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SUMS OF MULTINOMIAL COEFFICIENTS 

BY 

URI FIXMAN 

ABSTRACT. 2 q}/(hx\ . . . hn\) with hx + . . . + hn = q, the first 
a hjs odd and the rest even, is expressed in terms of values of 
Krawtchouk polynomials. 

Let n > 0, q > 0 and a ^ 0 be integers. Our aim is to give a formula for the 
sum of multinomial coefficients 

dn, q, a) = 2 (^ « J 

where the summation is over the nonnegative integers hl9. . . , hn satisfying 
(i) hx + . . . + hn = q9 

(ii) hl9. . . 9ha are odd; 
and 

(iii) ha+]9. ..9hn are even. 

Apart from theoretical applications, the formula is useful if n is given and it is 
required to compute C(n9 q, a) for several values of q and a. 

Preliminaries. The following facts can be found in [3], Chapter 5, Section 7 of 
[2] and [1]. 

Let Sf^p be the elementary symmetric polynomial of degree b in n indetermi-
nates: S^y = 1 and for 1 ^ b â n 

^h O l > • • • > * « ) = 2j\^j]<j2<...<jb^n Xjx
Xh ' ' * XJb 

For 0 ^ a ^ n9 put 

(1) ^ > = 5 i , " ) ( - l , . . . , - l , 1 , . . . , 1 ) , 

where the number of — l's is a. Then 5f^ — Kb(a; n)9 where Kb(x\ n) is the 
Krawtchouk polynomial defined by 
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For a given n, the matrix « 9 ^ = (^ab)a,b=o *s easily computable recur­
sively from 

</>(«) _ i. a>(n) _ M 

^ao — *> ^ob — y^J 

and 
^ab — ^a-\Jb ^a-\,b-\ ^a,b-\> a, D — 1, . . . , H. 

This matrix satisfies 

(2) (y<">)2 = 2"In + l, 

where 7W + 1 is the identity matrix of order « - h i . 
For an integer h denote by r(h) the remainder, 0 or 1, of A modulo 2. Let 

/ = 2 chimmmhn xx
l . . . x / 

be a polynomial in the indeterminates x1 ? . . . , xn over a field of characteristic 
different from 2. It was shown in [1] that the reduced polynomial 

Rf = 2 ^.../^I l . . . xn 

is the unique polynomial of degree not exceeding 1 in each indeterminate which 

coincides with / o n { — 1, 1}". The formula for Rf which is given in [1] is not 

required here, as the uniqueness statement suffices. 

Reduction of symmetric polynomials. 

LEMMA. Let / as above be a symmetric polynomial Then 

(3) Rf=2-"t \'2s^n-l,...,-l,l,...,l)]s^\xl...,xn), 

where the number of — Vs in the b'th summand of the inner sum is b. 

PROOF. By the uniqueness property of Rf it suffices to show that the right 
hand side of (3) coincides with / o n { — 1, 1}". Since both are symmetric, it is 
enough to verify this on the vectors (— 1, . . . , — 1, 1, . . . , 1) of length «, where 
the number of — l's is c, 0 ^ c ^ n. Substituting such a vector in the right hand 
side of (3), we get using (1) 

2-" 2 ( 2 ^sy(-i -i , i 

= 2 {/(-1,..., -1, i,..., D2-" 2 **£#*£>] 

n 

= 2 / ( - 1 , . . . . - 1 , 1 , . . . , i)8cb (by (2); using Kronecker's 5) 
6=0 

= / ( - ! , . . . , - 1 , 1.. . . .1), 
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where the number of — l's is c. 

FORMULA. C(«, q, a) = 2~n ^Uo ^(ab(n ~ 2b)q-

PROOF. For a vector of integers h = (hl9... 9hn), put r(h) = 
(r(h{)9..., r{hn) ). The latter belongs to the set Jn of (0, 1) — vectors of length 
n. The weight, w/(j) of a vector j = (j\,.. . Jn) of /„ is the number of nonzero 
coordinates of j . 

L e t / = {xx + . . . + xn)
q. By the multinomial theorem 

/= 2 L q M...ti. 
hx+...+hn=q \n\ ' "nnl 

Reducing, we obtain 

(4) v-± 2 ( 2 L q AU..XÏ. 

Since (h
 q

 h ) is symmetric in hx,..., hn9 the innermost sum of (4) depends 
only on n, q and wt(y). If wt(\) = a, then this sum equals C(n, q, a). 
Therefore 

n n 

(5) Rf = 2 C(n, <?, a) 2 xJ{ ... xj"n = 2 C(n, q, d)S^\ 
0=0 wt(j)=a a=0 

On the other hand,/(— 1 , . . . , — 1, 1 , . . . , 1), where the number of — l's is b, 
equals ( — b + n — b)q = (n — 2b)q. Therefore, by the lemma, 

(6) Rf= 2~" 2 ( 2 S^ê(n - 2Z>)«W 

Since the 6^ are linearly independent, comparison of coefficients in (5) and 
(6) yields the desired formula. 
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