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Abstract

We determine all conjugacy classes of maximal local subgroups of Thompson's sporadic simple group,
and all maximal non-local subgroups except those with socle isomorphic to one of five particular small
simple groups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 D 08.

1. Introduction

In this paper we classify all the maximal /?-local subgroups of Thompson's simple
group Th of order 90,745,943,887,872,000 = 215.31O.53.72.13.19.31, and also
partially classify the non-local subgroups. The existence of this group was
originally conjectured by J. G. Thompson as a subgroup of the then uncon-
structed Monster group, in which the 3C-centralizer is 3 X Th, and was first
constructed by P. E. Smith and J. G. Thompson (see [2]) as a group of real
248 X 248 matrices.

Our main result is the following theorem.

THEOREM. Any maximal subgroup of Th is either
(A) a conjugate of one of the maximal subgroups given in Table 1.
or (B) a conjugate of a particular group L2(l9): 2 if X2(19) is a subgroup of Th
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18 Robert A. Wilson [2]

or (C) the normalizer of a simple group S with trivial centralizer, where S = A6,
L2(7), L3(3) or t/3(3).

2\+&-A9 52:GL2(5)

2 5 -L 5 (2) 7 2 : ( 3 X 2 S 4 )

(3XG 2 (3 ) ) : 2 31:15

(3 3 x3 1
+

+ 2 ) -3 1
+

+ 2 :2S 4
 3Z>4(2):3

32.[37].2S4 t/3(8):6

S5

TABLE 1

REMARK. Some further restrictions on possible subgroups of type (C) are given
in the final section of the paper.

Note. Our notation for groups, conjugacy classes, characters, etc. follows the
ATLAS [1].

Note added in proof. S. Linton has now shown that L2(19) is a subgroup of Th,
and that the cases S = A6, L2(l) and f/3(3) do not arise in part (C) of the
Theorem.

2. The 2-local subgroups

There is just one class of involutions in the Thompson group, with centralizer
2\+*-A9. In this group, the action of the A9 on the 28 is not the deleted
permutation representation, but may be obtained from the latter by applying the
triality automorphism of O8

+(2). All the non-central involutions in 21 + 8 are
conjugate under the action of A9, so we obtain one class of four-groups with
centralizer 22 • [29] • L3(2). Now the involutions of cycle shape (2215) in A9 do
not lift to involutions in Th. An involution of cycle shape (241) has centralizer
23S4 in A9, and its fixed space in the 28 has order 24. Hence the stabilizer of a
corresponding four-group in 2l + iA9 has order at most 2U • 3. On the other hand,
the structure constant £(2A,2A,2A) = 1/214.3.7 + l /21 0 .3, so we have proved
the following lemma.
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[3] Some subgroups of the Thompson group 19

LEMMA 2.1. There are just two classes of four-groups in Th, one with centralizer of
order 214.3.7, and the other with centralizer of order 210.3.

Using the geometry of O8
+(2), we can find the orbits of A9 on the totally

isotropic subspaces of the 28. (The easiest way to do this is to work in the deleted
permutation representation, and then apply the triality automorphism, so that
1-spaces become 4-spaces and so on.) The orbits are as follows:

Orbit size(s)
135 on the 135 points (1-spaces)
315 + 1260 on the 1575 lines (2-spaces)
135 + 1800 on the 2025 3-spaces
9 + 126 on the 135 4-spaces of the first kind
135 on the 135 4-spaces of the second kind

We define any isotropic space to be nice if it is contained in one of the 4-spaces
in the orbit of size 9. The 9 nice 4-spaces are disjoint, and each contains 15
1-spaces, 35 2-spaces and 15 3-spaces, so by counting we see that any nice space is
contained in a unique nice 4-space. Furthermore, a subspace is nice if and only if
all its 2-dimensional subspaces are nice.

The normalizer of a four-group of the first type is N(2A2)l = 22 • [29] • (53 X
L3(2)), in which the L3(2) acts on the [29] as one copy of the natural representa-
tion together with two copies of its dual. Furthermore, the natural module is a
submodule, so gives rise to a normal subgroup 25 in N(2A2)1. This 25-group
corresponds to a nice 4-space in the 28, so its normalizer contains both 25.24.^8

and 25.26.(L3(2) X S3), and therefore has the shape 25.L5(2). All four-groups in
this 25-group are of the first type, and correspond to the nice 2-spaces in 21 + 8.
Hence the isotropic 2-spaces in the 1260-orbit are conjugate to the second type of
four-group. The normalizer of this latter four-group is N(2A2)2 = (22 X 21 + 4) •
(S4X S3)<21 + SA9, in which the S4 X S3 acts on 6 + 3 letters in the ,49-image.
Indeed, the four-group centralizer is (22 X 21 + 4) • S4, in which the S4 fixes 3
letters, since only 3y4-elements centralize isotropic 2-spaces. Hence all involutions
in the 54 have cycle type (2215) in the A9, so do not lift to involutions in Th.
Hence any elementary Abelian 2-group not in the nice 25 is in a unique group
21 + 8, and so its normalizer is in 21+SA9. This concludes the proof of

THEOREM 2.2. Any 2-local subgroup of Th is contained in either N(2A) =
21 + 8 • A9 or N(2A5) = 25 • Ls(2).
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20 Robert A. Wilson [4]

3 . The />-local subgroups, p > 5

For each prime p > 5 dividing the order of the Thompson group, there is a
unique class of subgroups of order p, and their normalizers are as follows:

N(5A)s 5\+z:4S4,

N(1A) s (7 :3 X L2(7)):2 <3D4(2):3,

N(13A) = (13 :6 X 3) • 2 < (3 X G2(3)):2,
N(19A) = 19:18 < f/3(8):6,

N(31AB) = 31:15.
The groups N(5A) and N(3\AB) will turn out to be maximal subgroups of Th.

There is a unique class of groups of each of the orders 52 and 72, and so their
normalizers are

= 52:GL2(5),

= 72:(3 X 2S4)

both of which are maximal subgroups of Th.

4. The 3-local subgroups

There are three classes of elements of order 3 in Th, with normalizers

= (33X 3\+2)-3\+2:2S4,

s (3 X 3A:2A6):2.

For a proof that N(3B) has the above structure, and for further details, see below.
Now by looking at the character value on involutions, we see that the

248-character of Th restricts to 3 X G2(3) as 1 ® (1 + 91) + (« + «) ® 78,
where the characters of the group of order 3 are denoted by their values on a
generator, and those of G2(3) by their degrees. Hence we have the following class
fusion

G2(3)-class
r/i-class
diagonal elements
32-type
32-centralizer

3A/B
3B
3A
3A3BX

[36]:2A4

3C
3B
3A
3A3BX

[37]

3D
3C
3B
3A1B2C1

3 5 : 2

3£
3A
3C
3A2C2

3 5 :2

Now let Y be an elementary Abelian 3-group generated by 3yl-elements. If every
pair of 3v4-elements in Y generates a group of type 3A3Blt then Y contains a
unique 35-pure subgroup of index 3, and so N(Y) is contained in the normalizer
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[ s ] Some subgroups of the Thompson group 21

of a 35-pure group. Otherwise, Y contains a group of type 3A1B2Cl or 3A2C2,

each of which has centralizer of shape 3 5 : 2 . Hence C(Y) contains a unique Sylow

3-subgroup, which in each case is an elementary Abelian group of order 35, whose

normalizer we will find later. In fact we will see that these two 35-groups are

conjugate in Th.

Next we consider the case of an elementary Abelian group Y generated by

3C-elements, and containing no 3/4-elements. We first need to study the 3C-nor-

malizer in some detail. We have C(3C) = 3 X 3 4 : 5L 2 (9 ) , in which the group

SL2(9) = 2A6 acts naturally on 3 4 = (F9)2 , where F9 is the field (0, + 1 , + / ,

+ 1 + /} of order 9.

The 243 linear representations of the normal 35-subgroup E are fused by 2 A 6

to give representations of degrees 1 and 80, which we denote by l a , \b, \c, 80a,

806, 80c. Furthermore the outer elements of 2S6 fuse 1b to \c and 806 to 80c.

Hence from the character value on the 3C-element we see that the 248-character

of Th restricts to 3 5 : 2S6 as lb4c4 + SOabc, that is, four copies of each of the

non-trivial linear characters, plus one copy of each of the 80-dimensional char-

acters. This shows that E = 35 has type 3ClB4OCso, and N(E) is not transitive on

the 3C-elements in E, since the order of the Thompson group is not divisible by

3 U .

Now consider the subgroup 3 X SL2(9) = 3 X 2A6. Since we have already seen

32-groups of types 3AlB2Cl and 3A2C2 in the involution centralizer, it follows

that both of these are represented in 3 X 2A6. Furthermore, since the Sylow

3-subgroup of SL2(9) fixes a 1-space in the natural representation over F9, we see

that there is a group F = 3 5 containing both these 32-groups.

Now the Sylow 3-group in (F 9 ) 2 :SL 2 (9 ) is a group 3 2 + 4 in which each

non-central element has order 3 and centralizer 3 4 . There are 10 such groups 3 4 ,

of which one is the vector space (F9)2 and another contains elements of the

complementary SL2(9). The remaining 8 groups are permuted transitively by the

Sylow 3-normalizer 3 2 + 4 : [ 2 4 ] in 3 4 :2S 6 . Hence these also give rise to 35-groups

of type 3fi4oC81, conjugate to E but seen from the point of view of one of the

3C-elements in the 80-orbit. This determines the conjugacy classes of all elements

of order 3 in N(3C), and in particular shows that the 35-group F defined above

has type 3A5AB4OC21, and that any two commuting 3C-elements generate a

32-group of type 3A2C2 or 3BXCV

Now any elementary Abelian group generated by 3C-elements is either in a

conjugate of E, in which case it contains a unique 35-pure subgroup of index 3,

or else its centralizer has a unique Sylow 3-group, which is conjugate to F. Now F

contains 3.42C2-subgroups, so is conjugate to both the 35-groups discussed earlier.

Hence, in order to complete the reduction to the 35-pure case, it suffices to find

the normalizer of F. But now its intersection with (F9)2 is a 3#4-group, and this is

determined as the intersection of all the 32?-pure 33-groups in F.
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22 Robert A. Wilson [6]

We have now reduced to the 3.8-pure case, so we must study the structure of
the centralizer of a typical 35-element / in some detail. Here it is necessary to use
the notation introduced in [3] to describe the subgroup 31 + 12 • 2Suz of the
Monster. Briefly, 31 + 12 is written as the central product of 6 copies of 3 1 + 2 , and
2Suz is written as 6 X 6 matrices acting on this decomposition. The matrix
elements are quaternions reduced modulo 3, and the vector coordinates (that is,
the elements of 3 1 + 2 modulo the centre) are quaternions reduced modulo 0 = i +
j + k (on the left). First we obtain generators for most of the group C(t) by
centralizing the 3C-element (/', /,0,0,0,0) • ( « , to, + ,-—») in the Monster. We
obtain N{3B) = (33 X 31 + 2) • 31 + 2 :2S4 , where the bracketed normal subgroup
33 X 31 + 2, which we denote by T, is contained in the corresponding group 31 + 12

in the Monster, and may be generated by the elements (0,0,0,1,1,1), (0,0,0, /, /', /),
(1,-1,0,0,0,0) , (0,0,1,0,0,0) and (0,0,7,0,0,0). We can extend by an outer
automorphism group 3 X 2A4 generated by (1 ,1 , / , / , / , / ) and (-/,/ ,0,0,0,0) •
( « , w, w, w, <o,«) together with the central 3-element (/', -/ , 0,0,0,0) • d, where d
is the matrix

1

e
0
0
0

o

e
I
0
0
0
0

0
0
1

-1
-1
-1

0
0
1

-1
1
1

0
0
1
1

-1
1

0
0
1
1
1

-1
[Warning: d is an element of the Monster, but not of Th.]

First we study the normal subgroup T in some detail. This group T contains
four conjugate elementary Abelian 35-groups, whose union is the whole group.
Now elements of 77i-classes 3A, 3B, 3C are of M-classes 3 A, 3B, 3B respectively.
Hence the group generated by (1,-1,0,0,0,0) and (0,0,1,0,0,0) contains two
3A -elements and two elements of class 3B or 3C, so it is of type 3A 2C2. This
implies that these 35-groups are conjugate to F, and we can use this to determine
the classes of the elements in T. We have the following orbits under 2A4:

(1 , -1 ,0 ,0 ,0 ,0 ) , (1 , -1 ,0 ,1 ,1 ,1) 9 elements of class 3A

(0 ,0 ,1 ,0 ,0 ,0 ) , ( 0 ,0 ,+1 ,1 ,1 ,1 ) ,
9 elements of class 3A

' ( 0 , 0 , - 1 , / , / , / ) , ( 1 , - 1 , ±1 ,0 ,0 ,0 ) ,
. } 9 elements of class 3C
( 1 , - 1 , +1 ,1 ,1 ,1 ) , ( - 1 , 1 , ±1 ,1 ,1 ,1 )
*(0 ,0 ,1 , / ' , / , / ) , *(1, - 1 , - 1 , / , / , / ) 9 elements of class 3B

(0 ,0 ,0 ,1 ,1 ,1) 4 elements of class 3B

This gives the conjugacy classes of all the elements in T, since multiplying by /
does not change the class. Note that the signs in the cases marked * are rather
subtle. In order to prove that they are as given, we need to use some later results.
However, we do not use these subtleties, so no details are given here.
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[ 7 ] Some subgroups of the Thompson group 23

Now let us consider the action of the quotient group 31 + 2: 2S4 on the group T.
Certainly it fixes the centre, which is an elementary Abelian group of order 34,
and also fixes the subgroup of index 3 therein consisting of all the 3Z?-elements.
Furthermore, the central element of 31 + 2 : 2S4 acts non-trivially on this 34, so we
have a faithful representation of this group. Since the 2-space stabilizer 34:(2A4

X 2A4) in SL4(3) does not contain a group 31 + 2 : 2 ^ 4 , it follows that the
4-dimensional module for the latter group is uniserial 1 + 2 + 1. In particular,
N(3B) is transitive on the central 3,4-elements in T, and on the central 32?-ele-
ments in T outside the derived group (t).

Now there are also non-central 3A -elements in T, and since there are only two
classes of 3y43.B1-groups in Th, it follows that N{3B) is also transitive on these
3A-elements. It is clear then that N(3B) is also transitive on the 3C-elements and
the non-central 3#-elements in T.

For the sake of convenience we call the central 3fi2-group in T a type 1 group,
and the non-central one type 2 (both containing the original element t). It will be
clear later that each is the unique 352-group with the appropriate centralizer
order, and therefore the normalizer is in each case transitive on the non-trivial
elements. We have N(3B2)1 =s 32.[37].2S4, which will later turn out to be a
maximal subgroup of Th, and N(3B2)2 = 32.[35].254, which we proceed to show
is contained in N(3B). Consider the 352-group which is central in T but does not
contain t. There is a unique class of such groups, and the normalizer of one of
these in N(t) is (33 X 31 + 2).3.2S4. Now this 352-group is not of type 1, for if it
were then there would be a 35-pure 33-group such that all the 32J2-subgroups
were of type 1, and hence the normalizer would have to be 33.34.L3(3), which is
absurd since then Th would have a subgroup 33:13 X 3. Indeed, this all happens
inside the group F described earlier, in which we can see there are just two classes
of 32?2-groups, one being of type 1 and all the rest of type 2. Hence N(3B2)2 is
contained in N(3B), as claimed. Now any larger elementary Abelian 35-pure
subgroup of T is again in the 35-group, which is conjugate to F, so has order 33

and contains a unique 32?2-group of type 1. Hence its normalizer is in N(3B2)1.
Having dealt with all subgroups of T, we must next find the conjugacy classes

of elements of order 3 in N(t)/(t) outside T/(t). The quotient group N{t)/T ~
31+2:2 S4 contains five classes of elements of order 3, four of which we have nice
representatives for:

Name

3a
3b
3c
3d
3e

Representative

(i,-i,0,0,0,0) •
?
(-/,/,0,0,0,0) •
< « > • < /

(-j, i.0,0,0,0) •

d

<«>

(5)-d

Class
in Suz
3B
3B
3A
3B
3B

Centralizer
in
31-
33

32

32

32

31 + 2:2A
h2:2A4

X S3

x S3

X S3
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24 Robert A. Wilson [8]

Note : in this table, and below, we write (a) for the diagonal matrix

( « , w, w, o), u,«). Each element has an associated vector, which is the vector in

31 2 that we have to divide by in order to get an element in 6Suz—so that for

example the vector associated with the 3a-element given above is (/, - / , 0 ,0 ,0 ,0) .

For each of these five classes we must find the classes they lift to in the

non-split extension of the 5-dimensional vector space T/(t) by the group

C(t)/T = 31 + 2 : 2v44. Now by general principles, an element x is conjugate to its

multiples by vectors in the image of x — 1. Hence we must find the orbits of the

centralizer of x in 3 1 + 2 : 2 5 4 on the vectors modulo the image of x — 1. Or to be

more precise, we need the orbits on the coset of this generated by the vector

associated with x.

We deal first with the case 3a, and we take the element ( / , - / , 0 ,0 ,0 ,0) • d,

where d is the matrix displayed above. Then the image of x — 1 is generated by

( 0 , 0 , 0 , 1 , 1 , 1 ) and ( 0 , 0 , 0 , / , / , / ) , and the vector associated with x is of course

(/, - / , 0 ,0 ,0 ,0 ) . Then the group 31+22A4 acts on the relevant coset of T/lm(x - 1)

with orbits of sizes 3 + 24, so we have two conjugacy classes of elements in

C(3B). In order to indentify their classes in Th, we first identify their classes in

M. The given vectors are not in the subspace of 31 + 12 generated by the fixed

space of d and its centralizer in 31 + 1 2 . Hence by [3] the elements either have order

9 or are of M-class 3C. But the latter case cannot happen, so by looking at the

centralizer orders of the elements of order 9 we have the two classes:

Representative Centralizer order Type

( i , - i , 0 , 0 , 0 , 0 ) •</ 2 3 - 3 6 9A

(i,-i,l,0,0,0)d 3 6 9B

Next consider the case 3c, taking x to be the element (-/,/ ', 0 ,0 ,0 ,0) • ( w ) .

Then the image of x - 1 is generated by (0 ,0 ,1 ,0 ,0 ,0 ) and (0 ,0 ,0 ,1 ,1 ,1 ) , and

the vector associated with x is (- / , /, 0 ,0 ,0 ,0) . The quotient of T by the image of

x — 1 may therefore be generated by (1 , - 1 , 0, 0, 0), (0, 0, 0, /, i, i) and

(0,0, /, 0 ,0 ,0) . If we add a vector in the space generated by the first two vectors,

then we get an element of order 9, see [3]. Hence all these elements are of class 9C

and are conjugate. Then the 3c-centralizer in 3 1 + 2 2 S 4 has 3 orbits on the

remaining vectors in the coset, and two of these orbits are interchanged by the

outer automorphism. In all 3 cases the corresponding [32]-group has type 32?4 in

the Monster, and centralizes an element of 77i-class 3C in T, so from what we

know about the 3C-centralizer we can deduce that the whole centralizer is
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conjugate to E. Thus we have the 3 classes:

Representative Centralizer
9 X 32:2
35

35

Type
9C
3^ 4

35^3

Let us turn now to the case 3d, taking x to be the element ( « ) d . In this case

the image of x - 1 is generated by (0 ,0 ,0 ,1 ,1 ,1 ) and (0,0, - 1 , i, /, / ) , and does

not contain our original 35-element t. Also, the vector associated with x is

(0 ,0 ,0 ,0 ,0 ,0 ) . Note that this implies that elements are not necessarily conjugate

to their multiples by t. We must determine the orbits of C(x) on the vectors of

the space generated by (1, - 1 , 0 , 0 , 0 , 0 ) , ( 0 , 0 , 1 , i, i, i) and (0,0, /, 0 ,0 ,0) , say. If we

ever add in the last generator, then the element has order 9 modulo (t), so we can

neglect this case. Now x itself gives rise to a 32-group of M-type 3AXB^, so of

77i-type 3AlB2C1. But the centralizer of such a 32-group is just 3 5 : 2 , so by

counting we see that all 32-groups of type 3d are conjugate to it. We therefore

have only one class of 32-group as follows:

Representative Centralizer Type

(u)-d 3 5 : 2 3AlB2C1

Next we turn to the 3e case, taking x to be the element (-/, i. 0,0,0,0) • ( « ) • d,
so that the fixed space of x is generated by (0,0,0,1,1,1) and (0,0,1, /, i, i), and
the vector associated with x is (-/, i, 0,0,0,0). We may suppose that the added
vector is in the space generated by (1,-1,0,0,0,0), (0 ,0 , -1 , / , / , / ) , and
(0,0, i, 0,0,0), say. If ever we add in the last generator, then the resulting element
has order 9 modulo ( / ) , so we can neglect it. If we add in only (1, -1,0,0,0,0),
then the resulting 32-group is still in the involution centralizer, so the structure of
2 1 + 8 • A9 implies that it is conjugate to the first 32-group (t, x). And finally, the
element (0,0, - 1 , /, /, i) is in the fixed space of x, so gives rise to a 32-group with
the same centralizer. We have the two cases:

Representative Centralizer Type
(-1,1,0,0,0,0) •<£>>•</ 35:2 3B4

( - 1 , i, 1 , i , i, i) • < « > • « / 3 5 3BXC3

In here we identify the conjugacy classes by observing that E must be a
subgroup of C(3B), and can intersect T in at most a 33-subgroup. Hence it maps
onto a 32-subgroup of 31 + 2 :2S4, containing no 3a-elements or 3J-elements, so
containing 3b, 3c and 3e-elements. In fact this 32-group has type 3b1c2e1.
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Before considering the 3ft-case, which is the only one left, let us find the
normalizers of everything not involving the 36-cosets. We can ignore the 3a-ele-
ments, since they lift only to elements of order 9. If we have a 3c, 3d or
3e-element, then the centralizer is an elementary Abelian 35-group containing a
3C-element, so its normalizer has already been found. Hence we can restrict to
the case when we have only a 3Z>-element outside T.

Here we are somewhat hampered by not having an explicit element to work
with, so we have to use a rather clumsy theoretical argument to classify the
conjugacy classes.

Now we have already shown, in the discussion of the structure of N(3B), that a
3Z>-element centralizes a 33-subgroup of T, and we know what this is by looking
inside F. Indeed, it has type 3B4C9, and so may be taken to be generated by
(0,0,0,1,1,1) and (1,-1,1,0,0,0). Now if we multiply by any element of the
central 34 of T then the resulting element still centralizes a 3C-element, so has
order 3 and is in one of the 35-groups already considered. Finally we wish to
prove that if we multiply by any other element of T then we get an element of
order 9. Now T/lm(x — 1) = 33 so there are 27 cosets to consider, of which we
have dealt with 9. But now C(9A) == 33 • 3 1 + 2 : Qs regarded as an element of type
3a (that is, if it cubes to / then the normal 33 is the intersection with T). Hence
there exist elements of order 9 of type 3b, for otherwise we could multiply a
3/>-type element of order 3 by a commuting 9A -element to obtain a 36-type
element of order 9. Hence all the remaining elements have order 9, as we have
already seen that multiplying by a central element of T does not affect the order
of the element modulo (t). (This is true for elements of order 3, so it is also true
for elements of order 9, since T/(t) is Abelian.) Now these 9-elements do not
cube to t, so there are just three classes of elements of order 3 modulo (t), each
with centralizer 35, the corresponding 32-groups being one of type 32?4 and two of
type 35jC3. Finally we notice that in this case also the centralizer of such an outer
element of order 3 is just the group E = 35, whose normalizer we have already
found.

This concludes the proof of

THEOREM 4.1. Any 3-local subgroup of Th is contained in one of the following
maximal 3-local subgroups

= (33X 3 V 2 ) - 3 V 2 : 2 S 4 ,

N{3B2) = 32.[37].2S4,

N(3C) s (3 X 34:2A6):2.
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5. Non-local subgroups

Using the classification of finite simple groups, we can find all non-Abelian
simple groups whose order divides that of the Thompson group, |77!| =
215.31O.53.72.13.19.31. We divide these into two cases:

(1) Known or possible subgroups:
A5, A6, L2{1), L2(8), L2(13), L2(19)?, L3(3), £/3(3), C/3(8), G2(3), and 3D4(2).
(2) Non-subgroups:
A7, As, Ag, Aw, L2(25), L2(27), L2(31), L2(49), L2(64), L2(125), t/3(4),

£/3(5), L3(4), L3(5), L3(9), £/4(2), £/4(3), L4(3), L5(2), L6(2), S6(2), O8
+(2), S4(8),

S6(3), 07(3), Sz(8), 2F4(2)', G2(4) and J2.
We prove that none of the groups listed in (2) is in Th. First note that it suffices

to prove it for A7, L3(5), L2(25), L2(27), L3(4), Sz(8), L2(31), 2F4(2)', L2(49),
L2(64), L2(125), L3(9), f/3(4), J2, and I/4(2).

Now the 3-elements in anyy45 are of class 2>B (see Proposition 5.1 below), and
C(3B) does not contain A4, so there is no A7. Similarly, the 3-elements in 31: 3
are of class 3C, so there is no L3(5). For L2(25), note that the 4-elements in S5 are
of class 45 (see below), but there is no class of 12-elements in Th which powers to
both 3B-elements and 42?-elements.

We eliminate the groups L2(31), L2(49), L2(64), L2(125), L3(9) and 2FA{2)'
since they contain elements of orders 16, 25, 63, 63, 91 and 16 respectively.
Similarly, U3(4) and J2 contain 5 X As and L2(27) contains 33:13, while L3(4)
and i/4(2) contain subgroups of the shape 24:A5. In each case we know from the
local analysis that Th does not contain such a group. Finally, it is easy to show
that there is no restriction of the character of degree 248 to Sz(8).

Conversely, J. G. Thompson has shown that Th contains subgroups of the
shapes £/3(8):6 and 3I>4(2):3, by looking inside the Monster, and S. P. Norton
has shown similarly that Th contains M10 = A6 • 2 (see Proposition 5.8 below).
Then the 3,4-centralizer contains G2(3), which contains all the remaining groups
on the list except for L2(\9). I do not yet know whether L2(19) is a subgroup of
Th.

In what follows, we make considerable use of structure constants. If X, Y, and
Z are three conjugacy classes in G, then £C(X, Y, Z) denotes the value of the
expression

\C(x)\\C(y)\\C(z)\^

where x e X, y e Y, z e Z, and the sum is over all irreducible characters x of
G. It is a well-known fact that

UX,Y,Z)-X 1

\C(x,y,z)\
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where the sum is over all conjugacy classes of triples (x, y,z) of such elements
with xyz — 1.

PROPOSITION 5.1. There is a unique class ofA5 in Th, and it has normalizer S5.

PROOF. The only non-zero structure constant of type (2,3,5) is £(2.4,3B, 5A) =
1. But there is no A5 in any of the element centralizers.

PROPOSITION 5.2. (a) There is a unique class of L2(8), and its normalizer is
S3 X £2(8) : 3, which is contained in NQA) = (3 X G2(3)): 2.

(b) There is a unique class o/3D4(2), and its normalizer is 3D4(2): 3.

PROOF. The elements of order 3 in L2(8) are cubes, so are of class 35. Now the
248-character restricts to 3£>4(2) as the direct sum of the irreducible representa-
tions of degrees 52 and 196, so in particular the elements of 3D4(2)-class 32? are of
77i-class 3B. Then the structure constant £Th(2A,3B,7A) = 7/6 is entirely
accounted for by the contributions from the known classes of L2(8) and 3A»(2),
since £L2<8)(2,3,7) = 3 and in 3D4(2) we have £(25, 3B, ID) = 3.

REMARK. It is possible to give an alternative proof of the uniqueness of 3A»(2)
as a subgroup of Th, by constructing the group out of its 7-local subgroups.

PROPOSITION 5.3. There is a unique class of U3(S) in Th, and its normalizer is
I/3(8): 6.

PROOF. Any group t/3(8) may be constructed by taking a group 3 X L2(8), and
extending the 23-normalizer from 3 X 23:7 to 23 + 6 : (7 X 3). Now there is a
unique class of 3 X L2(8) in Th, which is contained in 3 X G2(3), and the entire
23-normalizer in Th has the shape 23 • [28] • (S3 X L2(7)). But in the latter group
the elements of order 21 act on the [28]-factor as the direct sum of irreducible
representations of degrees 6 and 2. Hence there is a unique group 23 + 6 :21
containing a given 23:21, and the result follows.

PROPOSITION 5.4. There is a unique class of L2(13) in Th, and its normalizer is
(3 X L2(13)): 2, which is contained in N(3A) s (3 X G2(3)): 2.

PROOF. Since the total (2,3,7)-structure constant in L2(l3) is 6, and the
centralizer of any L2(13) in Th has order at most 3, it follows that any L2(13)
contributes at least 1 to the (2,3,7)-structure constant in Th. But £(2A, 3A, 1A) =
3/14, and we have already accounted for all of £(2A, 3B, 1A) = 7/6, so the class
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fusion must be (2A,3C,6A,1A,13A). Now the only L2(l3) with non-trivial
centralizer is the one with normalizer (3 X L2(13)): 2, contained in (3 X G2(3)): 2,
and this L2(13) extends to L2(13):2. Furthermore, £{2A,3C,1A) = 4, so any
L2(13) with trivial centralizer also extends to L2(13): 2. If we restrict the
248-dimensional representation to each of the groups 13:12, L2(13): 2 and
(3 X G2(3)): 2 in turn, we find that each of these groups fixes a unique 1-space
pointwise. Thus any L2{\3) is contained in G2(3), and the result follows.

PROPOSITION 5.5. There is a unique class of G2(3) in Th, and its normalizer is
(3XG 2 (3)) :2 .

PROOF. Any group G2(3) may be constructed from L2(13) by extending D14 to
7:6. But both the L2(13)-normalizer (3 X L2(l3)): 2 and the Z)14-normalizer
7:6 X S3 are contained in (3 X G2(3)): 2, and the result follows.

PROPOSITION 5.6. / /L2(19) is a subgroup of Th, then there is exactly one class,
and its normalizer is L2(19): 2.

PROOF. The 248-character restricts to f/3(8) as la + Slab + 133a, so the
9-elements in 19 :9 are 9C-elements. Thus any L2(l9) has type
(2A, 3B, 5A,9C, 10A, 19A). Now £Th(2A, 3B, 9C) = 6, of which an amount 1/6 is
attributable to L2(8). But the total (2,3,9)-structure constant in L2(19) is 6, and
the result follows from the fact that the elements of order 19 in Th are
self-centralizing.

We conclude with a few remarks about subgroups isomorphic to A6, L2{1),
L3(3) and f/3(3).

PROPOSITION 5.7. Any A6 in Th is of type (2A,3B,3B,4B,5A). Hence the
degree 248 character of Th restricts to any A6 as 5a3b3 + %aAb* + 9a6 + 10a10.

PROOF. Firstly, it contains 35-elements since it contains A5. Secondly, it
contains 42?-elements since it has trivial centralizer and i-(2A,4A,5A) - 1/4.

REMARK. This proof also shows that the S5 contains 4fi-elements.

PROPOSITION 5.8. There exists a subgroup A6 with normalizer M10. This group A6

together with S5 generate Th.

PROOF. In the Monster there is a group (A6 X A6 X A6) • (2 X S4). Centraliz-
ing a 3C-element permuting the three factors of the minimal normal subgroup of
this, we have a group M10. Now using the " Y "-generators for M (see [1], page
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232), this 3C-element rotates the three arms of the Y, giving a subgroup of Th as
a quotient of the inner half of the infinite Coxeter group with diagram

By covering up each of the nodes in turn we obtain the subgroups A6, S5,
(6 X A4): 2,... of Th. Now the first two of these groups intersect in A5, and
generate the third, which does not normalize the A6 and so extends it to Th.

PROPOSITION 5.9. If there is a subgroup S6 in Th, then there is a unique class.

PROOF. Any group S6 can be constructed by taking S5 and adjoining an
involution commuting with a subgroup S4. But the v44-normalizer is (A4 X
2A4): 2, so there is a unique way of making this extension.

REMARK. S. P. Norton has shown that S6 is not a subgroup of Th, as follows.
Let a, b, c, d, e, f be generators of Th wr 2 corresponding to the nodes of the
above Coxeter graph in order. Then the putative S6 in Th would be generated by
{(ab)3, ac, ad, ae, af}, and in particular would contain the element (ab)3ac. But
we can calculate the order of this element in the Monster, since it is contained in
a known subgroup O7(3). It turns out to have order 9, which is a contradiction.

PROPOSITION 5.10. (a) There is a unique class of L2(l) containing 3A-elements,
and its normalizer is (L2(l) X 7:3) : 2, which is contained in 3A»(2): 3.

(b) There is no L2(7) containing IB-elements.

PROOF, (a) The structure constant ^(2A,2>A,1A) = 3/14 is completely
accounted for by the contributions 1/21 from (L2(7) X 7: 3): 2 inside 3A,(2): 3
and 1/6 from S 4 x 2 3 - L3(2) inside 25 • L5(2).

(b) The structure constant i-(2A,3B, 1A) = 7/6 has already been fully
accounted for by L2(8) and 3D4(2): 3 (see Proposition 5.2).

REMARK. £(2/1,3C, 1A) = 4, of which an amount 1 has already been accounted
for by L2(13).

PROPOSITION 5.11. There is a unique class of t/3(3) whose non-3-central
3-elements are of class 3A, and its normalizer is 3 X U3(3): 2, which is contained in
(3XG2(3)):2.
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PROOF. Any group £/3(3) can be constructed by taking a group L2{1) and
extending a subgroup S3 to S3 X 3. But by Proposition 5.10 any L2(7) containing
3,4-elements has normalizer contained in 3At(2): 3. Furthermore the S3 has
normalizer S3 X L2(8): 3, which is contained in the same group 3Z>4(2): 3. Since
there is a unique class of t/3(3) in 3D4(2), the result follows.

PROPOSITION 5.12. Any other U3(3) in Th has type (2A,3B,3C,4A,4A,6C,1A,

PROOF. In any t/3(3) the 3-central 3-elements have centralizer 31 + 2 :4, so are of
class 3B. The remaining 3-elements are contained in L2(7), so are of class 3C,
since we have excluded the 3 A -case. The only difficulty now is to identify the
second class of elements of order 4, but only 4A gives integral trace on restricting
the 248-character.

In the case of L3(3), we have very little information. The 3-central 3-elements
have centralizer 31 + 2 :2 , so again are of class 35. The remaining 3-elements are of
class 3B or 3C, since they normalize elements of order 13. Furthermore, they are
contained in S4, so if they are 32?-elements then the 4-elements are of class 4B,
since£(2A,3B,4A) = 0.

REMARK. It may well be possible to complete the enumeration of the maximal
subgroups of Th by computer. The first, and perhaps biggest, problem is to
reconstruct Th as a group of 248 by 248 matrices, preferably over F2 for
efficiency of calculation. Then the enumeration of L2{1) and £/3(3) is almost
algorithmic, by taking 7:3 and extending the 3-normalizer. Similarly, the cases
L3(3) and L2(19) could probably be dealt with by taking 13:3 or 19: 3 and again
extending the 3-normalizer. The case of A6 seems rather harder, but can perhaps
be approached via the 2-local subgroups.
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