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Following Lotz, Peck and Porta [9], a1 continuous linear operator from one Banach
space into another is called a semi-embedding if it is one-to-one and maps the closed
unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the
codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of
the main results established in [9] is that if X is a compact scattered space, then every
semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main
Theorem, (a)=>(b)).

In this paper we extend this result, as well as ([9], Corollary 12), to those Banach
spaces E which are hereditarily c0, i.e., such that every closed infinite-dimensional
subspace of E contains a further subspace that is isomorphic to c0. Theorem 1 proved
below shows, in particular, that every semi-embedding of such a space E into any F-
space is an isomorphism. Note that the class of hereditarily c0 Banach spaces includes
all spaces isomorphic to the C(X) Spaces for X compact scattered ([10], Main Theorem,
(5); cf. also [9], Main Theorem 11, (d)), in particular all co(r) spaces, and the separable
Banach space constructed by Hagler [5]. Trivially, if E is hereditarily c0, then so is
every closed subspace of E. It should be pointed out, however, that Hagler's space is not
isomorphic to a subspace of C(X) for X compact scattered; this follows from ([5],
Proposition 13) and ([10], Main Theorem, (4)).

Our second result, Theorem 2, is, in a sense, a converse to the above mentioned
special case of Theorem 1. It reveals, quite unexpectedly, that the existence of a non-
hereditarily c0 Banach space E such that, for £ equipped with any of its equivalent
norms, every semi-embedding of E is an isomorphism, would imply a negative solution
to the following well-known and long-standing problem of Bessaga and Pefczynski ([7],
Problem l.d.5): Does every infinite-dimensional Banach space contain an unconditional
basic sequence?

Theorem 1. Let £ = (£, ||-||) be a Banach space and F its closed subspace which is
hereditarily c0. Suppose that

( + ) for every closed infinite-dimensional subspace G of F there is a complemented
subspace H of E such that dim(G nH)=co and H has no subspace isomorphic to lx.

Then, T is a semi-embedding of E into an F-space, implies that T\F is an isomorphism.
Equivalently: If\-\ is a weaker F-norm (see [6]) on (E,\\• ||) such that the closed unit ball

B of(E, ||-||) is complete under |-|, then |-| and \\-\\ are equivalent on F.
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Proof. Suppose an F-norm | | satisfies the above assumptions and is strictly weaker
than || [| on F. We first show that F has a norm-closed infinite-dimensional subspace G
such that | | is strictly weaker than ||-|| on every infinite-dimensional subspace of G.

Since B is | • |-complete, and a fortiori \ • |-closed, the norm topology of F is polar with
respect to the (strictly weaker) |-|-topology of F. Hence, by a result of Kalton ([6],
Theorem 3.2 or [2], Theorem 2.4), we may find a normalised basic sequence («„) in
(F, ||-||) such that Z™=i K I < 0 ° . Let G be the norm-closed linear span of (un), and let
(fn)<=(G,\\-\\)* be the associated sequence bi-orthogonal to (un). Then sup||/n||<oo, from
which it follows easily that

- Z • 0 as n—KX>,

uniformly for xeBnG. Hence the identity map from (G,||-||) into (£,|-|) is compact. It
follows that G is as required.

Now, by applying the hypotheses of the theorem and passing to a suitable subspace
of G, we may assume that G is isomorphic to c0 and that G is contained in a
complemented subspace H of E such that H^l^. Moreover, using a suitable isomorph-
ism, we may identify G with c0 so as to have 11-1|̂ S11-1Ĵ o on G, where ||-(loo is the usual
sup-norm of c0.

Let (en) be the standard basis of co = G. Since, for each n, |-| is strictly weaker than ||-||
(or H'lloo) on lin{e,:i^n}, there is a block sequence (xn) of (en) such that ||xn||00'=l for all
n and

00

Z W<oo.
n = l

Let (t^eln and ||(tn)||oo^ 1- Since the "supports" of the xn's are pairwise disjoint, we
have

Z tfXi e B for all n;

furthermore,

Z ttX as m,n-*oo.

Since B is |-|-complete, the series Z"=i tn
xn is (subseries) convergent in (E,\-\) to a point

in B.
Let P be a continuous linear projection from E onto H. We will indicate two ways of

finishing the proof.

(I) From the above it follows that we may define a continuous linear operator

https://doi.org/10.1017/S0013091500016862 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016862


SEMI-EMBEDDINGS OF BANACH SPACES 165

/?:/„-»(£, ||-||) by

CO

R(tn)= E ten (|-|-convergence).
n = l

Let S = PK:/00-»(i/J||-||). Since the basic sequence (xn) is equivalent to the basis (en) of c0

([7], Proposition 2.a.l), S|co = i?|c0 is an isomorphism. By a result of Rosenthal ([11],
Proposition 1.2; cf. also [3] and [4]), there is an infinite subset M of f̂  = {l,2,...} such
that the restriction of S to the subspace lx(M) = {(tn) e lx: tn = 0 for n<£M}xlm is an
isomorphism. This is clearly impossible because Hj>lm.

(II) From the above we see that the series £" = x xn is subseries convergent in (E, \ • |),
and that the sum of each of its subseries is in B. We may therefore define a bounded
finitely additive vector measure [x:2N-y(H,||-||) by

H(A) = P\ Y, xn I (|' |-convergence).

Since H^>lx, a theorem of Diestel and Faires ([1], Theorem 1.4.2) implies n is
exhaustive, i.e., ||/i(,4n)||->0 for every infinite sequence (An) of pairwise disjoint subsets of
N. In particular as n({n}) = xn, we have ||xn||-»0, contradicting the fact that (x j was chosen
normalised in the norm H'Ua, equivalent to ||-|| on G.

Remarks. (1) Since the requirements imposed in Theorem 1 on the Banach space E
and its subspace F are isomorphism invariants, it is clear that the assertion remains
valid for E equipped with any of its equivalent norms.

(2) The condition (+) is satisfied in particular when

(a) Ejlm or
(b) F is complemented in E, or
(c) every subspace of F isomorphic to c0 contains a further subspace which is

isomorphic to c0 and complemented in E.

The simplest case when (a) or (b) holds is E = F.

Theorem 2. A Banach space E is hereditarily c0 if and only if it satisfies the following
two conditions:

(*) For E equipped with any of its equivalent norms, every semi-embedding of E into
another Banach space is an isomorphism.

(**) Every closed infinite-dimensional subspace of E contains an infinite unconditional
basic sequence.

Proof. In view of Theorem 1 and the above Remarks, only the "if" part needs a
proof. So assume conditions (*) and (**) are satisfied, and suppose E has a closed
infinite-dimensional subspace G which does not contain any isomorphic copy of c0.
Applying (**), we may assume that G has an unconditional basis. Since Gfic0, this basis
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is boundedly complete ([7], Theorem I.e. 10) and hence G is isomorphic to the
conjugate space Z* of a separable Banach space Z ([7], Proposition l.bA). We may
equivalently renorm E so that in the new norm, | | | | say, G becomes isometric to Z*. Let
B be the closed unit ball of (£, ||-||). There is a norm | | on G such that |y|^||.y|| for ye G
and BnG is |• |-compact. (If (zn) is a sequence dense in the unit ball of Z, then the
formula |_y|^^^°=i 2~"|y(zn| for yeG = Z* defines a norm on G which is smaller than ||-||
and induces the weak*-topology on B n G.) Now the formula

defines a norm on E such that

|x|i ^||x|| for all xeE and \y\t = \y\ for yeG.

Let Bt be the l^-closure of B. We claim that Bx is l^-complete and BczBx c3B.
First note that on the quotient space E/G the quotient norms ||-||~ and |-|i

corresponding to || • || and | • | t are equal (and make E/G a Banach space). Let Q:E-*E/G
be the quotient map. Now let a sequence (xJcB be l-^-Cauchy. Then (Qxn) is Cauchy
in E/G and hence converges to a point (e£/G. Since ||C|P^1, for each e>0 there is
zeE such that | |z | |^l+£ and Qz = (. Moreover, since ||<2(xn—z)|| -»0, there is a
sequence (yn)aG such that ||xn — z—yn||->•(); hence also

It follows that (yn) is |- ̂ -Cauchy. Since, for n large enough,

i.e., yne2{\+e){Br\G), and since BnG is |-^-complete, the sequence (yn) is
convergent to a point ye2(l+e)(B n G). Denoting x=y + zwesee that

and

Since x does not depend on e, we have ||x||^3. This concludes the proof of the claim.
Finally, let

evident that II

U>

! be the Minkowski functional of B1. From the above proof, it is
is a norm equivalent to ||-||, Br is the closed unit ball of (£, ||'||i),

is I'li-complete and Btr\G = BnG is (-^-compact. Hence the identity
map from (£, ||'||i) into the completion of (£, |-1-,_) is a semi-embedding that is not an
isomorphism.

Remarks. (1) Some parts of the above proof were inspired by the arguments used in
the proofs of Propositions 2 and 3, and by the Remark on page 235 of [9].
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(2) Let us recall that condition (**) is certainly satisfied when £ is a subspace of a
Banach space with an unconditional basis ([7], p. 27) or, more generally, a subspace of
an order continuous Banach lattice ([8], Theorem l.c.9).

(3) We do not know whether the condition (*) of Theorem 2 is equivalent to the
apparently weaker one: (*') Every semi-embedding of E (with the given norm) into
another Banach space is an isomorphism.
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