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Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress
or ion pressure gradient effects and can potentially influence the stability and turbulent
saturation level of edge plasma modes. On the other hand, such flows are subject
to the transverse Kelvin–Helmholtz (KH) instability. Here, the linear theory of KH
instabilities is first addressed with an analytic model in the asymptotic limit of long
wavelengths compared with the flow scale length. The analytic model treats sheared
E× B flows, ion diamagnetism (including gyro-viscous terms), density gradients and
parallel currents in a slab geometry, enabling a unified summary that encompasses
and extends previous results. In particular, while ion diamagnetism, density gradients
and parallel currents each individually reduce KH growth rates, the combined effect
of density and ion pressure gradients is more complicated and partially counteracting.
Secondly, the important role of realistic toroidal geometry is explored numerically
using an invariant scaling analysis together with the 2DX eigenvalue code to examine
KH modes in both closed and open field line regions. For a typical spherical torus
magnetic geometry, it is found that KH modes are more unstable at, and just outside
of, the separatrix as a result of the distribution of magnetic shear. Finally implications
for reduced edge turbulence modelling codes are discussed.

1. Introduction
Sheared flows in plasmas are ubiquitous and their effect on plasma instabilities and

turbulence can be one of either suppression or enhancement. Sheared flows are often
stabilizing when the local shearing rate is comparable to the linear growth rate of an
unstable mode, and can nonlinearly suppress turbulence and transport by decorrelation
of turbulent eddies (Burrell 1997; Terry 2000). In this paper, we focus on a competing
effect: sheared flows also provide a source of free energy for instabilities such as the
Kelvin–Helmholtz (KH) mode.

The study of velocity shear instabilities in plasmas has a long history dating back
many decades, going up to the present, and encompassing both space and fusion
applications. The cited papers which follow are but a few examples of the rich
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literature on this topic. Magnetized plasmas generally have anisotropic flows across
(v⊥) and along (v‖) the magnetic field, and these flows can have both perpendicular
(∇⊥) and parallel (∇‖) gradients. The resulting instabilities broadly separate into
classes depending on whether the free energy source is from the parallel velocity
shear ∇⊥v‖ (D’Angelo 1965; Catto, Rosenbluth & Liu 1973; Garbet et al. 1999;
Wang et al. 2015), the parallel shear of the perpendicular flows ∇‖v⊥ (Lee, Catto
& Aamodt 1982; Tsidulko, Berk & Cohen 1994) or the perpendicular ‘transverse’
shear of the perpendicular flows b · ∇⊥ × v⊥ (Perkins & Jassby 1971; Miura &
Pritchett 1982; Horton, Tajima & Kamimura 1987; Pritchett 1987; Vranješ & Tanaka
2002; Rogers & Dorland 2005; Popovich et al. 2010; Xi et al. 2012; Fisher et al.
2015). In the present paper we will be concerned only with the latter, and by KH
we will mean the transverse KH instability. In tokamak plasmas, also the primary
concern of this paper, this typically means the KH mode that is driven by the
shear dvy/dx where (x, y, z) describe approximately the radial, binormal (in tokamak
terminology approximately poloidal) and parallel directions to the magnetic field. In
the material which follows we will consider KH instability models in both this simple
slab geometry and in fully toroidal divertor geometry relevant to tokamak edge and
scrape-off layer plasmas.

One motivation for studying the KH mode is its possible role in determining
saturation levels for other unstable modes (Itoh et al. 2006; Ricci & Rogers
2013; Goto et al. 2015). Reynolds stress arising from a primary instability, e.g. a
curvature-driven resistive ballooning mode as in Guzdar et al. (1993), and references
therein, acts as a source for both zonal (oscillating) and mean (time averaged)
flows. When shear in the resulting flows becomes sufficiently large, dvy/dx ∼ γ ,
i.e. comparable to the primary instability growth rate γ , nonlinear saturation may
occur. On the other hand, if the resulting sheared flows are mitigated or destroyed by
secondary KH instability, the primary mode may continue to grow. Understanding the
conditions for KH instability is thus important for determining the amplitude scaling
of saturated turbulence.

An application of particular present day interest for fusion research is the resulting
scaling of the scrape-off layer (SOL) heat flux width implied by turbulent cross-field
transport (Myra, D’Ippolito & Russell 2015). (The SOL is the region of open field
lines just outside the confined plasma. In a tokamak, the heat from the confined core
plasma transports across the separatrix or last closed flux surface, into the SOL where
it is ultimately deposited on material surfaces.) It is worth noting that edge- and near-
SOL plasmas can have very short perpendicular gradient scale lengths, of the order of
a few mm to a few cm, in both the plasma pressure profiles and the drift velocities,
making for potentially strong instability driving terms.

In spite of the considerable literature on the transverse KH instability in magnetized
plasmas, reviewed briefly in the following paragraphs, significant questions remain to
be addressed clearly even in the linear theory. Because the KH instability cannot be
obtained from a local dispersion relation, it is usually treated numerically, and this
has hampered the development of simple criteria for stability boundaries, particularly
when density gradients, ion diamagnetic effects and parallel currents are present
simultaneously. Finally, to the best of our knowledge, there has been no attempt to
date to examine the KH instability near the separatrix and in the SOL in a realistic
toroidal geometry. Both of these topics are addressed in the present paper.

Although the KH mode does not obey a local dispersion relation, various models
employing specialized velocity profiles have been employed to obtain analytical or
semi-analytical results, including ‘sharp boundary’ (discontinuous) (Pritchett 1987),

https://doi.org/10.1017/S0022377816000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000301


Transverse Kelvin–Helmholtz instability in tokamak edge plasmas 3

FIGURE 1. Computed growth rate (solid) and real part of the frequency (dashed) for
the KH mode using a diffuse radial profile model (Popovich et al. 2010) and sample
parameters from the LAPD experiment. Figure reproduced from Phys. Plasmas 17,
102107,1-11 (2010).

piecewise linear (Horton et al. 1987) and tanh-type (Vranješ & Tanaka 2002) velocity
profiles. While many of the early papers considered the basic KH instability with
velocity gradients in an otherwise minimal plasma model, later works also included
the stabilizing effect of Alfvén parallel currents, i.e. magnetic line bending energy
(Miura & Pritchett 1982; Rogers & Dorland 2005) and ion diamagnetic drifts (Vranješ
& Tanaka 2002; Rogers & Dorland 2005). Although some of the literature relevant
to inertial confinement fusion considers KH instability in the presence of a density
gradient (Wang et al. 2009), the simultaneous treatment of parallel currents, velocity,
density and ion pressure gradients necessary to understand magnetic-fusion-relevant
plasmas has, to the best of our knowledge, only been attempted in numerical studies
(Goto et al. 2015).

The key known results from previous work can be summarized as follows. The basic
KH mode is unstable over a range of perpendicular wavenumbers ky directed along the
flow vy, extending from ky = 0 to a maximum cutoff wavenumber kmax ∼ 1/Lv where
Lv is the scale length of the velocity profile, L−1

v ∼ d ln(vy)/dx. The KH growth rate
is maximized at kyLv ∼ 0.5 and the maximum growth rate is of order γmax ∼ 0.2v′y,max

where v′y,max is the maximum shearing rate of the profile and here ′ denotes d/dx. The
function γ (ky) has a characteristic inverted-parabola shape as illustrated in figure 1. In
the limit kyLv� 1, the growth rate scales like γ ∼CkyLvγmax where C is an order unity
constant.

The Alfvén parallel current stabilizes the KH mode when, in order of magnitude,
ωa>γmax where ωa= k‖va. Here, k‖ is the parallel wavenumber and va=B/(4πnmi)

1/2

is the Alfvén velocity. Tokamak plasmas have magnetic shear (i.e. variation, from
one flux surface to the next of the pitch angle of the magnetic field with respect
to the toroidal direction). Magnetic shear imposes a minimum effective k‖ on the
perturbation: the fixed twist of the mode and the shear of the magnetic field prevent
the mode from staying aligned from one flux surface to the next. Thus KH stability
can also be brought about by magnetic shear effects.

https://doi.org/10.1017/S0022377816000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000301


4 J. R. Myra and others

Ion diamagnetic flows vdi∼ vtiρi/Lpi become important when vdi∼ vE where the KH
instability is driven by the gradient in the E×B velocity vE =E×Bc/B2 and E and
B are the equilibrium electric and magnetic fields. Here vti is the ion thermal velocity,
ρi is the ion Larmor radius, Lpi is the gradient scale length of the ion pressure and
the relevant components of vdi and vE are in the y direction. More precisely, since vE

is frame dependent, the condition is vdi ∼1vE where 1vE is the net change in vE(x)
across a characteristic distance in x of order Lv. Density gradients usually reduce the
growth rate of the KH mode, but cannot completely stabilize it.

The plan of our paper is as follows. In § 2 a simple analytical model of the KH
mode is presented in the asymptotic limit kyLv � 1, which is equivalent to a sharp
boundary model. The analytic model treats sheared E × B flows, ion diamagnetism,
density gradients and parallel currents in a slab geometry, enabling a unified summary
that encompasses and extends well-known results. The model employs a warm ion
treatment including ion gyro-viscous terms that are consistent with the drift ordered,
fluid model result derived by Simakov & Catto (2003) and used in the BOUT
(Umansky et al. 2009) and SOLT (Russell et al. 2015) codes. These somewhat
complicated additional terms are the same order as the usual ion diamagnetic drift
term and influence the KH stability boundary. To the best of our knowledge, they
have not previously been treated in any analytical KH model and are also omitted in
some numerical studies. Remarkably, a simple, analytical dispersion relation is still
possible in the kyLv� 1 limit.

Having addressed the effects of ion diamagnetism, density gradients, parallel
currents and their mutual interactions in a simple geometry, in § 3 the effect of
realistic toroidal geometry is explored numerically using the 2DX eigenvalue code
(Baver, Myra & Umansky 2011) for KH modes both inside and outside the separatrix.
For this portion of the study, a minimal cold ion KH model is employed. An
invariant scaling analysis is shown to reduce the parameter space and isolate the
main dependencies on wavenumber, Alfvén parallel current, electron skin depth and
collisionality. It is shown for a sample spherical torus magnetic geometry that the
KH mode is more unstable in the near separatrix and SOL than in the closed surface
region.

In § 4 a method for qualitatively including the stabilizing effect of parallel Alfvén
currents on the KH mode in 2-D reduced model nonlinear simulations is presented.
Finally our conclusions are given in § 5.

As mentioned in the preceding, various limitations apply separately to the different
sections of the paper: the use of slab geometry in § 2 and the use of a cold ion
model in §§ 3 and 4. The goal of this approach is to highlight individual effects in
an attempt to gain insight, rather than to include all important effects simultaneously.
The latter approach would be required, for example, for quantitative modelling of an
experimental discharge.

2. Analytical model of KH mode

In this section an analytical theory of the KH mode including warm ion effects
is considered in a slab geometry. The slab geometry is a significant limitation for
tokamak applications because of magnetic shear, discussed in § 3, and the implications
of coupling of perpendicular and parallel flows in a toroidal geometry. Nevertheless,
the slab model, being analytically tractable, provides some useful insights.
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Transverse Kelvin–Helmholtz instability in tokamak edge plasmas 5

2.1. Radial eigenvalue equation
The basic equations of the warm ion fluid model considered in this section are given
by charge conservation (vorticity), and advection for the density and ion pressure.

∂t∇ · f + (v · ∇)(∇ · f )+ (∂jvi)(∂ifj)=∇‖J‖ (2.1)
∂tn+ v · ∇n= 0 (2.2)
∂tpi + v · ∇pi = 0, (2.3)

where v = b×∇Φ and

f = n∇⊥Φ +∇⊥pi. (2.4)

Here and in the following we employ Bohm-normalized variables, i.e. length and time
scales are normalized to ρs= cs/Ωi and 1/Ωi, respectively, the electrostatic potential is
normalized to e/Te0 and the density and temperature are normalized to arbitrary values
n0 and Te0. The generalized plasma vorticity (including finite ion pressure effects) is
given by ∇ · f and in (2.1) the last term on the left-hand side employs Cartesian tensor
notation with implicit sums on repeated indices and i, j taking the values x, y, i.e. the
coordinates perpendicular to the magnetic field B= bB. It is shown in appendix A that
(2.1) is equivalent to the fluid vorticity equation used in the BOUT and SOLT codes
which are consistent with the (Simakov & Catto 2003) result for the gyro-viscous
terms.

The linearization of (2.1)–(2.4) with modes proportional to exp(ikyy− iωt) yields

−iω̃∇ · δf + (δv · ∇)(∇ · f )+ (∂jδvi)(∂ifj)+ (∂jvi)(∂iδfj)=−iω2
a0∇2
⊥(δΦ/ω̃) (2.5)

−iω̃δn+ δv · ∇n= 0 (2.6)
−iω̃δpi + δv · ∇pi = 0 (2.7)

δf = δn∇Φ + n∇δΦ +∇δpi. (2.8)

Here we define ω̃=ω− kyvy and the dimensionless Alfvén frequency is given in terms
of dimensional quantities as ωa0 = k‖va0/Ωi. The derivation of this parallel current
term uses δE‖= 0, i.e. the ideal Ohm’s law (in dimensional form ω̃δA‖= k‖cδΦ) and
Amperes law (in dimensional form δJ‖ =−(c/4π)∇2

⊥δA‖).
We have assumed a slab equilibrium where n, pi, Φ and hence vy are functions of

x alone. As a result v= eyvy and f = exfx with vy = ∂xΦ =Φ ′ and fx = nvy + p′i. After
a small manipulation the vorticity equation takes the form

ω̃[∂x(n∂xδΦ + ∂xδpi)− k2
y(nδΦ + δpi)+ ∂x(vyδn)] + kyf ′′x δΦ

+ kyf ′x∂xδΦ − kyv
′
y(vyδn+ n∂xδΦ + ∂xδpi)−ω2

a0∇2
⊥(δΦ/ω̃)= 0. (2.9)

We can write −kyv
′
y = ∂xω̃ which allows combining of the corresponding term with

the ω̃ term as follows

∂x[ω̃(n∂xδΦ + ∂xδpi + vyδn)] − ω̃k2
y(nδΦ + δpi)+ ky∂x( f ′xδΦ)−ω2

a0∇2
⊥(δΦ/ω̃)= 0.

(2.10)

On substitution for δn and δpi the preceding equation becomes an explicit second-
order radial eigenvalue equation describing the KH mode in the presence of density
and ion pressure profiles. The driving term is the gradient in the equilibrium

https://doi.org/10.1017/S0022377816000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000301


6 J. R. Myra and others

vorticity, f ′′x contained in the second to last term. It is remarkable that, after some
straightforward but tedious algebraic manipulations, this radial eigenvalue equation
takes a rather simple form:

∂x

(
ω̃A∂x

δΦ

ω̃

)
− k2

yAδΦ = 0, (2.11)

where

A= ω̃n− kyp′i −
ω2

a0

ω̃
. (2.12)

It is worth noting that the simple (and as we shall see, integrable) form expressed
by (2.11) is only made possible by the inclusion of the gyro-viscous terms contained
in (∂jvi)(∂i fj).

2.2. Sharp boundary model
To make further analytical progress, we specialize to the sharp boundary model where
profiles of vy(x), n(x), and p′i(x) (hence fx and A) are flat in the ‘left’ and ‘right’
regions labelled ‘1’ and ‘2’, respectively, and take a discontinuous jump at the junction
between these regions. The sharp boundary limit gives solutions in the asymptotic
limit kyLv � 1 where Lv is the gradient scale length of the velocity profile, i.e. the
width of the velocity transition layer where the jumps take place. Extrapolation of the
sharp boundary results to kyLv ∼ 0.5 gives a rough estimate of the maximum growth,
optimized over ky, of the KH mode. In the local limit kyLv � 1 the KH mode is
stable because of the instability cutoff at kmaxLv ∼ 1. These latter points will also be
demonstrated in the numerical work of § 3.

The first integral of (2.11) for x 6 x2 is(
ω̃A∂x

δΦ

ω̃

)x

x1

=
∫ x

dx k2
yAδΦ→ 0. (2.13)

Here the integral on the right-hand side is across the layer of width Lv separating the
two regions. In the sharp boundary asymptotic limit, this layer width shrinks to zero.
Since the integrand itself remains finite, the integral evaluates to zero asymptotically.
Evaluating (2.13) at x= x2 shows that the left-hand side must be the same in the two
regions. Since ω̃ is constant in any given region, we have from (2.13)

A1∂xδΦ1 = A2∂xδΦ2. (2.14)

Equation (2.13) can also be expressed as

ω̃A∂x
δΦ

ω̃
=C, (2.15)

where C is a constant. Since ω̃A is finite though discontinuous, δΦ/ω̃ must be
continuous across the junction (as with the first integral, the integration of C/ω̃A
vanishes asymptotically)

δΦ1

ω̃1
= δΦ2

ω̃2
. (2.16)
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Combining (2.14) and (2.16) yields the jump condition on the logarithmic derivative

ω̃1A1∂x ln δΦ1 = ω̃2A2∂x ln δΦ2. (2.17)

The next step is to solve (2.11) in regions 1 and 2 to obtain the logarithmic derivatives
on the two sides and do the matching. Since ω̃ and A are constants within each region
the solutions are exponential and the branches that decay at infinity are

δΦ1 = exp(kyx) (2.18)
δΦ2 = exp(−kyx). (2.19)

The global dispersion relation is therefore

ω̃1A1 + ω̃2A2 = 0 (2.20)

or on employing the definition of A

ω̃2
1n1 − ω̃1kyp′i1 − 2ω2

a0 + ω̃2
2n2 − ω̃2kyp′i2 = 0. (2.21)

This is the primary result of the analytic model. By choice of frame, we can take
vy1 = V/2, vy2 =−V/2 where V is the total jump in velocity across the layer. Then,
normalizing ω to kyV and defining

τ = p′i
V

(2.22)

β2 = 2ω2
0a

k2
yV2

(2.23)

the normalized dispersion relation is

(ω− 1
2)

2n1 − (ω− 1
2)τ1 + (ω+ 1

2)
2n2 − (ω+ 1

2)τ2 − β2 = 0. (2.24)

Note that τ is just the ratio of the ion diamagnetic velocity to the total jump in E×B
velocity and β is proportional to the strength of the Alfvén parallel current.

2.3. Sharp boundary model results
We first consider the effects of a density gradient, ion diamagnetism and Alfvén
parallel current separately. For a pure density gradient (τ = β = 0), (2.24) reduces to

ω2 +1ω+ 1
4 = 0, (2.25)

where −1<∆< 1 is given by

∆= n2 − n1

n2 + n1
(2.26)

i.e. n1 = 1 − ∆ and n2 = 1 + ∆ so that ∆ is proportional to the density gradient,
dn/dx ∼ n∆/L where 2L is the scale length over which n transitions from n1 to n2.
The solution is

ω= −∆± i(1−∆2)1/2

2
. (2.27)
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The growth rate of (2.27) is maximized for ∆=0. Thus any density gradient (in either
direction) reduces the growth rate of the KH mode in this limit. Similar results were
obtained by Wang et al. (2009). Physically it is clear that for |∆| = 1, i.e. vanishing
n1 or n2, there is no inertial weighting of vorticity on one side of the velocity jump,
hence there is no KH instability.

Next, with ∆= β = 0, (2.24) gives the effect of ion diamagnetism as

ω2 −ωτ1 + τ2

2
+ 1

4
+ τ1 − τ2

4
= 0. (2.28)

If τ1 = τ2 ≡ τ the result is

ω= τ ± i(1− τ 2)1/2

2
, (2.29)

which gives stability for either sign of τ when |τ |> 1. This result is consistent with
Rogers & Dorland (2005) who show (in the present notation) that τ <−1 guarantees
stability (or equivalently that τ >−1 is a necessary condition for instability). The real
part of ω is shifted by the ion diamagnetic drift as expected.

Since τ ∝ p′i considering τ1 6= τ2 describes the effects of p′′i . The stability condition
from (2.28) is (

τ1 + τ2

2

)2

> 1+ τ1 − τ2. (2.30)

Stability is attained at smaller values of the mean diamagnetic parameter (τ1 + τ2)/2
when τ1 <τ2. To express this result in a more physical way, it is simplest to consider
V > 0, i.e. ∂xvE < 0. Then τ1 <τ2 implies ∂xvdi > 0. This case reduces the shear of the
net flow, ∂x(vE + vdi).

Retaining β with ∆= τ = 0 yields

ω2 + 1
4
− β

2

2
= 0 (2.31)

or

ω= ±i(1− 2β2)1/2

2
, (2.32)

which shows that the Alfvén parallel current stabilizes the KH mode for β2 > 1/2.
Since β has an explicit 1/k2

y dependence, this result implies that there is a threshold ky
below which KH modes are absolutely stable. This will be confirmed in the numerical
results of § 3. Note that β ∝ k‖ so that magnetic shear, which naturally provides a
finite k‖ for these radially extended modes, enhances the stabilization effect (Rogers
& Dorland 2005).

Finally, we can consider the combined effects of a density gradient, ion diamagnetism
and the Alfvén parallel current. The condition for stability is

(τ −∆)2 + 2β2 > 1, (2.33)

where for simplicity τ1= τ2≡ τ . Notice that when τ =∆ their effects cancel, thus the
density gradient counteracts part of the ion pressure gradient. Qualitatively it is as if
the net result is more sensitive to the ion temperature gradient part of p′i. A more
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Transverse Kelvin–Helmholtz instability in tokamak edge plasmas 9

FIGURE 2. Marginal stability diagram for the dispersion relation of (2.24) with τ1= τ2≡ τ .
Note that in the presence of a density gradient, the effect of an ion pressure gradient
depends on its sign.

rigorous general statement is not possible because in the sharp boundary model the
density and ion pressure gradients do not enter in the same way. In fact, although
τ describes ion diamagnetic effects, ∆ may be best associated with the inertial
weighting of the vorticity rather than a density gradient drift. Further investigation
of this point would require a diffuse profile model. A marginal stability diagram is
shown in figure 2.

3. The KH mode in realistic toroidal geometry
While useful for illustrating the effects of a density gradient, ion diamagnetism

and the Alfvén parallel current on the KH mode, the analytic model cannot directly
account for the effects of magnetic shear or realistic toroidal geometry. For this we
turn to numerical modelling using the 2DX eigenvalue code (Baver et al. 2011)
together with a minimal (cold ion) physics model for the KH mode. Our goal is
again physical insight rather than comprehensive modelling that includes all effects
simultaneously. Comprehensive tokamak gyro-kinetic models, at least for the closed
flux surface regions, have been discussed previously (Rogers & Dorland 2005; Wang
et al. 2015).

The 2DX code solves linearized eigenvalue problems in the R–Z plane for each
toroidal mode number n. It takes as input experimental magnetic divertor geometry
for the edge and SOL and implements toroidal periodicity on both the open and
closed flux surfaces while allowing separatrix spanning modes. 2DX has a specialized
equation parser to input the physics model and associated plasma profiles. Use of a
sparse matrix package enables high resolution. More details and some code benchmark
cases are given by Baver et al. (2011).

Typically a field line following coordinate system is employed in 2DX. The mode
is described as

δΦ = δφ(ψ, θ) exp
(

inζ ζ − inζ

∫ θ

θ0

dθν
)
, (3.1)

where (ψ , θ , ζ ) are respectively the poloidal magnetic flux ‘radial’ variable, a poloidal
angle variable and the toroidal angle; nζ is the toroidal mode number and ν is the
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local magnetic shear. By extracting the eikonal function as shown in (3.1), is it only
necessary to carry out a numerical solution for the slowly varying envelope function
δφ. The exponential containing the eikonal piece may be used to define a local
k⊥(ψ, θ) given nζ and the magnetic geometry; however, no eikonal approximation
is involved since the residual eigenmode structure is contained in δφ. The so-called
ballooning angle θ0 is usually taken to be at the outboard midplane.

For the purposes of this section we employ a minimal physics model, which
neglects ion pressure and employs constant density and electron pressure, to eliminate
curvature-driven modes and allow focus on the effects of parallel currents and
geometry on the KH mode. The model retains parallel collisional and electron skin
effects. The linearized model equations for the perturbed vorticity δ$ , pressure δp
and parallel vector potential δA are

γ δ$ =−v · ∇δ$ − δv · ∇$ + B2

n
∂‖δJ (3.2)

γ

(
n
δ2

e

−∇2
⊥

)
δA=−v · ∇

(
n
δ2

e

δA−∇2
⊥δA

)
+ νe∇2

⊥δA−µn∇‖δΦ. (3.3)

Here, we employ Bohm dimensionless variables with δJ=−∇2
⊥δA, $ =∇2

⊥Φ, δ$ =
∇2
⊥δΦ, µ = mi/me, νe is electron Coulomb collision frequency ∂‖Q = B∇‖(Q/B) for

any scalar quantity Q and γ = −iω is the (complex) growth rate. Strictly speaking,
δA is not Bohm normalized but is related to the parallel component of the Bohm-
normalized vector potential by δA = µδ2

eδA‖ where δe = c/ωpe is the electron skin
depth. Note that µδ2

e = 1/βe where βe is the electron plasma beta. Other notations
are as in § 2. In particular v = b×∇Φ and δv = b×∇δΦ.

To most efficiently present the numerical results it is useful first to carry out an
invariant scaling analysis (Connor & Taylor 1984) of (3.2) and (3.3) in an effort to
reduce the parameter space to a minimal set of dimensionless combinations. For the
purpose of this scaling analysis alone, one may combine the equations into a single
heuristic equation by eliminating δA. Employing the notation 1/L for ∇⊥ acting on
equilibrium quantities and k⊥ for ∇⊥ acting on perturbed quantities we find that the
scaling is determined by

−(γ + ik⊥v)k2
⊥δΦ =−δΦ(b× ik) ·∇2

⊥v + k2
⊥

ω2
aδΦ

(γ + ik⊥v)(1− k2
⊥δ2

e )− νek2
⊥δ2

e

, (3.4)

where the b× is irrelevant for the scaling argument. Here we have introduced ωa =
Bµ1/2δe/(n1/2R)≡ va/R where for the purpose of scaling, we can set k‖ = 1/R.

Ab initio there are six input parameters

γ = γ (k⊥, v, L, ω2
a, δ

2
e , νe). (3.5)

The formal procedure is to postulate a transformation of the form γ → λγ , k⊥ →
λak⊥, v→ λbv, L→ λcL, ω2

a → λdω2
a, δ2

e → λeδ2
e , νe→ λfνe and look for a solution

(a, b, c, d, e, f ) that leaves the original equations, equivalently (3.4) invariant: all
powers of λ should collect up and cancel out. The resulting equations are a+ b= 1,
1 + 2a = a − 2c + b, 1 + 2a = e + 2a − 1, 2a + f = 0 and g = 1 which have as the
solution b= 1− a, c=−a, e= 2, f =−2a and g= 1 with one free parameter a. There
are two independent invariant transformations given by a= 0, 1.

https://doi.org/10.1017/S0022377816000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000301


Transverse Kelvin–Helmholtz instability in tokamak edge plasmas 11

(a) (b)

FIGURE 3. (a) Flux surface geometry showing the computational grid at reduced
resolution for purposes of illustration; (b) typical KH eigenmode structure of |δΦ| showing
localization to the outboard midplane and a double peak.

This reduces the original six input parameters to four invariant combinations which
may be taken as

γL
v
= F

(
k⊥L,

ωaL
v
,
δe

L
,
νeL
v

)
, (3.6)

with F a function to be determined numerically. These four invariant combinations
completely characterize the KH mode aside from the geometry, which includes the
magnetic flux geometry of the torus and the profile of the equilibrium electrostatic
potential Φ(ψ). We take the latter to be a flux function given by

∂Φ

∂ψ
=Φ ′1 +

(Φ ′1 −Φ ′2)
2

[
1− tanh

(
ψ −ψΦ0

ψw

)]
, (3.7)

where Φ ′1, Φ
′
2, ψΦ0, ψw are constants that specify the velocity v, scale length L and

location of the shear layer relative to the separatrix. The invariant parameters are
defined with v as the total jump in E × B velocity implied by (3.7) and the scale
length given as L=ψw/(RBp) where R is the major radius of the torus and Bp is the
local poloidal magnetic field.

Figure 3 illustrates the NSTX (Ono et al. 2000) flux surface geometry used for
this study and the spatial structure of a typical KH eigenmode on the computation
mesh. Parameters for this case are ωaL/v = 0.108, δe/L = 0.24, νeL/v = 0.36 and
nζ = 100 which implies kbL= 0.40. Here kb is the binormal component of k⊥ at the
outboard midplane, which is also |k⊥| at that location. Note that the mode strongly
balloons near the outboard midplane of the torus. At first this may seem surprising
since, unlike curvature-driven ballooning modes, the free energy from (3.7) is not
obviously localized to this region. The localization results from the weighting provided
by the RBp Jacobian factors in the equilibrium vorticity gradient

∂$

∂ψ
= ∂

∂ψ
RBp

∂

∂ψ
RBp

∂Φ(ψ)

∂ψ
. (3.8)
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FIGURE 4. Dependence of the KH growth rate on wavenumber and invariant parameter
combinations. See table 1 for the parameters of each case. The dashed curve is the result
from the kyL� 1 analytic theory of § 2.

ωaL/v δe/L νeL/v

Base case 0.108 0.47 0.36
Classical ES KH 0 — —
ES limit a ∞ 0.36
Half νe 0.108 0.47 0.18

TABLE 1. Parameters employed for the cases shown in figure 4.
aωaL2/(vδe)= 0.073.

The R factor weights the outboard side of the torus relative to the inboard side and the
Bp factor weights the midplane relative to the upper (virtual) and lower X-points. To
understand this in a more physical way, consider the equilibrium electric field between
two adjacent flux surfaces, Eθ = −1Φ/1r where 1r = 1ψ/RBp is the local flux
surface spacing. Because the flux surface spacing is smallest at the outboard midplane
(see figure 3a) the E× B drift velocity from Eθ , its shear, and hence the instability
drive for the KH mode is largest there. This effect, while present for all tokamaks, is
accentuated in the high-plasma-beta spherical torus geometry.

The eigenmode illustrated in the right panel of figure 3 shows a double peaked
structure for |δΦ|. Further investigation reveals that the maxima of Re(Φ) and Im(Φ)
are shifted spatially with respect to each other as a result of an outward propagating
radial phase velocity for the unstable modes. The structure shown in figure 3 is typical
of all the results summarized in the following.

Figure 4 illustrates the dependence of the KH growth rate on wavenumber for a few
different combinations of dimensionless parameters (see table 1). The case labelled
‘base (EM Alfvén)’ shows the unstable spectrum with all effects: electromagnetic (EM)
parallel Alfvén current, collisionality and electron skin. Note that there is both a lower
and an upper limit on kbL for instability. The upper limit is essentially that of the
classical KH mode, to be discussed next; the lower limit is as expected from the
analysis of § 2, (2.23) and (2.32) which show that the stabilizing effects of the EM
parallel current are relatively stronger for small perpendicular wavenumbers.

https://doi.org/10.1017/S0022377816000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000301


Transverse Kelvin–Helmholtz instability in tokamak edge plasmas 13

FIGURE 5. Dependence of the KH spectrum growth rate on location of the velocity shear
layer relative to the separatrix. Negative (positive) shifts indicate cases where the sheared
flow layer is located in the closed (open) flux surface region.

The strong stabilizing effect of the parallel Alfvén current is illustrated by
comparison of the base case with the electrostatic (ES) curve labelled ‘classical
ES KH’. In this case, we have ωa = 0, and δe and νe become irrelevant. This
spectrum shows the inverted-parabolic growth rate dependence that is characteristic
of the pure KH mode (see figure 1 and its discussion). In this case the corresponding
fastest-growing eigenmodes have a delta-function character in their θ -variation along
the field line: there is no line-bending energy cost when ωa = 0. The dashed line in
figure 4 labelled ‘kbL� 1 analytic’ is the asymptotic result from the sharp boundary
model of § 2 applied to this case. Agreement for sufficiently small kbL is good and
provides a check on the numerical work.

The curve labelled ‘ES limit’ shows the result when the parameter δe/L is
asymptotically large. Referring to (3.5), and noting that ωa ∝ δe, in this limit the
Alfvén parameter that remains is ωaL2/(vδe) = L2Ωiµ

1/2/(Rv) where Ωi = eB/(mic)
(see table 1). This is an electrostatic limit, but one that retains parallel currents. These
ES parallel currents are also stabilizing relative to the ωa = 0 case. Finally, the curve
labelled ‘half νe’ shows that collisionality did not play a strong role in our base case
and that reducing νe tends to increase the growth rates of the higher kb modes. None
of the preceding parameter variations have much effect on the spectral cutoff at high
k. These cases confirm the stabilizing effect of both EM and ES perturbed parallel
currents on the KH mode.

The cases shown in figure 4 highlight the main effects of the invariant dimensionless
parameter combinations. It remains to assess the role of magnetic geometry, in
particular in the vicinity of the separatrix, including both closed and open field line
regions. To explore this, figure 5 shows the results of a study in which the location
of the sheared flow layer, parametrized by ψΦ0 is varied with respect to the separatrix.
Negative (positive) shifts indicate cases where ψΦ0 is located in the closed (open) flux
surface region. All other parameters are held fixed. It is seen that the KH mode is
more unstable at, and just outside of, the separatrix compared with inside the closed
surface region. The reason appears to be related to the distribution of magnetic shear.

Figure 6 shows the variation of the integrated magnetic shear kψ ∝
∫ θ
θ0

dθ∂ν/∂ψ
along the field line at the flux surface of strongest velocity shear for the four cases
considered in figure 5. The most unstable modes have reduced magnetic shear in the
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FIGURE 6. Distribution of integrated magnetic shear along a field line. The cases and
colour scheme correspond to those of figure 5. The low-field-side region corresponds to
π< θ < 2π with the upper X-point at π and the lower dominant X-point at 2π.

midplane region and stronger shear near the X-points, especially the lower (dominant)
X-point near θ = 2π. The important role of the poloidal distribution of local magnetic
shear in shaped plasmas has been noted previously in a variety of contexts (Myra et al.
2000; Sugiyama & Strauss 2010; Xu et al. 2011).

4. Reduced modelling equations

The final topic considered in this paper is that of constructing reduced 2-D
modelling equations that are at least qualitatively faithful to the physics of the KH
mode discussed in this paper. In a 2-D interchange model, which simulates dynamics
in the plane perpendicular to B, such as employed in the SOLT (Scrape-Off Layer
Turbulence) code (Russell et al. 2015), the transverse KH mode may easily be
unstable. Strong E × B velocity shear layers can arise from Reynolds-driven flows
and steep ion pressure profiles. It is desirable to account for the stabilizing effects
of parallel current and magnetic shear in these types of nonlinear 2-D interchange
models. To explore this possibility, we again revert to a cold ion model for simplicity
of presentation. This is motivated by noting that the parallel current and warm ion
terms in the model of § 2 are not intertwined.

The most important physics may be captured by adding the electromagnetic terms
for J‖ by combining Ampere’s law J‖ = −(c/4π)∇2

⊥A‖ and the resistive Ohm’s law
E‖ =−∇‖Φ − (1/c)∂A‖/∂t= η‖J‖ to obtain (in dimensional Gaussian units)

∂

∂t
J‖ = c2η‖

4π
∇2
⊥J‖ + c2

4π
∇‖∇2

⊥Φ. (4.1)

The vorticity equation in the 2-D model, (2.1), requires a closure equation for ∇‖J‖
(Krasheninnikov, D’Ippolito & Myra 2008; D’Ippolito, Myra & Zweben 2011). One
such closure is the high-beta blob closure original proposed by Krasheninnikov,
Ryutov & Yu (2004),

∇‖J‖→ 2
L‖

c2

4πva
∇2
⊥Φ. (4.2)
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This can be obtained heuristically from (4.1) by postulating outgoing Alfvén waves
so that ∂/∂t→−iω=−ik‖va, and on the right-hand side of (4.1) ∇‖→ ik‖. Dropping
the η‖ term and estimating the ∇‖ operator in the left-hand side of (4.2) as the
inverse parallel half-length of a blob filament, L‖/2, one arrives at the right-hand side
of (4.2). This closure implies dissipation: vorticity is lost by the outgoing parallel
Alfvén wave as the field line bulges out and bends as a result of the blob filament’s
midplane motion. It can easily be shown that the corresponding linear dispersion
relation including an interchange driving term is

ω2 + iωωa + γ 2
mhd = 0, (4.3)

where ωa= 2va/L‖ and γmhd= cs/(RLp)
1/2. Evidently (4.3) does not contain the Alfvén

physics in (2.21) necessary to stabilize interchange or KH modes: a term proportional
to ω2

a is required.
An alternative closure describing this physics is instead given by treating the time

dynamics of (4.1) directly. A vorticity-Alfvén model which accomplishes this is given
by

∂t∇ · (n∇Φ)= Y + · · · (4.4)
∂tY = 1

2δ
2
eνe∇2

⊥Y − nω2
a∇2
⊥Φ, (4.5)

where ‘· · · ’ in (4.4) refers to all the remaining vorticity terms on the left-hand side of
(2.1). In this model ωa is an input parameter depending on a characteristic scale length
L‖ which may be chosen based on geometrical considerations, including magnetic
shear. Equations (4.4) and (4.5) imply a dispersion relation of the form

ω2 −ω2
a + γ 2

mhd = 0. (4.6)

This model contains the necessary physics to stabilize interchange and KH modes by
including the Alfvén wave line-bending energy.

For application in codes such as SOLT, it is useful to have a unified closure which
automatically includes limiting cases as dictated by (dynamically evolving) plasma
parameters. The EM Alfvén induction through A‖ provides a channel for charge loss
that is separate from (and effectively in parallel with) electrostatic charge loss to the
sheath. As such, it is reasonable to add the parallel current closures. Let us postulate
a combined closure and then discuss its justification:

∂t∇ · (n∇Φ)=−ωan∇2
⊥Φ + Y + αshJsh + · · · (4.7)

∂tY = 1
2δ

2
eνe∇2

⊥Y − nω2
a∇2
⊥Φ. (4.8)

Here the ωa term on the right-hand side of (4.7) gives the original high-beta blob
closure and the αshJsh term represents the usual parallel sheath current closure
(Krasheninnikov et al. 2008) which is easily generalized to include warm ion and
collision-limited regimes (Russell et al. 2015). This model implies a dispersion
relation of the form

ω2 + iω(ωa +ωsh)−ω2
a + γ 2

mhd = 0, (4.9)

where ωsh= cs/(k2
⊥ρ

2
s L‖) is the sheath current term. It should be emphasized that this

is a heuristic closure based on patching together asymptotic limits as discussed next.
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It is clear that the ωa= 0 limit of (4.8) and (4.9) recovers the previous electrostatic
model. In the limit of small but finite ωa � ω (and for simplicity ωsh � ωa) there
is no time for Alfvén physics to ‘equilibrate’ along field lines and as a result one
gets line bending and dissipation from outgoing Alfvén waves. This is the high-beta
blob regime of (4.3). Note that in this regime the inertial term dominates the Alfvén
terms unless additional physics is present. X-point dissipation can provide the needed
additional physics and allow the iωωa term to directly balance the γ 2

mhd interchange
drive term (Myra & D’Ippolito 2005).

In the limit ωa > ω Alfvén waves are no longer purely outgoing, rather there is
time for them to sense the entire field line. In the absence of downstream dissipation
they are reflected and result in Alfvén propagation in both directions, as in (4.6).
Interchange and KH modes can be stabilized by the line-bending physics in this limit
when ωa > γmhd or ωa > γkh,max ∼ 0.2v′y, respectively.

If the Alfvén parameter is in a particular range, then the model can describe a
situation where the KH mode is stable, but curvature-driven interchange modes are
unstable, viz.

γ kh
max <ωa < γmhd. (4.10)

Finally, these arguments, and the proposed model, can be used to estimate blob
velocities in the various regimes using the dispersion relation in (4.9) with the blob
velocity given by

vb ∼ωδb, (4.11)

where δb is the blob scale size in the poloidal direction.

5. Summary and conclusions

In § 2 of this paper we developed a unified analytical model for transverse KH
modes in slab geometry including several physical ingredients: ion diamagnetism
(including ion gyro-viscous terms), density gradients and parallel Alfvén currents. An
exact, arbitrary wavenumber radial eigenvalue equation, following from (2.1)–(2.3), is
given in (2.11) for this slab geometry case. The main result of the long-wavelength
limit of the calculation is to be found in (2.21) or equivalently its normalized form
(2.24). Taken one at a time, all the examined mechanisms have a stabilizing effect.
Density gradients of either direction relative to the velocity shear reduce the growth
rate of the KH mode, as shown in (2.27). Ion diamagnetism completely stabilizes
the KH mode when it is sufficiently large, typically |τ | > 1 where τ ∼ vdi/(v

′Lv),
where vdi is the diamagnetic drift velocity, v′ is the shearing rate of the E × B
velocity and Lv is the width of the velocity shear layer. More precise conditions are
discussed in connection with (2.29) and (2.30). Furthermore, when there is shear in
the diamagnetic velocity, the case where the net velocity shear (ion diamagnetic plus
E×B) is minimized tends to be the most stable. Alfvén parallel currents completely
stabilize the KH mode when 2ωa > kyV where ωa = k‖va and V ∼ v′Lv, as shown
in (2.32). When both density and ion pressure gradients coexist, as is usually the
case in practice, the density gradient partly counteracts the ion pressure gradient, as
discussed following (2.33).

In the process of carrying out this work, we have also identified a new compact
form for the ion gyro-viscous terms, as shown in appendix A. This form may prove
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convenient for future analytical and numerical studies. An arbitrary toroidal magnetic
geometry generalization, not presented here, would also be useful.

Numerical results for the KH instability were considered in § 3 using a minimal
physics model with cold ions and constant density, but realistic toroidal geometry.
In general, KH modes in a torus balloon strongly to the outboard midplane side
owing to the RBp weighting of the vorticity gradient when the equilibrium Φ is
a flux function, essentially a flux surface spacing effect. It was confirmed, for a
typical spherical torus flux surface shape that magnetic geometry effects including
magnetic shear and perturbed parallel currents have a strong stabilizing effect on the
KH mode when vaLv/(vR)∼ va/(v

′R) > 1 where v ∼ v′Lv is again the total jump in
E × B velocity across the shear layer. In addition to the usual KH instability cutoff
at high k, electromagnetic Alfvén physics leads to a low-k limit for stability that is
understood from the analytic model. Electrostatic limits for the parallel current were
also found to be stabilizing, but without the low-k cutoff. The distribution of magnetic
shear along the field lines was found to increase KH growth rates for situations when
the shear layer is close to the separatrix or in the near SOL, as shown in figures 5
and 6.

Finally, a set of equations with a parallel current closure, suitable for implementation
in 2-D reduced modelling codes, was developed. Its relationship to the high-beta blob
closure was discussed and it was shown that the main stabilizing effects of Alfvén
parallel currents on interchange and KH modes could be captured by the reduced
model.

The Kelvin–Helmholtz instability continues to be a fascinating topic in the
dynamical evolution of plasmas. It will be important for tokamak plasma physics
to continue the effort to understand its role in turbulence saturation physics and in
the stability of edge and near SOL plasmas where gradient scale lengths can be
extremely short. In particular, KH-driven turbulent transport and spreading of the
narrow SOL heat flux channel would be very favourable to fusion.
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Appendix A. Ion pressure contribution to the vorticity equation

In this appendix, we demonstrate the equivalence of three forms of the vorticity
equation including ion pressure and ion gyro-viscosity. Finally, a compact derivation
and physical interpretation of one of the forms is reviewed. This appendix employs
Bohm-normalized units, as does the main text.

The starting point is (76) of Simakov & Catto (2003). Taking the limit of a straight
constant B-field, neglecting parallel flow, parallel gradients and the parallel viscous
stress, the vorticity equation given therein may be easily cast into the form

∂t$ + v · ∇$ +Θ =∇‖J‖, (A 1)

where $ =∇ · f =∇ · (n∇Φ +∇pi), and as in the main text, v = b×∇Φ. Here

Θ = 1
2∇ · [∇(v · ∇pi)−$v + (n∇2Φ)(v + vdi)+ (v · ∇n)(∇Φ)] (A 2)
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and nvdi= b×∇pi. Here, and henceforth in this appendix, the operator ∇ implies ∇⊥
because we focus on the perpendicular gyro-viscous ion physics. In obtaining (A 2)
we have employed ∇ · (v$) = v · ∇$ . The fact that ∇ · v = 0 is used frequently
throughout the appendix to move v in and outside of the divergence operator.

In the following we derive two other equivalent forms for Θ

Θ = 1
2 [b · ∇v2 ×∇n+∇2(v · ∇pi)− (v · ∇)∇2pi + nvdi · ∇∇2Φ] (A 3)

and

Θ =∇v : ∇f ≡ (∂jvk)(∂k fj), (A 4)

where f = n∇Φ +∇pi and the final form of (A 4) employs Cartesian tensor notation
with implicit sums on repeated indices. Thus our double-dot convention for index
summation is

AB :CD= (A ·D)(B ·C), (A 5)

and the dyad operator convention is that ∇ only operates on the quantity to its
immediate right. Equation (A 3) is the form given in Umansky et al. (2009) and
Russell et al. (2015) while (A 4) is the form used in (2.1).

From (A 2) we first derive (A 3). Expanding ∇ · ($v)= v · ∇(n∇2Φ +∇n · ∇Φ)+
v · ∇∇2pi and starting with the terms that don’t contain pi there is a cancellation
involving two n∇2Φ terms leaving

Θ (1) = 1
2∇ · [−v(∇n · ∇Φ)+ (v · ∇n)(∇Φ)] = 1

2∇ · [∇n× (∇Φ × v)]. (A 6)

Noting that

∇Φ × v =∇Φ × (b×∇Φ)= bv2 (A 7)

and applying the vector identity for ∇ · (A×B) to (A 6) one obtains

Θ (1) = 1
2 b · ∇v2 ×∇n. (A 8)

Next for the terms involving pi we have from (A 2) the contribution

Θ (2) = 1
2∇ · [∇(v · ∇pi)− v∇2pi + nvdi∇2Φ + (v · ∇n)(∇Φ)]. (A 9)

Noting that ∇ · (nvdi)= 0 and also pulling v through the divergence yields

Θ (2) = 1
2 [∇2(v · ∇pi)− v · ∇∇2pi + nvdi · ∇∇2Φ]. (A 10)

Combining to get Θ =Θ (1) +Θ (2) proves the equivalence of (A 2) and (A 3).
To show that (A 3) and (A 4) are equivalent we again begin with the terms that are

independent of pi. Equation (A 4) has the term

Θ (1) =∇v : ∇(n∇Φ)= n∇v : ∇∇Φ +∇v : ∇n∇Φ. (A 11)

Applying the dyad identities Ab × B : CD = −AB : b × CD and AB : CD = DC :
BA to the first term on the right-hand side of (A 11) we have, ∇(b×∇Φ) : ∇∇Φ =
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−∇∇Φ : (b × ∇)∇Φ = −∇(b × ∇Φ) : ∇∇Φ, i.e. this term equals its negative and
hence vanishes. For the second term we have

∇v : ∇n∇Φ =∇Φ · ∇v · ∇n=−(b× v) · ∇v · ∇n. (A 12)

Using ∇ · v = 0, it is not difficult to show that

(b× v) · ∇v =−b×∇v2/2. (A 13)

(An inelegant proof is easily obtained by writing out the components in Cartesian
coordinates.) Applying this to (A 12) and employing the result in (A 11) yields the
desired result

Θ (1) = 1
2 b · ∇v2 ×∇n. (A 14)

For the ion pressure terms, it is easiest to start with the terms given in (A 3) and work
towards (A 4).

Θ (2) = 1
2 [∇2(v · ∇pi)− (v · ∇)∇2pi + (b×∇pi) · ∇∇2Φ]. (A 15)

Consider first

∇2(v · ∇pi)=∇2v · ∇pi + 2∇v : ∇∇pi + v · ∇∇2pi. (A 16)

A cancellation then occurs in (A 15) which becomes

Θ (2) = 1
2 [∇2v · ∇pi + 2∇v : ∇∇pi + (b×∇pi) · ∇∇2Φ]. (A 17)

Employing ∇2v = b × ∇∇2Φ one finds immediately that the first and last terms in
(A 17) cancel leaving

Θ (2) =∇v : ∇∇pi, (A 18)

which is the desired result. This completes the proof of the equivalence of (A 2)–(A 4).
Finally, the derivation of the ion pressure contributions to the vorticity equation is

reviewed from the point of view of the vector ion momentum equation. We make the
ansatz that the ion pressure contributions are contained in the terms

∂tg+∇ · (vg)= · · · , (A 19)

where g= nu and u= v+ vdi is the total fluid velocity. The vorticity equation can be
derived by applying b · ∇× to (A 19). It is useful to note the vector identity for any
vector A (again with b · ∇A= 0 or ∇=∇⊥)

b · ∇× (b×A)=∇ ·A. (A 20)

Employing g= b× f and using the preceding identity one finds

b · ∇× g=∇ · f =$. (A 21)

For the divergence term in (A 19) we apply the same identity with A= (v · ∇)f . This
yields

b · ∇×∇ · (vg)=∇ · (v · ∇f )= v · ∇∇ · f +∇v : ∇f . (A 22)
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Collecting terms we have the vorticity equation in the form of (A 1) and (A 4). This
compact derivation recovers the well-known gyro-viscous cancellation: the net effect
is that the total fluid momentum g in (A 19) is only advected by v, the E×B part of
the total fluid velocity. This is the entire physical content of the complicated terms in
(A 2), (A 3) or (A 4).
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