions in the large network example

i Di i Di i Di

29 20 88 99 122 18

30 66 90 78 124 67

34 29 107 44 125 56

43 66 117 90 132 44

86 56

Interior junctions without an entry have a zero demand and non-interior junctions are prescribed a pressure,

which is given in Table C 2.

Table C 2. Pressures at the non-interior junctions in the large network example

i Pi i Pi i Pi i Pi

1 1 25 0 60 1 66 1

3 2 32 0 61 1 91 0

10 0 42 1 63 0 110 0

11 0 50 0 64 0 123 1

24 0 53 0 65 0 133 1

Interior junctions do not have a prescribed pressure but have demands, which are given in Table C 1.
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