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Abstract

Type 2 diabetes, which is caused by both genetic and environmental factors, may be diagnosed using the oral glucose tolerance test (OGTT).
Recent studies demonstrated specific patterns in glucose curves during OGTT associated with cardiometabolic risk profiles. As the relative
contribution of genetic and environmental influences on glucose curve patterns is unknown, we aimed to investigate the heritability of these
patterns. We studied twins from the Danish GEMINAKAR cohort aged 18–67 years and free from diabetes at baseline during 1997–2000;
glucose concentrations were measured three times during a 2-h OGTT. Heterogeneity of the glucose response during OGTT was examined
with latent class mixed-effects models, evaluating goodness of fit by Bayes information criterion. The genetic influence on curve patterns
was estimated using quantitative genetic modeling based on linear structural equations. Overall, 1455 twins (41% monozygotic) had valid
glucose concentrations measured from the OGTT, and four latent classes with different glucose response patterns were identified. Statistical
modeling demonstrated genetic influence for belonging to a specific class or not, with heritability estimated to be between 45% and 67%.
During ~12 years of follow-up, the four classes were each associated with different incidence of type 2 diabetes. Hence, glucose response curve
patterns associated with type 2 diabetes risk appear to be moderately to highly heritable.
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Type 2 diabetes is a multicomplex, heterogenic disease with a
pathophysiology characterized by insulin resistance and β-cell
dysfunction (Kahn et al., 2014). Diabetes is diagnosed using spe-
cific criteria for plasma glucose (PG) concentrations either during
fasting [fasting plasma glucose (FPG) ≥7 mmol/l] or at 2 h
(PG ≥11.1 mmol/l) during an oral glucose tolerance test
(OGTT; American Diabetes Association, 2019). However, the
change in PG concentrations from healthy to the development
of type 2 diabetes is a continuous process, where increases in
glucose concentrations even within the normal range are found
to relate to long-term risk for type 2 diabetes (Faerch et al.,
2013; Hulsegge et al., 2017; Malmstrom et al., 2018; Tabak et al.,
2009). Recent studies have demonstrated that not only the FPG
and the 2-h PG values indicate the future risk of diabetes but also
the intermediate glucose concentrations during the OGTT, and
hence the shape of the glucose response curve may predict the risk
in subjects initially free from diabetes (Abdul-Ghani et al., 2010;
Hayashi et al., 2013; Hulman, Gujral et al., 2017; Hulman,
Simmons, Vistisen et al., 2017; Hulman et al., 2018). Hulman
and colleagues have shown that there is considerable heterogeneity
in the glucose response curves, and they demonstrated using latent
class modeling that four or five specific latent classes of OGTT
curve pattern appear, each associated with specific cardiometabolic

risk profiles as well as future diabetes risk (Hulman, Gujral et al.,
2017; Hulman, Simmons, Vistisen et al., 2017; Hulman et al.,
2018). However, it is somehow uncertain what affects a person’s
classification or ‘belonging’ to one of the classes of the OGTT curve
patterns, although it is also clearly related to age, body mass index
(BMI) and other cardiometabolic risk factors as demonstrated in
the previous studies (Hulman, Gujral et al., 2017; Hulman,
Simmons, Vistisen et al., 2017; Hulman et al., 2018).

Nevertheless, genetic variation has been reported associated
with both fasting glucose (Dupuis et al., 2010; Morris et al.,
2012) and 2-h PG after OGTT (Saxena et al., 2010). Also, we
and others have demonstrated using twin studies that fasting as
well as 2-h glucose levels are heritable, ranging from 12% to
62% (Liu et al., 2009; Schousboe et al., 2003), with a common
set of genetic factors influencing them both (Liu et al., 2009).

We therefore speculated whether genetic variation, to some
extent, could explain the heterogenic glucose response curve
patterns and thus aimed to investigate the relative contribution
of genetic and environmental factors for OGTT curve patterns
using a twin design.

Materials and Methods

Study Population

The GEMINAKAR cohort was initiated in 1997 as an observatio-
nal, prospective twin cohort study of 756 complete twin-pairs,
aged 18–67 years, recruited from the nationwide population-
based Danish Twin Registry during 1997–2000 as previously
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described (Pedersen et al., 2019; Schousboe et al., 2003). To be
included in the GEMINAKAR cohort, both twins in a pair had
to be willing to participate. Also, the twins had to be without
known diabetes or cardiovascular disease, be able to make a
progressive maximal bicycle test and not be pregnant or
breastfeeding.

The participants were followed up between 2010 and 2012,
irrespective of whether both twins in a pair were able to or wanted
to participate in the follow-up. A total of 1139 (∼79%) gave consent
to participate with clinical examination in the follow-up.

At baseline, the participants underwent a standardized OGTT
described below. Furthermore, at both baseline and follow-up,
the participants went through a clinical examination, including
anthropometric measurements and fasting blood sampling, and
answered questionnaires regarding dietary habits, lifestyle and
socioeconomic factors. Finally, the participants reported whether
they were diagnosed with diabetes mellitus and cardiovascular
disease by their physician.

For the current investigation, we excluded those with previously
diagnosed diabetes (self-reporting a physician diagnosis of diabetes
in questionnaire) or screen-detected diabetes (blood glucose ≥
6.1 mmol/l or 2-h blood glucose≥ 11.1mmol/l; Alberti & Zimmet,
1998) based on the OGTT. Our study population was thus limited
to 1455 twins who had valid data from the OGTT and were without
diabetes at baseline.

All participants gave written informed consent both at baseline
and follow-up. The study was approved by the regional Health
Research Ethics Committee of the Region of Southern Denmark
(baseline, S-VF-19970271; follow-up, S-20090065) and the SDU
Research & Innovation Organisation, in compliance with the
General Data Protection Regulation (17/50526).

Assessment of OGTT

At baseline, the twins in a pair were examined at the same day.
They underwent a standardized 2-h 75-g OGTT in the morning
between 8:00 and 11:00 am after a 10- to 12-h overnight fast
(Schousboe et al., 2003). After 15 min of rest, a capillary blood
sample was drawn immediately before ingestion of the glucose
solution, and two additional capillary blood samples were drawn
30 and 120 min later. Peripheral venous blood samples for insulin
measurements were drawn at the same time points.

Assessment of Type 2 Diabetes

At follow-up, incident type 2 diabetes was defined as self-reported
diabetes, FPG≥ 7.0 mmol/l, HbA1c ≥ 48 mmol/mol (6.5%) or
self-reported use of antidiabetic medicine.

Assessment of Covariates

At both baseline and follow-up, the clinical examination included
measurements of weight in light clothing (to the nearest .1 kg)
and height without shoes (to the nearest .1 cm), and BMI was
calculated as weight (in kg) divided by height squared (m2).
Waist circumference (to the nearest .1 cm) was measured midway
between the lowest rib and the iliac crest. Systolic and diastolic
blood pressures were measured after 30 min rest using a conven-
tional mercury sphygmomanometer and hands-free stethoscope
at the right arm. The average of three blood pressure measure-
ments was used (Benyamin et al., 2007).

At baseline, capillary blood glucose concentrations were mea-
sured by the glucose dehydrogenase oxidation method, and serum

insulin concentrations were measured using a commercial time-
resolved immunofluorometric assay (AutoDelfia; PerkinElmer,
Turku, Finland) as reported previously (Schousboe et al., 2003).
Cholesterol, high-density lipoproteins (HDLs) and triglycerides
were measured on fasting serum samples by a colorimetric method
(VITROS; Johnson & Johnson, New Brunswick, NJ, USA). Low-
density lipoproteins (LDLs) were calculated (Friedewald formula)
by subtracting HDL and (.45 × trigylceride) from total cholesterol
(Benyamin et al., 2007).

At follow-up, peripheral venous blood samples were collected
for HbA1c analysis carried out using a fully automated glycohemo-
globin analyzer (Tosoh G8 equipment, Tosoh Corporation,
Bioscience Division; Tosoh G8, Tokyo, Japan; Nielsen et al.,
2014). Also, FPG was determined using a hexokinase/G-6-PDH
principle (Integra 700/Roche equipment).

Zygosity of the twins was determined by nine polymorphic
DNA-based microsatellite markers with the PE Applied
Biosystems AmpFISTR Profiler Plus Kit (Perkin Elmer, Foster
City, CA, USA) (Schousboe et al., 2003).

Statistical Analysis

Baseline data are expressed as median (25th–75th percentiles) or
frequency (%). We tested differences between classes using the
Kruskal–Wallis test for continuous variables and chi-square for
categorical variables. Heterogeneity of glucose response during
OGTT was modeled with latent class mixed-effects models, which
for a predetermined number of latent classes identifies a grouping
of observations, resulting in the most homogenous trajectories of
glucose response within each group, following strategies applied
in similar studies on singletons (Hulman, Gujral et al., 2017).
We investigated 2–7 latent variables. For more than seven latent
variables, the sample size was not sufficient to achieve model
convergence. We evaluated goodness of fit by Bayes information
criterion and applied the model for a varying number of latent
classes. We allowed age and sex of the twin individuals to influence
the class membership and decided not to include the twin structure
to avoid overfitting with respect to the following twin analyses.

We used the classical twin models to determine the contribu-
tion of genetic and environmental factors to the variance in class
belonging. These models make use of the difference in genetic
relatedness between monozygotic (MZ) twins (sharing ~100% of
their segregating genes) and the dizygotic (DZ) twins (sharing
on average 50% of their segregating genes); hence, any greater
concordance between MZ twins than DZ twins is assumed to be
related to this genetic sharing. The modeling is based on structural
equations to estimate the best fit of the proportion of variance on
individual class membership that can be explained by variation in
additive genetic factors (A), dominant genetic factors (D),
common/shared environmental factors (C) and unique environ-
mental factors (E). The heritability is the proportional contribution
of genetic variance (AþD) to the total phenotypic variance
(Aþ CþDþ E). We investigated AE, DE, CE, ACE, ADE and
DCE models and decided on the preferred model on the basis of
optimal Akaike information criterion. In the models, we adjusted
the marginal (individual) effect of each twin for the persons own
sex and age.

Finally, we used logistic regression to examine the association
between class belonging and diabetes at follow-up. We adjusted
for age, sex, smoking status, cholesterol, HDL, BMI, waist circum-
ference and systolic and diastolic blood pressure and used robust
standard errors to account for dependency within twin-pairs.
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Wedecided not to carry out analyses stratified by age or sex, due
to the limited sample size.

The statistical modeling was performed in Stata (Release 15.
College Station, TX, USA: StataCorp LLC) and RStudio version
1.0.143 (RStudio, Inc., Boston, MA).

Results

The baseline characteristics of the study population are demon-
strated in Table 1. In total, 1455 twins, consisting of 708 complete

pairs (42%MZ) and 39 singular twins (33%MZ), had valid glucose
concentrations measured from the OGTT (>99% with all three
measures) and were without diabetes at baseline. We identified
four latent classes with different glucose response patterns com-
prising between 7% (n= 108, Class 4) and 37% (n= 554, Class
1) of the cohort (Figure 1).

For glucose, Class 1 experienced the lowest values, Class 2 mod-
erate values, and Class 4 the highest glucose values at all three time
points. However, Class 3, although characterized by third highest
glucose values at time zero (fasting) and 30 min, had the lowest glu-
cose values at 2 h. All classes had lower 2-h values than at 30 min,
but only Class 3 returned to fasting levels (Figure 1, Table 1).

For insulin, all four classes experienced almost same levels at
fasting; however, Class 1 experienced the lowest increase at time
30 min and second lowest at time 2 h. Class 3 had the highest insu-
lin response at 30 min and the steepest decline to the 2-h values,
compared with the three other classes. Class 4 experienced a high
and the highest levels at the following time points, respectively,
compared with the other classes. All classes had lower 2-h values
than at 30 min, but none of them returned to fasting levels
(Table 1).

The four classes differed in their baseline characteristics. In
general, Class 4 had the highest values of the cardiometabolic risk
factors compared with the three other classes, except for HDL and
waist circumference. Class 4 also had the highest mean age,
49 years compared with 34–40 years for the other three classes.
Class 3 had the lowest proportion of women, ~15% compared with
44–66%, and the highest proportion of smokers, ~49% compared
with 28–44% for the other three classes (Table 1, all p values <.05).

Fig. 1. Heterogenous blood glucose response curves during an OGTT among 1455
twins.

Table 1. Characteristics of study participants stratified according to glucose response latent class curve

n (%)
Overall
1455

Class 1
554 (37%)

Class 2
549 (36%)

Class 3
244 (16%)

Class 4
108 (7%) p Value*

Demographic and cardiometabolic characteristics

Age (year) 38 (29–45) 34 (25–40) 40 (34–50) 37 (29–43) 49 (41–54) <.0001

Female, n (%) 759 (52.2) 311 (56.1) 364 (66.3) 36 (14.8) 48 (44.4) <.001

Smoker, n (%) 476 (32.7) 153 (27.6) 157 (28.6) 119 (48.8) 47 (43.5) <.001

BMI (kg/m2) 24.0 (22.1–26.3) 23.6 (21.8–25.8) 23.8 (22.1–26.5) 24.5 (22.7–26.3) 25.0 (22.7–27.8) .0001

Waist (cm) 83 (76–90) 81 (74–87) 82 (75–90) 87 (82–95) 88 (81–95) <.0001

Cholesterol (mmol/l) 5.3 (4.6–6.1) 4.9 (4.3–5.6) 5.5 (4.8–6.3) 5.4 (4.6–6.1) 6.0 (5.3–6.9) <.0001

HDL (mmol/l) 1.5 (1.2–1.7) 1.4 (1.2–1.7) 1.5 (1.2–1.8) 1.4 (1.1–1.7) 1.5 (1.3–1.8) .0003

LDL (mmol/l) 3.2 (2.6–3.9) 2.9 (2.4–3.6) 3.4 (2.7–4.1) 3.3 (2.7–4.0) 3.8 (3.0–4.4) <.0001

Triglyceride (mmol/l) 1.1 (.9–1.5) 1.0 (.8–1.3) 1.2 (.9–1.6) 1.2 (.9–1.6) 1.4 (1.0–2.0) <.0001

Systolic blood pressure (mmHg) 115 (108–124) 112 (105–120) 117 (108–125) 118 (109–126) 123 (118–133) <.0001

Diastolic blood pressure (mmHg) 68 (61–75) 66 (60–71) 69 (61–77) 68 (60–75) 73 (68–80) <.0001

OGTT parameters

Fasting glucose (mmol/l) 4.7 (4.4–5.0) 4.5 (4.3–4.8) 4.8 (4.5–5.1) 4.8 (4.6–5.1) 5.3 (4.9–5.7) <.0001

30-min glucose (mmol/l) 8.4 (7.5–9.3) 7.1 (6.6–7.7) 8.8 (8.3–9.4) 9.1 (8.6–9.9) 11.1 (10.6–11.9) <.0001

2-h glucose (mmol/l) 6.0 (5.4–6.7) 5.6 (5.2–6.1) 6.7 (6.3–7.2) 5.0 (4.3–5.4) 7.4 (6.7–8.4) <.0001

Fasting insulin (pmol/l) 33 (24–46) 32 (24–44) 35 (25–46) 31 (22–43) 38 (23–54) <.0331

30-min insulin (pmol/l) 269 (188–386) 242 (178–334) 273 (195–399) 301 (208–420) 305 (185–426) <.0001

2-h insulin (pmol/l) 134 (84–210) 120 (80–172) 175 (119–254) 66 (39–107) 226 (140–360) <.0001

Note: Data are expressed as median (25th–75th percentiles) or frequency (%). *p values from χ2 analyses for categorical variables or Kruskal–Wallis test for continuous variables.
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There were marked differences in the various cardiometabolic risk
factors between classes; Class 3mean values were between Classes 1
and 2 for most of the risk factors except for waist circumference,
BMI and systolic blood pressure.

For 53% of the pairs (372 of 708 complete pairs), both twins in a
pair were assigned into the same class, consisting of a concordance
of 60% (176 of 295) in MZ pairs and 47% (196 of 413) in DZ pairs.
In comparison, the expected class concordance for two unrelated
twins in the cohort would be only 32%. The observed casewise
concordances for the individual classes varied between 42–70%
in MZ twins and 28–55% in DZ twins.

We fitted different models for each of the four classes.
Generally, the best-fitting models were the reduced AE models,
with estimates indicating that the additive genetic component
(the heritability) explained between 45% (95% confidence interval
[CI] [31%, 60%) and 67% (95% CI [55%, 78%]) and the unique
environmental component explained between 33% (95% CI
[22%, 45%]) and 55% (95% CI [40%, 71%]) of the total variation
of belonging to a specific class (Table 2).

At follow-up during 2010–2012 (~12 years after first intake),
1139 (79%) twins were participating and examined clinically;
3.9% were found to have type 2 diabetes. Among these, 1098
had been categorized by the glucose curve pattern class at baseline.
Participants in Class 4 had a more than five-fold higher incidence
of type 2 diabetes than the highest of the three other classes
(20% vs. .2–3.5%). A clear association was observed between
class belonging and diabetes. After adjustment for potential
confounders, the odds ratio of diabetes was >70 times higher
among participants classified into Class 4 (OR=75.5; 95% CI
[8.3, 689.0], p<.001) compared with participants classified into
Class 1. The large magnitude of this OR is biological implausible
and caused by limited number of cases in the classes; however, a
strong association, albeit most probably with less extreme true
OR, with diabetes was robust also after adjustments.

Discussion

In the present study, we used a latent class analysis to identify
four separate classes of glucose response to anOGTT, eachwith very
different incidence of type 2 diabetes ~12 years later. Furthermore,
we determined the relative environmental and genetic contribution
to the variation in belonging to one of the classes. The influence
of unique environmental factors of 33–55% illustrates the preventa-
tive potential of type 2 diabetes.

We have used the same data-driven method to identify latent
classes among subjects free from diabetes at baseline as Hulman
and colleagues did in three recent studies (Hulman, Gujral et al.,
2017; Hulman, Simmons, Vistisen et al., 2017; Hulman et al.,
2018); our study supports these studies both regarding curve shapes
and the risk of incident type 2 diabetes according to class belonging.
This is notable, as the four studies have differences among popula-
tion characteristics. For instance, one of Hulman et al.’s studies was
performed in an Asian Indian population (Hulman, Simmons,
Brunner et al., 2017), and ours in a European population, mean ages
ranged from 37–38 years to 49–50 years of age, and baseline fasting
glucose (FG) ranged from 4.7 to 5.4 mmol/l.

Also, the long-term risk of type 2 diabetes associated with these
patterns observed in the present study supports what has been
demonstrated in the previous studies: the class with high/the high-
est blood glucose values at all three time points has the highest risk
of diabetes. The study thus lends support to previous studies dem-
onstrating that using both the FPG and glucose concentrations
during the OGTT may improve the identification of subjects
who are at increased risk for type 2 diabetes (Abdul-Ghani
et al., 2010; Alyass et al., 2015; Hayashi et al., 2013). The differences
in risk between classes could be a result of the stage or trajectory for
the development of type 2 diabetes, for example, the higher the
mean age of the class, the higher the risk of type 2 diabetes of
the class. It is well known that age is an important risk factor
for type 2 diabetes, but still, we observed a much higher prevalence
of diabetes in Class 4 than could be anticipated due to age alone
(Guariguata et al., 2014; Wild et al., 2004). Also, the two articles
by Hulman et al. and our results demonstrated that type 2 diabetes
risk by class membership was independent of differences in well-
known risk factors, including age, sex and waist circumference
(Hulman, Gujral et al., 2017; Hulman et al., 2018). In further sup-
port of this, our results demonstrated that even with same sex, age
and genotype, twins in a pair may be classified into different
classes; for instance, 40% of the MZ twins in the complete pairs
were classified differently.

Our quantitative genetic modeling demonstrated a moderate-
to-high genetic influence on the probability of belonging to a
specific class, given that the co-twin already was in the same class
(Table 2). The high, but not full, concordance rate for theMZ twins
suggests that also environmental factors influence class belonging.
Furthermore, the higher concordance rates for the MZ twins than
the DZ twins, which again are higher than for two unrelated twins
in the cohort, indicate involvement of shared environment in the

Table 2. Casewise concordance rates showing probability of belonging to the same predicted latent class as the co-twin and best-fitting models to estimate the
quantitative contribution of environmental and genetic factors on variance within each class

Class Twins (n)

Twins in 372
concordant
pairs (n)

Twins in 336
discordant
pairs (n)a

Marginalb (95% CI)

Casewise concordance
(95% CI)

Parameter estimatesc

(95% CI)

MZ DZ MZ DZ MZ DZ A D C E

1 554 166 166 72 150 .38 [.35, .41] .70 [.63, .76] .55 [.49, .61] .67 [.55, .78] NA NA .33 [.22, .45]

2 549 124 166 94 165 .38 [.35, .41] .59 [.51, .66] .50 [.43, .56] .45 [.31, .60] NA NA .55 [.40, .69]

3 244 46 44 57 97 .17 [.15, .19] .45 [.35, .57] .33 [.24, .43] .48 [.29, .66] NA NA .52 [.34, .71]

4 108 16 16 28 48 .075 [.06, .09] .42 [.25, .61] .28 [.16, .45] .63 [.42, .84] NA NA .37 [.16, .58]

aTotal number also includes 39 twins without their co-twin in the present study.
bMarginal indicates the expected class concordance for two unrelated twins in the cohort.
cA: additive genetic effect, D: dominant genetic effect, C: shared environmental effect, E: unique (nonshared) environmental effect (including error), all reported with 95% CI.
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belonging of class. However, the modeling could not demonstrate
an ACE model that includes shared environment (i.e., shared
family-level environmental factors) but only an AE model; hence,
the influence of shared environment is either rather low or non-
existing or there is not enough power to detect. Finally, the models
estimated that the influence of genetic factors on belonging to a
specific class was moderate to high (heritability varied from 45%
to 67%). This demonstrates that, depending on class, environmen-
tal factors may have varying influence on belonging to a specific
class, ranging from 33% to 55% (Table 2).

We were not able to identify other studies that have examined
the heritability of the full OGTT curve patterns. But the values
agree with heritability estimates for the time-specific PG concen-
trations during an OGTT found in other studies. Although some
studies have found a higher heritability for fasting glucose
concentrations than for 2-h glucose concentrations (Almgren
et al., 2011), we and others have previously found the opposite
(Katoh et al., 2005; Liu et al., 2009; Schousboe et al., 2003).
Furthermore, Liu et al. (2009) performed bivariate analyses of
fasting and 2-h glucose concentrations and observed heritability
estimates very like ours.

As the different curve patterns are associated with different risk
of type 2 diabetes, finding the environmental factors that influence
the individual class membership would potentially bring new
understanding to the development of type 2 diabetes. Also,
together with the knowledge on environmental factors, more
insight would be gained by analyses of the G × E interaction.

Our study has several strengths, including the twin population
recruited from a population-based register and the longitudinal
study design. Moreover, the availability of three glucose measure-
ments for each twin and the twin structure allowed us to combine
the latent class modeling with classic twin methodology. However,
it was not possible to consider the interplay between uncertainties
from both methods at the same time, which might influence the
CIs reported from the twin models. Previous studies have found
sex-specific differences for fasting glucose and 2-h PG heritability,
but still with this relatively large sample of twins we could not
stratify by sex. Hence, the latent curve patterns are not estimated
stratified by sex, and we were therefore not able to discover poten-
tial sex-specific differences in the relative contribution of genes and
environment for curve patterns. Furthermore, the classical twin
model cannot reflect gene–environment interaction with a possible
result of an overestimation of environmental contribution to
variance (Purcell, 2002). Also, a recent study has demonstrated
age-varying heritability estimates of type 2 diabetes (Almgren et
al., 2011). It is therefore possible that the same age variation would
be present in the OGTT curve patterns as they are related to type 2
diabetes risk. We did not stratify our analyses by age, again due to
sample size and potential loss of power. However, the genetic
variation of the pattern was of almost the same magnitude in
the youngest Class 1 and oldest Class 4, although there was more
than 15 years difference in median age, indicating that age may not
be the primary determinant of the total phenotypic variation.
Although we used a population-based register for recruitment
(Pedersen et al., 2019), the participants were twins, which could
limit the generalizability of our findings to singletons.
Nevertheless, several studies have found similar prevalences of type
2 diabetes and other diseases in twins and singletons (Christensen
et al., 2001; Petersen et al., 2011).

In conclusion, in a nondiabetic population, we identified four
classes of distinct glucose response curve patterns and demon-
strated that individuals characterized by high 30-min and 2-h

PG are at increased risk for incident type 2 diabetes. We showed
that genetic variation explains a moderate-to-high proportion of
variation in class belonging. Finding the genetic as well as the
environmental factors that act on these curves may offer insight
into potential personalized preventative strategies.
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