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Abstract

The response of glaciers to climate change has major implications for sea-level change and water
resources around the globe. Large-scale glacier evolution models are used to project glacier runoff
and mass loss, but are constrained by limited observations, which result in models being over-
parameterized. Recent systematic geodetic mass-balance observations provide an opportunity
to improve the calibration of glacier evolution models. In this study, we develop a calibration
scheme for a glacier evolution model using a Bayesian inverse model and geodetic mass-balance
observations, which enable us to quantify model parameter uncertainty. The Bayesian model is
applied to each glacier in High Mountain Asia using Markov chain Monte Carlo methods.
After 10,000 steps, the chains generate a sufficient number of independent samples to estimate
the properties of the model parameters from the joint posterior distribution. Their spatial distri-
bution shows a clear orographic effect indicating the resolution of climate data is too coarse to
resolve temperature and precipitation at high altitudes. Given the glacier evolution model is
over-parameterized, particular attention is given to identifiability and the need for future work
to integrate additional observations in order to better constrain the plausible sets of model
parameters.

1. Introduction

Glacier mass loss in the next 100 years has critical implications for sea-level change and water
resources across the globe. From 1961 to 2016, the rate of glacier mass loss, excluding the
Greenland and Antarctic ice sheets, averaged 0.5 ± 0.4 mm sea-level equivalent (SLE) a−1

and recent rates of mass loss since 2010 now exceed 1.0 ± 0.4 mm SLE a−1 (Zemp and others,
2019). Future projections of mass loss from several glacier evolution models using output from
an ensemble of General Circulation Models (GCMs) and Representative Concentration
Pathways (RCPs) estimate the increase in sea level due to glaciers by 2100 relative to 2015
to range from 94 ± 25 mm SLE (RCP2.6) to 200 ± 44 mm SLE (RCP8.5) (Hock and others,
2019). While the rate of sea-level change is dominated by regions with the most glacier
mass (Alaska and the arctic regions), glacier mass loss in other regions may fundamentally
alter the quantity and timing of glacier runoff, thereby affecting water resources (Bliss and
others, 2014; Huss and Hock, 2018).

Future projections of glacier mass loss for a given GCM and RCP vary considerably
depending on the model, which is attributed to differences in the model physics, calibration
data/methods, and input data (Hock and others, 2019). In recent decades, large-scale glacier
evolution models have been hampered by a lack of observations. Models were typically cali-
brated with glacier-wide specific mass balances (Marzeion and others, 2012), mass-balance
profiles from individual glaciers (Raper and Braithwaite, 2006; Radić and Hock, 2011;
Slangen and others, 2012; Giesen and Oerlemans, 2013), regional-scale mass-balance estimates
from glaciological, geodetic or gravimetric observations (Huss and Hock, 2015; Kraaijenbrink
and others, 2017), or a combination of glacier and regional data (Hirabayashi and others, 2013;
Radić and others, 2014). Excluding mass-balance sensitivity models (Slangen and others,
2012), these sparse observations are used to calibrate between two and seven parameters in
each model, which affect the air temperature, precipitation, and mass balance (Table 1).
Each model has at least one parameter affecting the mass balance (e.g., degree-day factors,
temperature sensitivity, or mass-balance gradient), and seven of the nine models cited
above use a precipitation correction factor to correct for potential biases in the climate data.

Given the lack of systematic observations, the resulting models are over-parameterized, i.e.,
there are not enough data to definitively calibrate each parameter, causing previous models to
determine one ‘best fit’ solution accompanied by a sensitivity analysis. This is problematic as
many combinations of parameter sets could yield results within the reported errors, and exist-
ing studies do not include rigorous analysis of the model parameter uncertainty. Furthermore,
models that rely on limited mass-balance observations must transfer model parameters to gla-
ciers without observations, which introduces another source of uncertainty. Fortunately,
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automated methods and archives of surface elevation measure-
ments from satellite remote-sensing observations can now provide
geodetic glacier mass-balance estimates on a regional to global
scale (e.g., Brun and others, 2017; Shean and others, 2020).
These unprecedented datasets can be used for systematic model
calibration, with the ability to capture sub-regional spatial
variability.

This study presents a new calibration scheme for a large-scale
glacier evolution model that uses extensive geodetic mass-balance
measurements with a Bayesian inverse model to determine the
model parameters and their corresponding uncertainties for
each glacier. The calibration scheme is applied to every glacier
in High Mountain Asia (RGI Consortium, 2017). Properties of
the posterior distribution, such as mean and standard deviation,
are estimated using an iterative method, a form of Markov
chain Monte Carlo (MCMC), to obtain samples from the distri-
bution. Convergence diagnostics are used to assess the perform-
ance of the MCMC methods with a focus on determining an
acceptable chain length that accurately estimates the model para-
meters while utilizing computational resources efficiently.

2. Glacier Evolution Model

The Python Glacier Evolution Model (PyGEM) (Rounce, 2019;
Rounce and others, 2020) is used to model the mass change of
glaciers in High Mountain Asia from 2000 to 2018. PyGEM is
an open-source glacier evolution model that calculates the
monthly climatic mass balance, bclim (m w.e.), of each 10 m eleva-
tion bin for each glacier according to:

bclim = a+ c+ R, (1)

where a is ablation, c is accumulation, and R is refreeze (all have
units of m w.e., mass losses are negative). The climatic mass bal-
ance for each elevation bin is aggregated to calculate the glacier-
wide specific mass balance, B, according to:

B =
∑n

bin=0 bclim,bin Sbin
S

, (2)

where S is the glacier area and bin refers to each elevation bin.
Note the model does not account for frontal, internal, or basal
ablation.

Ablation for each month, m, is calculated according to:

am,bin = fsnow/ice/firn · Tm,bin · n if Tm,bin ≥ 0
0 if Tm,bin , 0

{
, (3)

where f is the degree-day factor of snow, ice or firn (m w.e. d−1°C−1),
Tm,bin is the monthly mean near-surface air temperature (°C), and n

is the number of days in each month. Tm,bin is calculated as a
function of the temperature bias, Tbias, according to:

Tm,bin = Tm,GCM + lrm,GCM · (zref − zGCM)+ lrm,glac

· (zbin − zref )+ Tbias, (4)

where Tm,GCM is the monthly temperature from the climate data
based on the nearest neighbor; lr is the monthly temperature lapse
rate used to account for elevation differences between the GCM’s
underlying topography and the glacier, lrm,GCM, and elevation dif-
ferences across the glacier, lrm,glac; and zref is the glacier’s reference
(median) elevation, zGCM is the elevation corresponding to Tm,

GCM, and zbin is the elevation of the elevation bin. In this study,
lrm,GCM and lrm,glac are assumed to be equal and are derived
from temperature data at various pressure levels.

Accumulation is calculated according to:

cm,bin = dm,binPm,bin, (5)

where δm,bin is the monthly fraction of solid precipitation and
Pm,bin is the monthly precipitation (m w.e.). δm,bin is based on
Tm,bin and the temperature threshold (Tsnow, °C) used to differen-
tiate between liquid and solid precipitation as follows:

dm,bin=
1 if Tm,bin ≤ Tsnow − 1
0 if Tm,bin ≥ Tsnow + 1

0.5+ Tm,bin − Tsnow

2
if Tsnow − 1,Tm,bin , Tsnow + 1

⎧⎪⎨
⎪⎩ .

(6)

Monthly precipitation is calculated as a function of the precipi-
tation factor, kp, according to:

Pm,bin = Pm,GCM · kp · (1+ dprec · (zbin − zref )), (7)

where Pm,GCM is the monthly precipitation from the climate data
based on the nearest neighbor and dprec is the precipitation gradi-
ent (% m−1).

Potential refreeze, Rpotential, is calculated as a function of the
weighted annual mean air temperature, Ta (°C), (Woodward
and others, 1997) according to:

Rpotential = −0.0069 · Ta + 0.000096. (8)

The potential refreeze is reset every October. Any melt that
occurs is assumed to refreeze until the potential refreeze is
exhausted. The model assumes refreeze occurs in the snow
pack, as opposed to being superimposed ice, so refreeze cannot

Table 1. Calibration parameters and spatial domain of glacier mass balance data used for calibration in recently published large-scale glacier evolution models

Study Study extent Parameters Spatial domain of data

Raper and Braithwaite (2006) Global (excl. A&G) T(2), P(1), MB(2) >200 glaciers
Radić and Hock (2011) Global T(2), P(3), MB(2) 36 glaciers
Marzeion and others (2012) Global (excl. A) P(3), MB(3) 255 glaciers
Slangen and others (2012) Global (excl. A&G) MB(1) 12 glaciers
Giesen and Oerlemans (2013) Global (excl. A&G) T(1), P(2) 89 glaciers
Hirabayashi and others (2013) Global MB(2) 295 glaciers, RGI regions
Radić and others (2014) Global T(2), P(3), MB(2) 36 glaciers, RGI subregions
Huss and Hock (2015) Global T(1), P(1), MB(1) RGI regions
Kraaijenbrink and others (2017) HMA P(1), MB(1) HMA subregions

Parentheses show the number of parameters that were calibrated by each model that related to temperature (T: temperature bias, on-glacier lapse rate, off-glacier lapse rate), precipitation
(P: precipitation factor, precipitation gradient, temperature threshold for liquid/solid precipitation), and/or mass balance (MB: degree-day factor of snow and/or ice, temperature sensitivity,
bias correction, melt temperature threshold, mass balance gradient).
A, Antarctic periphery; G, Greenland periphery; HMA, High Mountain Asia; RGI, Randolph Glacier Inventory (RGI Consortium, 2017).
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exceed the snow depth in any given month. Refreeze cannot be
negative either.

Glacier dynamics, which allows the glacier to advance/retreat
and alters the surface elevation, is accounted for annually by
redistributing the glacier-wide mass change over each elevation
bin using mass redistribution curves from Huss and Hock
(2015). These curves, which were derived from 34 glaciers in
the Swiss Alps (Huss and others, 2010), assume no surface lower-
ing at the glacier’s highest elevation and maximum surface lower-
ing at the terminus.

The model requires glacier inventory and climate data. We use
elevation-dependent binned glacier area and width from the
RGIv6.0 (RGI Consortium, 2017) and glacier thickness data from
Huss and Farinotti (2012) that have been updated to RGIv6.0.
The model is forced with monthly air temperature and precipitation
data from the ERA-Interim Climate Reanalysis project (Dee and
others, 2011) from 2000 to 2018. ERA-Interim has a native reso-
lution of 0.7°, which is bilinearly interpolated to a resolution of 0.5°.

2.1. Model parameters

The model parameters requiring calibration are the degree-day
factor of snow ( fsnow, mm w.e. d−1°C−1), precipitation factor
(kp, -), and temperature bias (Tbias, °C). The precipitation factor
and temperature bias are a multiplier and additive correction
that are used to correct the precipitation and air temperature
data from ERA-Interim, respectively. These adjustment factors
are needed to account for any biases in the climate data and
downscale the data from its coarse resolution to each glacier.
Additionally, these model parameters are used to account for
any processes (e.g., debris cover, firn densification) that are not
explicitly included in the glacier evolution model.

For the other model parameters, we either assume reasonable
values or estimate them from climate data in order to reduce the
number of model parameters. Specifically, the degree-day factor of
snow is assumed to be 70% of the degree-day factor of ice, and the
degree-day factor of firn is assumed to be the mean of the degree-
day factor of snow and ice. We assume the precipitation gradient
is 0.01% m−1 and the temperature threshold for the snow–rain
transition is 1°C (Huss and Hock, 2015).

2.2. Calibration data

Geodetic mass-balance observations of 95,086 glaciers (99.6% of
the total glacier area) (Shean and others, 2020) in High
Mountain Asia were used to calibrate the glacier evolution
model. These observations were derived from trends fit to at
least five, and sometimes more than 50, digital elevation models
per glacier derived from all available cloud-free Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) and DigitalGlobe WorldView-1, WorldView-2,
WorldView-3 and GeoEye-1 stereo images between 2000 and
2018 (Shean and others, 2016). Given the nearly complete cover-
age of glaciers in High Mountain Asia, the specific glacier-wide
mass balances were computed as the mean elevation change
rate for each glacier polygon, which was converted to mass bal-
ance using a density of 850 kg m−3 (Shean and others, 2020).

We quality controlled these mass balances by removing outliers
using a 3-sigma filter. For 22 subregions defined by Bolch and
others (2019), 954 glaciers (0.4% of the total glacier area) were
identified as outliers based on a comparison of individual glacier
mass-balance estimates and the regional mean. Additionally, the
uncertainty associated with the mass-balance estimates of individ-
ual glaciers ranged from 0.02 to 13.2 m w.e. a−1. Again, a 3-sigma
filter was used to identify and remove 1401 glaciers (0.5% of the
total glacier area) based on a comparison of the uncertainty

associated with the individual glacier mass balance and the mean
uncertainty of all the glaciers in High Mountain Asia. Glaciers
that were not measured or removed as outliers were assumed to
have a specific mass balance and uncertainty equal to the regional
specific mass balance and the mean uncertainty associated with all
the glaciers in their respective region.

The mean specific mass balance for all glaciers in High
Mountain Asia from 2000 to 2018 was −0.20 ± 0.21 m w.e. a−1,
but varied greatly by region ranging from −0.65 ± 0.41 m w.e.
a−1 in Hengduan Shan to 0.05 ± 0.18 m w.e. a−1 in Western
Kunlun Shan. The uncertainty associated with the individual gla-
cier mass-balance estimates ranged from 0.02 to 1.31 m w.e. a−1

with a median of 0.31 m w.e. a−1. These results are consistent
with Brun and others (2017) and emphasize the importance of
using subregional data to calibrate large-scale glacier evolution
models.

3. Bayesian inverse model

Bayesian inference provides a useful framework for assessing
parameter uncertainty. Bayes’ Theorem combines prior
knowledge of the model parameters with observed data to create
a posterior probability distribution, p(θ|y):

p(u|y) = p(u)p(y|u)
p(y) , (9)

where θ represents the parameter(s) of interest, and y is the data.
p(θ) is the joint prior distribution for θ, which reflects what is
known about θ before any data are collected. p( y|θ) is the
likelihood, which is the probability distribution of the data
given a particular value of θ. p( y) is the marginal distribution
of the data, also called the prior predictive distribution (Gelman
and others, 2014), defined as:

p(y) =
∫
p(u)p(y|u)du, (10)

which can also be considered the normalization constant that
makes p(θ|y) integrate to 1. p(θ|y) is the joint posterior distribu-
tion for θ given the data y. The mean and variance of the joint
posterior distribution provide information about the most plaus-
ible model parameters and the uncertainty associated with those
parameters given the observations.

3.1. Inversion

Given the non-linear data-generating process:

Bobs = F(u)+ 1, (11)

where Bobs is the observed specific mass balance, F(θ) is our for-
ward model (PyGEM, see Section 2), θ are the three model para-
meters: precipitation factor (kp), temperature bias (Tbias), and
degree-day factor of snow ( fsnow), and ε is the error associated
with the observation; we seek to determine the distribution of
parameters, θ, consistent with observations. The error, ε, is
assumed to be normally distributed with a mean of zero and a
standard deviation, σ, derived from the processing of the geodetic
mass-balance observations (Shean and others, 2020). Note that ε
does not account for any uncertainty associated with how well the
glacier evolution model actually represents reality as quantifying
uncertainty associated with the model physics and input data is
beyond the scope of this study.
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The likelihood function, p( y|θ), can therefore be described as:

p(y|u)/ c1(u) c2(u)
1

s
				
2p

√ e−(B−F(u))2/2s2
, (12)

where ψ1 and ψ2 are potential functions (Jordan, 2004) that
impose two physical constraints. The first potential function,
ψ1, ensures the modeled mass balance is not less than the mass
balance associated with completely melting the glacier, Bmax_loss:

c1(u) = 0 if F(u) , Bmax loss

1 if F(u) ≥ Bmax loss

{
. (13)

The second potential function, ψ2, ensures the climatic mass
balance of the lowermost bin, bclim,binlowest , is negative for at least
1 year, i.e., the glacier has an ablation area:

c2(u) = 0 bclim,binlowest (u) ≥ 0 for every year
1 bclim,binlowest (u) , 0 for at least one year

{
. (14)

The constraints ensure the proposed sets of non-physical
model parameters are rejected.

3.2. Empirical Bayes and prior distributions

A preferable solution would be to employ a hierarchical model
that jointly models glaciers in a (sub)region, which allows for
the borrowing of information from nearby glaciers. Such a
model would assume that the observations of each glacier are con-
ditionally independent, but the parameters themselves would be
assumed, through their prior distribution, to be drawn from a
common underlying population (Carlin and Louis, 2008;
Chapter 5). This hierarchical model could be applied to each of
the 22 subregions (Bolch and others, 2019) as follows:

p(u,w|y)/ p(y|u,w)p(u,w)

/
∏ny
i=1

[ p(yi|ui)p(ui|w)]p(w), (15)

where θi is the set of model parameters for glacier i, yi is the obser-
vation for glacier i, w represents the regional prior parameters,
and p(w) is therefore the regional joint prior distribution.
Unfortunately, simultaneous inference over all glaciers is
intractable.

We therefore approximate p(w) as p(w|y) by computing a priori
estimates for each glacier in each region (detailed below, Fig. 1),
which is computationally cheap, and then fit normal and gamma
distributions to the resulting histograms. This procedure is com-
monly used in mixed-effects models (such as the one in this
study), where it is referred to as empirical Bayes (Efron, 2010).

The joint prior distribution reflects our knowledge of each par-
ameter prior to any observations. Independent prior information
for the degree-day factor of snow is available from glaciers from
various regions around the world. Braithwaite (2008) compiled
these data and found a mean ± standard deviation of 4.1 ±
1.5 mm w.e. d−1°C−1. Based on these data, we assume the prior
distribution for the degree-day factor of snow is a truncated nor-
mal distribution with the given mean, μ, and standard deviation,
σ, truncated at 0 and ∞ to ensure positivity:

p( fsnow) = NT(m,s, 0,1). (16)

For the temperature bias and precipitation factor, no inde-
pendent data are available due to a lack of meteorological

observations, especially at high altitudes where the glaciers reside.
In Central Asia, a comparison of air temperature observations
with various reanalysis datasets, including ERA-Interim, found
the air temperature agreed well with local observations (average
absolute error between −0.6 and 1.6°C), but also identified
minor differences between datasets in the air temperature trends
from 1980 to 2011 in select subregions (Hu and others, 2014).
Conversely, precipitation has been a great source of uncertainty
in High Mountain Asia with many studies concluding that pre-
cipitation at high altitudes is highly inaccurate and that some
regions need to be corrected by up to a factor of 10 (Immerzeel
and others, 2015; Dahri and others, 2016; Wortmann and others,
2018).

Given this information, we first use a simple optimization
scheme to fit the precipitation factor and temperature bias to
the observed specific mass balance of every glacier in High
Mountain Asia based on a modified version of Huss and Hock
(2015) (Fig. 1). This initial optimization enables us to approxi-
mate the regional joint prior distribution, p(w), of the temperature
bias and precipitation factor for each subregion. The optimiza-
tions are performed using the sequential least-squares minimiza-
tion function from the open-source SciPy statistical package
(Jones and others, 2001). Since precipitation is considered to be
more uncertain than the temperature data, the scheme first
attempts to optimize only the precipitation factor, and then incre-
mentally adjusts the temperature bias bounds to ensure the pre-
cipitation factor remains within its bounds.

The optimized parameters are then regionally aggregated by
the 22 subregions (Bolch and others, 2019) to develop prior dis-
tributions for each region. Specifically, the prior distribution for
the temperature bias is assumed to be a normal distribution
with a mean and standard deviation based on the regional
mean, mreg,Tbias

, and regional standard deviation, sreg,Tbias , derived
from the initial optimization of the temperature bias (Fig. S1):

p(Tbias) = N(mreg,Tbias
,sreg,Tbias ). (17)

The prior distribution for the precipitation factor is assumed
to be a gamma distribution, which ensures positivity, that has a

Fig. 1. Flow chart of the simple calibration scheme used to initially calibrate every
glacier in order to generate the regional marginal prior distributions for the tempera-
ture bias (Tbias) and precipitation factor (kp). The prior distribution for the degree-day
factor of snow (fsnow) is based on Braithwaite (2008). Bobs refers to the observed mass
balance.
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shape parameter, α, and rate parameter, β, estimated from the
regional mean, mreg,kp , and standard deviation, sreg,kp , of the ini-
tial optimization of the precipitation factor (Fig. S2):

b = mreg,kp

sreg,kp
(18)

a = bmreg,kp (19)

p(kp) = G(a,b). (20)

3.3. Markov chain Monte Carlo implementation

In practice, properties or characteristics of the posterior distribu-
tion p(θ|y) are difficult to evaluate analytically. MCMC methods
circumvent this issue by producing samples of the joint posterior
distribution that can be used to estimate the center, shape, and
spread of the marginal posterior distributions. Specifically,
MCMC methods are based on theorems that prove if the
Markov chain is run for enough steps, the chain converges to a
unique stationary distribution, and the resulting samples are
from the joint posterior distribution (Carlin and Louis, 2008).

The MCMC methods are implemented using the open source
PyMC 2.3.7 statistical package (Fonnesbeck and others, 2014).
Specifically, these methods are implemented using an adaptive
Metropolis-Hastings sampling algorithm, which uses normal pro-
posal distributions and single-component updating. To ensure the
Markov chain mixes well, the chain can be tuned throughout.
This is done by using a multiplicative factor to adjust the standard
deviation associated with the proposal distribution of each param-
eter with the goal of adjusting the proposal distribution such that
the acceptance rate is between 20 and 50% (Fonnesbeck and
others, 2014). For our model, the Markov chains were tuned
every 1,000 steps. Note these methods are computationally expen-
sive because the likelihood function requires the forward model to
be evaluated many times.

3.4. Identifiability

Each glacier has one observation and a corresponding estimate of
uncertainty (i.e., mean and standard deviation of the glacier-wide
specific mass balance), and three model parameters (precipitation
factor, temperature bias, and degree-day factor of snow). Given
how each model parameter affects the forward model (Fig. 2),
the lack of observations results in there being an infinite number
of parameter sets that will produce an exact match between the
modeled and observed mass balance, i.e., the model is over-
parameterized. For example, for glacier RGI60-13.26360, the
modeled and observed mass balance agree if the temperature
bias, precipitation factor, and degree-day factor of snow are −2°C,
1, 4.1 mm w.e. d−1°C−1; 0°C, 3.1, 2.6 mm w.e. d−1°C−1; or 0°C,
7.4, 5.6 mm w.e. d−1°C−1, respectively. Given our over-
parameterized problem, we must consider identifiability and its
implications for large-scale glacier evolution modeling.

Identifiability refers to how much information is gained about
the individual components of θ given the data y. Gelfand and
Sahu (1999) provide a formal definition of identifiability for a
simple Bayesian model with a likelihood function p( y|θ), where
θ is partitioned into θ1 and θ2. θ2 is said to be non-identifiable if

p(u2|u1, y) = p(u2|u1). (21)

In other words, θ2 is non-identifiable if ‘observing data y does
not increase our prior knowledge about θ2 given θ1’ (Gelfand and

Sahu, 1999). Mathematically one can prove that θ2 is non-
identifiable if the likelihood function can be reparameterized
such that the likelihood function is free of θ2. In practice, analytic-
ally proving a parameter in a complex model is non-identifiable is
difficult, sometimes nearly impossible, and instead non-
identifiability may be detected intuitively (Eberly and Carlin,
2000) or empirically (Renard and others, 2010).

Note that identifiability relies only on the likelihood function
and is independent of the joint prior distribution (Renard and
others, 2010). For our likelihood function, which includes the gla-
cier mass balance computed using PyGEM, each model parameter
clearly affects the mass balance (Fig. 2). Given that we only have a
single mass-balance observation that provides no information as
to which model parameters need to be modified, i.e., any model
parameter or combination of model parameters can be adjusted
such that the modeled mass balance agrees with the observation,
we can intuitively determine that each model parameter is clearly
non-identifiable (Renard and others, 2010).

3.5. Chain length and convergence diagnostics

One of the limitations of MCMC methods is the inability to know
when the chain has converged. Therefore, we rely on three diagnos-
tics (Gelman–Rubin statistic, Monte Carlo error, and effective sam-
ple size) to provide us with confidence that the chain has likely
converged to its stationary distribution. This enables us to confi-
dently sample from the joint posterior distribution and use ordin-
ary estimators to evaluate the model parameters and their
respective uncertainty. In an ideal setting, multiple long chains
would be run for each glacier such that chain convergence could
be assessed using a suite of diagnostics. However, this quickly
becomes computationally prohibitive since each step in the chain
requires the mass balance to be computed by PyGEM. Therefore,
we need to determine the acceptable number of steps required
for us to be confident that the chain has converged while using
our computational resources efficiently.

For each of the three RGI regions in High Mountain Asia,
1,000 glaciers were randomly selected to determine the appropri-
ate number of steps required for the Markov chain to converge.
For each of these glaciers, three chains of 25,000 steps using over-
dispersed starting points (one at the center and one at each of the
end points of the 95% confidence interval) were generated. The
overdispersed starting points helped determine if the chains con-
verged to the unique stationary distribution. The amount of
burn-in, i.e., the number of steps discarded at the start of the
chain, was also investigated.

Fig. 2. The modeled mass balance for glacier RGI60-13.26360 as a function of the
temperature bias (°C), using three different precipitation factors (kp, -) and degree-
day factors of snow ( fsnow, mm w.e. d−1°C−1). The observed mass balance ± 3 stand-
ard deviations is shown by the horizontal gray line and shading, respectively.
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The Gelman–Rubin statistic uses multiple chains to compare
the variance within each chain to the variance between chains
for each parameter (Gelman and others, 2014). If the
within-chain and between-chain variances are significantly differ-
ent, the chain has likely not converged; while if they are similar,
the chain has potentially converged. An upper threshold of 1.1
is used to assess possible convergence (Flegal and others, 2008;
Gelman and others, 2014). Since successive steps from the
Metropolis-Hastings algorithm are inherently correlated, the
effective sample size is used to estimate the number of independ-
ent samples generated for each parameter. A threshold of 100 is
used to ensure enough independent samples have been generated
(Gelman and others, 2014) such that we can be confident in esti-
mating 95% confidence intervals for the model output.

The Monte Carlo error is an estimate of the simulation error,
which does not indicate chain convergence, but rather provides
information regarding the quality of the reported ordinary estima-
tors such as the mean and standard deviation (Flegal and others,
2008). We normalize the Monte Carlo error by the standard devi-
ation of the posterior predictive distribution for the mass balance or
the marginal posterior distribution for each model parameter. A
high value indicates the uncertainty associated with the ordinary
estimator is dominated by simulation error, while a low value indi-
cates the uncertainty associated with the ordinary estimator is
informed by the data and priors. We set a target threshold of
10%, but acknowledge that a high value is not necessarily cause
for concern since it could reflect that the spread in the posterior
is very small. The Monte Carlo error is computed using overlap-
ping batch means with a batch size equal to the square root of
the chain length.

The acceptable chain length is considered to be the value at
which 90% of the glaciers pass the threshold associated with
each diagnostic. A single chain with this acceptable number of

steps is then run for each glacier in High Mountain Asia. These
single chains are evaluated using only the Monte Carlo error
and the effective sample size, since the Gelman–Rubin statistic
requires multiple chains. This ensures that the subset of glaciers
used to estimate the chain length is representative of the greater
region.

4. Results

4.1. Chain length

Three chains of 25,000 steps for 1,000 glaciers in each of the three
major RGI regions in High Mountain Asia were used to evaluate
the performance of the MCMC method and determine the
acceptable number of steps that should be used when calibrating
all the glaciers. Figure 3 shows an example of how increasing the
chain length improves convergence for two example glaciers. The
posterior predictive distributions of the mass balance for both gla-
ciers show that after 10,000 steps, the distributions agree well with
the center, shape, and spread of the observations (Figs 3a, b). This
good agreement is typical for most glaciers and expected since
the model is over-parameterized. Glaciers with poor agreement
indicate that the posterior predictive distribution gains more
information from the joint prior distribution than the data (e.g.,
Figs S3–S5), which could be the result of an inappropriate joint
prior distribution, poor model physics, and/or erroneous data
(see Section 5.1). More importantly, the 10,000 step chains con-
verge to the same distribution regardless of the overdispersed
starting point, while the 2,000 step chains clearly have not con-
verged. The posterior distributions of the model parameters also
show the chains roughly converge after 10,000 steps and become
smoother since the chains comprise more independent samples.

Fig. 3. Observed and predictive posterior distribution for the
mass balance (a, b) along with prior and posterior distribu-
tions for the precipitation factor (c, d), temperature bias
(e, f), and degree day factor of snow ( fsnow) (g, h) for glaciers
RGI60-13.26360 (left column) and RGI60-14.08487 (right
column) showing convergence of chains with 2,000 and
10,000 steps (first 1,000 steps discarded as burn-in) and
overdispersed starting points.
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Chain convergence for the 3,000 glaciers was quantitatively
assessed using the Gelman–Rubin statistic, Monte Carlo error,
and effective sample size. Figure 4 shows the 80% credibility
intervals for each metric, i.e., the value for which 90% of the gla-
ciers pass a given threshold. As the chain length increases, the
Gelman–Rubin statistic and Monte Carlo error decrease while
the effective sample size increases. The Gelman–Rubin statistic
indicates the chains converge quickly. The Monte Carlo error
is well below 10%, which indicates that the uncertainty asso-
ciated with the mass balance and model parameters is domi-
nated by the data as opposed to the numerical error. The
effective sample size for the mass balance is an order of magni-
tude greater than the individual model parameters meaning the
autocorrelation for the model parameters as a group is low, but
much higher for each parameter independently. The precipita-
tion factor and degree-day factor of snow generate the least
number of independent samples and therefore dictate how
long the chains should be.

For a chain length of 10,000 steps, 90% of the glaciers had an
effective sample size >100 for the mass balance and all model
parameters (Fig. 4). Therefore, a chain length of 10,000 steps
was selected for all the glaciers in High Mountain Asia. The num-
ber of burn-in steps was found to have a negligible impact on the
chain convergence metrics, and more-or-less only reduced the
effective sample size by the percentage of steps discarded.
Therefore, if using these model parameters to run simulations,
the initial 2% of the chain should be discarded (Geyer, 1992).

For all the glaciers in High Mountain Asia, convergence was
assessed using only the Monte Carlo error and effective sample

size (Fig. S6). The normalized Monte Carlo error for which
90% of all the glaciers in High Mountain Asia were below was
2%, 7%, 6%, and 6% for the mass balance, precipitation factor,
temperature bias, and degree-day factor for snow, respectively,
thereby confirming that the uncertainty of the posterior distribu-
tions is driven by the data and not the numerical error.
Furthermore, more than 90% of all glaciers had an effective sam-
ple size greater than 1915, 115, 177, and 167 for the mass balance,
precipitation factor, temperature bias, and degree-day factor of
snow, respectively, which confirms that a chain length of 10,000
steps generates a sufficient number of independent samples.

4.2. Spatial distribution of mass balance and model
parameters

As expected for an over-parameterized problem, the mean mass
balance of the predictive posterior distributions of
−19.73 Gt a−1 agrees well with the observed mass balance of
−19.36 Gt a−1 for all glaciers in High Mountain Asia from 2000
to 2018. The mean and observed mass balance agree well both
spatially across High Mountain Asia and for larger glaciers
(Fig. 5). We use the z-score, defined as the difference between
the mean modeled and observed mass balance normalized by
the standard deviation of the mass-balance observation, to assess
the agreement between the modeled mass balance and the obser-
vation of each glacier. For 99% of larger glaciers (>5 km2), the
modeled mass balance is within 1 standard deviation of the
observed mass balance (absolute z-score <1). For smaller glaciers
(<5 km2), 3% of them have larger discrepancies (absolute z-score

a b c

d

g h i

j k l

e f

Fig. 4. The convergence metrics (Gelman–Rubin statistic, R̂;
Monte Carlo error, MCE; and effective sample size, n) as a
function of the chain length for the mass balance, B (a–c),
precipitation factor, kp (b–f), temperature bias, Tbias (g–i),
and degree-day factor of snow, fsnow ( j–l). The line and fill
represent the median and 80% credibility intervals (where
90% pass the given threshold) for the subset of 3,000 test
glaciers. The dashed line shows the target value for each
metric. The Monte Carlo error is normalized by the standard
deviation of the posterior distribution.
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>1) indicating that their posterior predictive distributions are
being informed more by the joint prior distribution than the
data. This is particularly apparent for small glaciers with very
positive (>0.5 m w.e. a−1) or negative (<−1.5 m w.e. a−1) observed
mass balances (Fig. 5b inset).

The spatial distribution of the mean model parameters shows
significant regional differences along the front of the Hindu Kush
Himalaya and in the interior around the Karakoram and Western
Kunlun Shan (Fig. 6). The mean precipitation factor shows a
strong orographic effect with precipitation factors much greater
than 1 on the windward (south western) side of the Hindu
Kush Himalaya and near or less than 1 on the leeward side.
Precipitation factors are also high across the Nyainqentanglha,
Gangdise Mountains, and Tibetan Interior Mountains. The
mean temperature bias is near zero for most of High Mountain
Asia with the exception of positive values in the Karakoram and
Western Kunlun Shan and negative values in Nyainqentanglha.
Similar to the precipitation factor, the degree-day factor of snow
had lower values on the windward side of the Hindu Kush
Himalaya and higher values on the leeward side; although the
spatial variation across the rest of High Mountain Asia was fairly
non-homogeneous.

The abrupt change in the precipitation factor at the front of the
Hindu Kush Himalaya suggests the resolution of the ERA-Interim
climate data (∼0.7°) is too coarse to resolve spatial variations in
climate caused by the steep topography. The lowest precipitation
factors and highest temperature biases are found in the interior in
the Karakoram and Western Kunlun Shan (Figs 6a, b).
Interestingly, the Karakoram and Western Kunlun Shan have
the most positive mass balances, so one might expect the precipi-
tation factors to be higher in these regions. The low precipitation

factors and high temperature biases suggest that either the climate
data have significant biases or the model physics (e.g., debris
cover, glacier dynamics, firn densification, response time to cli-
mate forcing) may not be properly accounted for in this region.
Hence, caution should be used when interpreting spatial patterns
in these model parameters.

4.3. Identifiability

Each of the three model parameters is non-identifiable because
the model is over-parameterized and the data do not provide
any information as to which parameter needs to be modified in
order for the modeled mass balance to agree with the observa-
tions. However, the data do provide information as to how the
parameters must be modified as a group in order for the modeled
mass balance to agree (Fig. 2), so the mass balance is well-
estimated. Histograms of the correlation between the mass bal-
ance and model parameters for the 10,000 step chains of each gla-
cier support the fact that the data informed the model parameters
as a group, since each model parameter was only weakly corre-
lated with the mass balance (Fig. 7).

The correlation histograms also show the extent to which the
various parameters compensate for one another. The precipitation
factor and temperature bias were the most correlated parameters
with a mean correlation coefficient of 0.39, followed by the pre-
cipitation factor and degree-day factor of snow with a mean of
0.33. The positive correlation reflects the redundancy caused by
the over-parameterization, e.g., increasing the precipitation factor
increases the accumulation, which can be compensated for by
increasing the melt via increasing the temperature bias or degree-
day factor of snow. Conversely, the negative correlation between

Fig. 5. (a) The difference between the mean of the posterior predictive distribution (B) and observed specific mass balance (Bobs) showing the spatial distribution
aggregated to 0.5° grids, and (b) the z-score of the mean of the posterior predictive distribution as a function of glacier area for every glacier in High Mountain Asia.
The inset shows a zoomed in view of the smaller glaciers. Gray outlines show 22 subregions from Bolch and others (2019).
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the temperature bias and degree-day factor of snow is expected as
they both affect ablation.

The comparison of the marginal prior and posterior distribu-
tions shows how much the data informed each model parameter
(Fig. 8). For all three parameters, the differences for the standard
deviation were typically negative meaning the uncertainty asso-
ciated with the model parameters was reduced. As for the
mean, only 17%, 25%, and 17% of all glaciers were near zero
for the precipitation factor, temperature bias, and degree-day fac-
tor of snow, respectively, which suggests that the center of the dis-
tributions was also informed by the data. The fact that there was
no consistent positive or negative shift in the mean is not surpris-
ing, since regional prior distributions were used.

5. Discussion

5.1. Model performance for small glaciers

The posterior predictive distributions of the modeled mass bal-
ance derived from the MCMC methods are informed by a com-
bination of the data and joint prior distribution. Given the lack
of precipitation and temperature data at high altitude that could
be used to develop prior distributions for the precipitation factor
and temperature bias, we developed regional priors based on a
modified version of the calibration scheme from Huss and

Hock (2015) (Fig. 1). Overall, the Bayesian model generates pos-
terior predictive distributions that more or less agree with the
observed data (Figs 5, 8a, b), which indicates the parameters are
being informed by the data. This is ideal because we typically
have more confidence in the data than in the priors. However,
for many small glaciers (<5 km2) with very negative or positive
mass balances, the posterior distribution is primarily informed
by the priors. This also occurs for 1% of larger glaciers. Given
the model is over-parameterized, these glaciers are particularly
interesting because they indicate that (a) the priors are inappro-
priate, (b) model physics are poorly accounted for, or (c) there
are issues with the data.

One of the issues with the smallest glaciers (<0.1 km2) is that
they approach the minimum threshold for the methods used to
estimate the geodetic mass balance (Shean and others, 2020).
Since there are fewer pixels, these glaciers are inherently more
prone to larger errors, which is reflected in the uncertainty in
the mass-balance observations, i.e., smaller glaciers have higher
standard deviations. Furthermore, for 1,960 glaciers, all of
which are <1.5 km2, the observed mass balance exceeds the max-
imum modeled mass loss, i.e., the mass balance associated with
completely melting the glacier based on the initial glacier area
and ice thickness estimates. Given the limited glacier area and
large uncertainties associated with the ice thickness estimates,
which can underestimate the ice thickness by more than 60%

Fig. 6. Spatial distribution of the glacier area-weighted mean (a)
precipitation factor (kp), (b) temperature bias (Tbias), and (c)
degree-day factor of snow ( fsnow) over High Mountain Asia aggre-
gated by 0.5°. Gray outlines show 22 subregions from Bolch and
others (2019).
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(Farinotti and others, 2017), this issue may be due to the total gla-
cier volume being underestimated. Alternatively, the observed
mass balance may have an error or some combination of both.
Since there are limited measurements of ice thickness in High
Mountain Asia, the cause of this discrepancy is difficult to assess.
Nonetheless, this discrepancy is important to note because the
potential function explicitly prevents the sets of model parameters
that completely melt the glacier from being accepted, so these gla-
ciers are forced to be informed by the prior distributions instead
of the data (e.g., Fig. S3).

Small glaciers with very positive mass balance could also be the
result of errors in the mass-balance observations, so having the
posterior distributions be informed by the priors could be bene-
ficial. However, Shean and others (2020) found that the smaller
glaciers in each region typically had more positive mass balances,
which they hypothesized was due to their higher elevations, occu-
pying protected alcoves, or having higher amounts of accumula-
tion due to wind redistribution and/or avalanching. Since
PyGEM does not explicitly model solar radiation or account for
redistribution of snow due to wind or avalanching, both of
which would cause the mass balance to be more positive, the
model could have a negative bias for these particular glaciers.
Once again, the lack of information gained by the data could be
due to errors with the data or model physics. Regardless, since
the glacier model is meant for large-scale applications and trends
in glacier mass change and runoff are primarily driven by the lar-
ger glaciers, the potential issues associated with smaller glaciers
are minimal.

Another interesting case of glaciers to examine are those that
may have inappropriate prior distributions, i.e., they may signifi-
cantly deviate from the regional prior distributions. Glacier
RGI60-15.10755 (32 km2) is a good example of a glacier where
agreement with the observed mass balance is unable to be reached
because the regional prior distribution for the temperature bias
prevents the temperature bias from accepting higher values
(Fig. S4). Conversely, for glacier RGI60-15.12457 (5.4 km2), the
temperature bias needs to be more negative, but the regional
prior distribution prevents this (Fig. S5). Once again, these gla-
ciers call into question if the prior distribution is inappropriate,
if the model physics are properly accounted for, or if there is
some error with the data. Since these glaciers are larger and
have more of an impact on the regional trends in mass balance
and glacier runoff, these glaciers should be flagged to identify
the potential causes of these discrepancies. This could be imple-
mented by comparing the modeled and observed total mass

change (Gt) and flagging glaciers that exceed a user-specified
threshold.

5.2. Implications for glacier evolution models

The MCMC methods are an important advance for calibrating
large-scale glacier evolution models because they generate distri-
butions of viable parameters based on present-day mass-balance
observations that can be used for prognostic simulations. Since
the parameter sets were generated using Monte Carlo methods,
any simulations must also be done in a Monte Carlo way as
well, i.e., the joint posterior distribution should be used to gener-
ate a suite of viable model parameters. Using a suite of model
parameters will enable the simulations to capture the uncertainty
associated with the model parameters based on the observations
and properly account for any issues regarding non-identifiability.

One important question to consider is how non-identifiability
affects projections of glacier mass change and runoff. Since the
model parameters are non-identifiable, the joint posterior distribu-
tion will contain different combinations of model parameters that
result in equal (or near equal) values of the mass balance. For
example, consider two viable sets of model parameters that cause
the mass balance to agree with the observation: the first is a wetter
and warmer set, i.e., a high precipitation factor compensated by a
high temperature bias, and the second is a dryer and cooler set,
i.e., a low precipitation factor compensated by a low temperature
bias. Present-day glacier mass change will be the same and projec-
tions may also be similar, although there may be minor differences
that are caused by how the glacier hypsometry impacts the glacier
retreat. Conversely, the implications for glacier runoff are likely to
be significant both for present-day and future simulations. The wet-
ter and warmer set will generate more precipitation and melt result-
ing in more glacier runoff, while the dryer and cooler set will result
in substantially less glacier runoff.

Fig. 7. Histograms of the correlation coefficient (R) between all combinations of the
modeled mass balance (B), precipitation factor (kp), temperature bias (Tbias), and
degree-day factor of snow ( fsnow) for all glaciers in High Mountain Asia. The dashed
line shows the mean correlation coefficient.

Fig. 8. Histograms of the change (Δ, posterior–prior) in the mean and standard devi-
ation of the predictive posterior distribution and observed mass balance (a, b) and
the marginal posterior and prior distributions for the precipitation factor (c, d), tem-
perature bias (e, f), and degree-day factor of snow ( fsnow) (g,h) for all glaciers in High
Mountain Asia.
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Similarly, non-identifiability is important to consider for studies
that have used glacier models to infer biases in the temperature and
precipitation data (e.g., Immerzeel and others, 2015). If the para-
meters in the model are non-identifiable, then caution must be
used in interpreting the results. Given the range of applications
and socioeconomic importance of projecting changes in glacier
mass change and runoff, identifying these limitations is important
for driving future work. Specifically, the issue of non-identifiability
could be reduced by systematic observations of temperature and
precipitation at high altitude, snowline altitudes, and/or elevation-
dependent observations of the climatic mass balance, since these
observations would provide parameter-specific information.

5.3. Comparison with previous studies

The MCMC method developed in this study showcases the
amount of information that can be extracted from having a com-
plete survey of all the glaciers in a region. Compared to previous
studies that relied on 12–295 mass-balance observations to cali-
brate models globally (Table 1), the measurement of more than
95,000 glaciers in High Mountain Asia alone is unprecedented
and effectively removes any uncertainty caused by the transfer
of model parameters to glaciers without observations. This is
also a marked improvement over studies that relied on
regional mass-balance measurements (Huss and Hock, 2015;

Kraaijenbrink and others, 2017) as the level of detail enables
the model to be calibrated accurately on a sub-regional level.

The MCMC methods also enable the uncertainty associated
with the model parameters to be quantified based on the uncer-
tainty associated with the mass-balance observations. This is a
major improvement compared to previous studies that relied on
sensitivity tests or used the uncertainty associated with the
GCMs and RCPs to broadly estimate the uncertainty associated
with projections. Lastly, the MCMC methods enable the model
to explore the solution space thereby providing insight into how
the various parameters affect one another in this over-
parameterized problem. While the methods developed here do
not solve the over-parameterization issue that affects all
large-scale glacier evolution models, they do provide a framework
for understanding parameter uncertainty and for integrating more
observations in the future.

Since previous studies were also over-parameterized, we pro-
vide an example of the spatial variation of model parameters
derived using the calibration procedure from Huss and Hock
(2015). The calibrated mass balances from Huss and Hock
(2015) agree fairly well with observations (Fig. S7). Figure 9
shows the spatial trends for the precipitation factor and tempera-
ture bias are similar to those in our study (Fig. 6), which is unsur-
prising given the model physics and input data are nearly
identical. However, the Huss and Hock (2015) methods assume

Fig. 9. Spatial distribution of the area-weighted mean (a) pre-
cipitation factor (kp), (b) temperature bias (Tbias), and (c) degree-
day factor of snow ( fsnow) over High Mountain Asia aggregated
by 0.5° using the calibration scheme of Huss and Hock (2015).
Gray outlines show 22 subregions from Bolch and others (2019).
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the precipitation factor to be highly constrained (0.8–2.0). Since
the degree-day factor of snow is the second parameter that is
modified in their calibration scheme, this parameter gains a
great deal of information from the data. If needed, they also adjust
the temperature bias to address any remaining discrepancies
between the model and the observations. This method has two
major shortcomings: (1) the constraints placed on the precipita-
tion factor do not reflect how underestimated the precipitation
is in High Mountain Asia (Immerzeel and others, 2015; Dahri
and others, 2016; Wortmann and others, 2018), and (2) glaciers
with very positive mass balances that require precipitation factors
>2 will not find agreement with the observations. However, given
that both models are over-parameterized, one cannot definitively
conclude that their sets of model parameters are more or less
accurate than those generated by our calibration scheme. The
major difference is that their set of model parameters is simply
one viable combination, while our calibration scheme produces
more than 100 viable combinations for each glacier.

6. Conclusions

This study developed a new calibration scheme using a Bayesian
model (fitted using MCMC methods) and geodetic mass-balance
observations of more than 95,000 glaciers to calibrate every glacier
in High Mountain Asia. The convergence diagnostics, which
include the Gelman–Rubin statistic, Monte Carlo error, and effect-
ive sample size, suggest that a chain length of 10,000 steps con-
verges and produces an acceptable number of independent
samples such that properties of each model parameter, e.g., mean
and standard deviation, can be estimated from the joint posterior
distribution. The resulting calibrated parameters provide an unpre-
cedented level of spatial detail and can be used to quantify the
uncertainty associated with model parameters in future projections.

The model parameters also suggest that the resolution of cli-
mate data is too coarse to resolve variations in the temperature
and precipitation at high altitudes. However, given that the
model is still over-parameterized, caution must be used to avoid
over-interpreting spatial distributions of the model parameters
since these parameters may also be accounting for the aspects
of the model physics that are not properly accounted for.
Observations of temperature and precipitation at high altitudes
and higher resolution climate models could provide important
information concerning biases in climate data. Future work
should also seek to improve our understanding of various pro-
cesses that are currently missing or poorly constrained in
large-scale glacier evolution models, e.g., debris cover, firn densi-
fication, or glacier dynamics.

The acquisition of additional measurements that may provide
temporal and/or elevation-dependent information could also be
used to solve the over-parameterization issue. These observations
could include snowline altitudes, gravimetric measurements, or
improved geodetic mass-balance measurements that are able to pro-
vide additional temporal and/or elevation-dependent estimates of
mass balance. Fortunately, the Bayesian model presented in this
study is well-suited to ingest these additional observations and
their respective uncertainties. These continued advances with respect
to large-scale observations and model physics will greatly improve
model projections and provide confidence that the spatial distribu-
tion of model parameters reflect true biases in the climate data.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2019.91
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