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1. Introduction. Let A be a commutative algebra, and let M be a bimodule over A.
A derivation from A into M is a linear mapping D : A —* M that satisfies

D{ab) = aDb + {Da)b (a, be A). (1)

If M is only a left /4-module, by a derivation from A into M we mean a linear mapping
£>:>l->Msuch that

D{ab) = aDb + bDa (a, be A). (2)

Each yl-bimodule M is trivially a left module. However, unless it is commutative, i.e.

ax=xa (aeA,xeM),

the two classes of linear operators from A into M characterized by (1) and (2),
respectively, need not coincide.

In [1] Bade, Curtis, and Dales coined the name weakly amenable Banach algebra for
a commutative Banach algebra A such that there is no non-zero continuous derivation
from A into a commutative Banach /1-bimodule, or equivalently, to speak in terms of
Hochschild cohomology, %€1{A, M) = {0} for each commutative Banach /4-bimodule M.
As indicated by the adverb weakly, every commutative, amenable Banach algebra A is
weakly amenable [2, Proposition 43.14], whereas there are commutative Banach algebras
which are weakly amenable, but not amenable [1]. Each left module M over a
commutative Banach algebra A is naturally turned into a commutative y4-bimodule via

xa:=ax (a eA,x e M).

Hence, we may define the class of weakly amenable Banach algebras in terms of left
Banach modules.

DEFINITION 1.1. Let A be a commutative Banach algebra. If there is no non-zero
continuous derivation from A into a left Banach yl-module, A is called weakly amenable.

The present paper provides a functorial approach to weak amenability. We shall
assign to each commutative Banach algebra A a left Banach /4-module Q(A), the Banach
module of differentials over A, which is characterized by a universal property such that
Q(A) = {0} if and only if A is weakly amenable. The construction of Q{A) will yield an
alternative proof of a result due to Gr0nbaek, which characterizes the weak amenability of
A in terms of the projective tensor product A&A. Further, we shall investigate
functorial properties of the assignment A>^>Q(A). Modules of differentials are well
known in commutative algebra (see [9]); we shall transfer some of the results known to
hold for modules of differentials in the purely algebraic theory to the Banach algebra
situation.
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2. Banach modules of differentials. Let A be a commutative algebra with identity
over a commutative unital ring R, and consider a category whose objects are pairs
(dM,M), where M is a left A -module and dM:A—*M is a derivation. Given two such
pairs (dM, M) and (dN, N), a morphism (dM, M)—> (dN, N) is a homomorphism h:M^>N
of v4-modules such that dN = h°dM. Recall that an object Co of a category is called
universally repelling if for every other object C of this category there is a unique
morphism Co—* C; universally repelling objects are unique up to canonical isomorphism.
It is a well known result from commutative algebra (see [9, Chapter 10.26]) that the
category considered above has universally repelling objects. The module belonging to
such a universal pair is called the module of (Kdhler) differentials over A.

In this section, we shall give an analogue of the result sketched above in the Banach
algebra setting. Before we state this theorem in detail and start proving it, let us fix a
very simple but useful observation as a lemma:

LEMMA 2.1. Let A be a commutative algebra, let M be a left A-module, and let
D:A—*M be a derivation. Then De = 0 for every idempotent e e A.

If A is a non-unital commutative Banach algebra, then all left Banach A -modules are
Banach ^4*-modules in a canonical way, where A** is the Banach algebra we obtain by
adjoining an identity to A. By Lemma 2.1, all derivations from A extend canonically to
Au. Therefore, we can avoid the restriction to unital Banach algebras.

THEOREM 2.2. Let A be a commutative Banach algebra. Then there is a left Banach
A-module Q(A) and a continuous derivation dA:A^>Q(A) with the following universal
property.

For each continuous derivation D:A-* M into a left Banach A-module M, there is a
unique continuous homomorphism hD:Q(A)^*M such that D =hD°dA, i.e. the diagram

d Q(A)

M
is commutative. Q(A) is unique up to topological isomorphism.

Proof. Without loss of generality assume A to have an identity element 1. Let A <&) A
denote the projective tensor product, and consider the diagonal homomorphism
d:A &A-*A which is given by

d(a<8)b) = ab (a, be A).

Put 7A := ker 6. Let x e/A; by [2, Proposition 42.12] there are sequences (ak) and (bk) in
A such that

x = 2 ak ® °k and 2 akbk = 0-
k=\ k=\

This means that

x = Y, ak k 2
k=l k=\

k=i
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Hence, /A is the Banach /4-submodule of A & A which is generated by the elements

l®a-a<8> l (aeA).

Define d: A -> /A by

da = l ® a - f l ® l .

A quick computation shows that

d(ab) -adb-bda = (da)(db) el\ (a, be A).

Put Q(A) := Ijll. Then dA :A^> Q(A), defined by

dAa = l®a-a®l+ll (aeA)

is a continuous derivation. Now, let M be an arbitrary left Banach >l-module, and let
be a continuous derivation. Define a continuous A-module homomorphism

HD{a®b) = aDb {a, be A).

It is easy to see that

HD((da)(db)) = 0 (a, be A).

Since 7A is generated by the set {da | a eA}, this means that HD vanishes on l\. Thus
hD:Q(A)^>M, where

hD(x+Jl) = HD(x) (xeQ(A))

is a well defined, continuous homomorphism of /4-modules. From the construction,

D = hD°dA (3)

is obvious. Since Q(A) is the closed /4-linear span of dA(A), it follows from (3) that hD is
uniquely determined by that property. To prove the uniqueness of Q(A) up to topological
isomorphism is pure arrow theory. •

We call Q(/4) the Banach module of differentials over A. Note that for a non-unital
commutative Banach algebra A, Q(A) = Q(A*). If A has an identity element 1, Q(A) is
unit-linked, i.e.

lx=x (xeQ(A)).

It is an immediate consequence of the universal property of Q(A) that A is weakly
amenable if and only if Q(A) = {0}. In other words we have the following result.

COROLLARY 2.3. Let A be a commutative Banach algebra. Then A is weakly amenable
if and only if I\ is dense in /A.

A different approach to this intrinsic characterization of weakly amenable Banach
algebras has been given by Gr0nbaek in [6]. There is an analogous statement for
amenable, not necessarily commutative Banach algebras ([7, Theorem VII.2.20] or [3,
Theorem 1.3]), which characterizes amenable Banach algebras in terms of the diagonal
ideal /A (in the non-commutative case the definition of /A differs slightly from the one in
the proof of Theorem 2.2). For a commutative Banach algebra A this result asserts that
A is amenable, if and only if both A and 7A have bounded approximate identities.
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Immediately from the construction of Q(A), we obtain as well:

COROLLARY 2.4. Let A be a commutative Banach algebra which is generated by
{ax | A e A}. Then Q(A) is generated by {dak | A e A}.

In contrast to the purely algebraic theory of differentials (see [9, (26.E) Example 1]),
if A is a Banach algebra generated by a family {ak | A e A} of elements which are
algebraically independent over C, Q(A) need not be the free A -module generated by
{dax | A e A}: For example, ^[0,1] is generated by the element

x:[0,1]->C f->f,

which is clearly transcendental over C. Since ^[0,1] is weakly amenable by [2, Theorem
43.12], or by [1, Theorem 1.4], Q(A) = {0}. It may also occur that a commutative Banach
algebra A is generated by a single transcendental element aeA such that dAaJ=0, but
Q(A) is not the free module generated by dAa. For

let ,4(0) be the Banach algebra of those continuous functions on D which are analytic on
D itself. y4(D) is generated by

z:D-»C £>-»£.

Since A(B) s /1-*/ '^) is a non-zero continuous derivation, dA(mz cannot be zero. On the
other hand, if dAVD)z were a basis for Q(A(D)), there would be an isomorphism
h:Q(A(B))->A(U) of v4(B)-modules. Define D = h°dA(B). Then DM(D)->J4(D) is a
derivation. Since A(B) is semisimple, D = 0 by [2, Theorem 18.21]. This is a
contradiction.

3. Functorial properties of il. Let A and B be commutative Banach algebras, and
let (p :A—>B be a continuous homomorphism. Then Q(B) is a left Banach ,4-module in a
natural way, and dB°0 is a continuous derivation from .4 into Q(B). By Theorem 2.2,
there is a unqiue continuous homomorphism Q(0):Q(.4)-»Q(fl) which makes the
diagram

A

Q(A) ^ Q(B)

commutative. If C is a third commutative Banach algebra, and ip:B^>C is a continuous
homomorphism, it is easy to see that Q(xp°(f>) = Q(i//)°Q(0), i.e. Q is a covariant
functor.

The observation that Q—in the context of analytical local algebras—has functorial
properties can already be found in [4]. However, there seem to be no subsequent
investigations in this direction.

Whenever we encounter a functor, certain questions arise naturally. What does it do
to complexes? Does it do harm to exact sequences? In our situation the following
question is of particular interest: Let A be a commutative Banach algebra, and let / c A
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be a closed ideal: What happens to the canonical exact sequence

when Q is applied to it?
Evidently, Q(0) = 0 if <j> = 0. Thus, the answer to the question, what happens to a

complex, when we apply Q to it, is straightforward.

PROPOSITION 3.1. Let {Ak \ k e Z} be a family of commutative Banach algebras, and
let <f>k:Ak—>Ak+y(k el) be continuous homomorphisms such that

is a complex. Then

is a complex of Banach spaces.

Let A and B be commutative Banach algebras, and let (p:A—*B be a continuous
homomorphism. We want to see now what properties of 0—injectivity, surjectivity, a
dense range—are inherited by Q(<j>)-

PROPOSITION 3.2. Let A and B be commutative Banach algebras, and let <t>:A-+ B be
a continuous homomorphism with dense range. Then the range of Q(0) is dense in Q(B).

Proof Since <f>(A) is dense in B, an application of Corollary 2.4 yields that the
B-module generated algebraically by dB(<t>{A)) is dense in Q(B). Again by the density of
<p{A) in B, the same holds for the 0(/4)-module generated by dB{(\>{A)), i.e. for the
range of Q(<f>). •

A trivial consequence of Proposition 3.2 is that weak amenability is inherited via
morphisms with dense range: this merely qualitative assertion can be proved directly in a
few lines; a similar statement holds for amenability [8, Proposition 5.3].

LEMMA 3.3. Let A and B be commutative Banach algebras, and let (jj-.A^B be a
continuous homomorphism. Then Q(A)/ker Q((p) becomes a left Banach A/ker (p-module
via

(a + ker (f>)(x + ker Q(tf>)): = ax + ker Q(</>) (aeA,xe Q(A)).

Proof. To see that the module multiplication is well defined we have to show that

ax e ker Q(<p) (a e ker (f>,x e

Let a e A, and x e Q(A). Since Q(A) is generated by dA{A), we may assume that x = dAy
for some y e A. Then

ax = adA y = dA(ay) - ydAa.

As ker (f> is an ideal, we have ay e ker (p, and hence, dA(ay), dAa e ker Q((f>). This implies
ax ekerQ(<p). •
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PROPOSITION 3.4. Let A and B be commutative Banach algebras, and let <p:A—>B be
a continuous homomorphism such that

is exact. Then

is an exact sequence of left Banach A-modules.

Proof. There is a natural isomorphism (f>:A/ker <p^> B. By the preceding lemma,
Q(A)/ker Q(0) is a left Banach A/ker 0-module and hence a B-module. Define
A by

(aeA).

Since dA(ker (j>) c ker Q(<j>), dA is well defined and clearly a derivation. Thus d.A °$"' is a
derivation from B into the left Banach B-module Q(/l)/kerQ($). It follows from
Theorem 2.2 that there is a continuous fl-module homomorphism /i:Q(S)-»
Q.(A)lktx Q(<p) with

aA°4>~l=h°dB. (4)

Define

Q(0):QO4)/kerQ(4>)^Q(fi) by Q($)(x + ker Q(0))

Now, (4) implies that

^ ^ ^ i = dBb (b e B).

Since Q(B)js^generated by dB(B), this means that h is a right inverse of Q(<t>).
Therefore, Q(<p) is an isomorphism, and Q((p) is onto. •

In contrast, when Q is applied to an exact sequence of commutative Banach algebras

the situation is much less satisfactory. Let A = c4ol[0,1], the Banach algebra of all
continuously differentiate functions on [0,1], B = (€[Q,\], and # = t, the natural
embedding, or A =v4(B), B = <S(B), and again (j> - i. In both cases Q(fl) = {0}. Hence,
Q($) must be zero, whereas Q(/4) is evidently not trivial. Note that in these two
examples, 4> is the Gelfand homomorphism—with dense range in the first case, as
isometry in the second.

Before we state the main result of this section, we want to make clear what we mean
by a topologically exact sequence.

DEFINITION 3.5. Let {Xk | k e Z} be a family of Banach spaces, and let Tk:Xk-*Xk+l

(k e Z) be linear operators such that

TY — lrpr T (Ir c 77\
lAk— Ker i j - + 1 \K 6 IL).
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Then the sequence

• • • —* Xk * Xk+{ —>•••

is called topologically exact.

THEOREM 3.6. Let A, B and C be Banach algebras where A2 = A, and let <p:A-* B
and xj>:B—*C be continuous homomorphisms such that the sequence

A**B**C^>0
is exact. Then the sequence

is a topologically exact sequence of left Banach A-modules. Moreover, Q(V) is onto.

COROLLARY 3.7. Let A be a commutative Banach algebra, let I c^A be a closed ideal
with I2 = /, and let i: l-*A be the natural embedding. Then the sequence

is topologically exact. Moreover, Q(n) is onto.

Before we start proving Theorem 3.6, let us use Corollary 3.7 to obtain a hereditary
property for weak amenability.

COROLLARY 3.8. Let A be a commutative Banach algebra, and let I c A be a closed
ideal such that I and A/1 are weakly amenable. Then A itself is weakly amenable.

Proof. It remains to show that I2 = I. To see this make C into a left Banach
/-module by

aX = 0 (a e I, X e C).

Then any element of /* that vanishes on I2 is a continuous derivation. Hence, if I2^I, I
would not be weakly amenable. •

This hereditary property can, of course, be obtained without involving the functor Q
(see [6]). Again, an analogous statement holds for amenable Banach algebras [8,
Proposition 5.1]. It is a remarkable fact [5, Corollary 1.3] that a closed ideal in a weakly
amenable Banach algebra is weakly amenable if and only if I2 = /.

Proof of Theorem 3.6. First, we show that it is sufficient to prove Corollary 3.7. Put
/ = (j)(A). Clearly, I2 = / holds. Without loss of generality we may replace C by B/I and tp
by K : B-* B/I, the canonical epimorphism. Let i:/—» B denote the canonical embedding,
and apply Q to the complex

We obtain:

^ l 5ii ^ Q(B/I)-*0.
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By Proposition 3.4, Q(<p):Q(A)->Q(I) is onto. Thus Q(<(>)Q(A) is dense in kerQ(^r) if
and only if Q(i)Q(/) is dense in kerQ(jr). From Proposition 3.1, we already know that
Q(t)Q(/)ckerQ(^). By Lemma 3.3, Q(B)/ker Q(JT) has a natural fl//-module struc-
ture. As we shall see in Lemma 3.9, the same is true for Q(fi)/Q(i)Q(/). There is a
canonical continuous epimorphism p:Q(fl)/Q(t)Q(/)—> Q(fi)/ker Q(JT) = Q(B/I) of
B//-modules. If we can show that p has a left inverse, we are finished. Define

dB(b +1) = dBb + Q(i)Q(I) (beB).

Since dB(I)cQ(i)Q(I),dB is well defined. Clearly, &B is a continuous derivation into a
left Banach B//-module. By Theorem 2.2, there is a unique continuous B//-module
homomorphism h : Q(B/I)^> Q(B)/Q(i)Q(I) such that the diagram

B/I ^

is commutative. Reasoning in the same way as in the proof of Proposition 3.4, it is not
difficult to see that h is the desired left inverse of p. m

It remains to show that in the above proof Q(B)/Q(i)Q(I) has a B//-module
structure.

_ LEMMA 3.9. Let A be a commutative Banach algebra, let I a Abe a closed ideal with
I2 = I, and let i:l-*A be the canonical embedding, then Q(A)/Q(i)£l(I) becomes a left
Banach All-module via

(a + I){x + Q(i)Q(/)) := ax + Q(i)Q(I) (aeA,xe

Proof. The first thing we have to show is that Q(i)Q(/) is an /l-module. Since
7 = 1, Q(i)Q(/) is generated by the elements dA(xy) with x,y el. For this reason, it is
enough to show that given a e A and x, y e I, the element adA{xy) lies in Q(t)Q(/). Since

adA(xy) = axdAy + aydAx (aeA,x,yeI),

and Q(i)Q(/) is an /-module, this clearly holds. The rest of the proof is very similar to the
proof of Lemma 3.3, so we omit it. •

It is surely a flaw of Theorem 3.6 that given an exact sequence

A**B**C^0, (5)

with A1 = A we cannot conclude the exactness of

0. (6)

The reason why our proof demonstrates merely the topological exactness of (6) is that we
are concerned with Banach modules only. If we do not know whether Q((f>)Q(A) is
closed, Q(B)/Q((f>)Q(A) need not be a Banach space. However, if we define the functor
Q in a purely algebraic context (as in [9]), one can show—adapting the proof of Theorem
3.6—that this Q preserves the exactness of (5) when A2 = A.
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4. Two fundamental topologically exact sequences. As far as algebraic differentials
are concerned, two theorems referred to as the first and the second fundamental exact
sequence are of particular importance [9, Theorem 57 and Theorem 58]. We want to
prove analogues of these exact sequences in the Banach algebra context.

Before we can do so, we have to point out what we mean by a tensor product of left
Banach modules over a commutative Banach algebra. We follow [7]. Let A be a
commutative Banach algebra, and let M and N be left Banach j4-modules. Take the
projective tensor product M <§> N of M and N considered as Banach spaces, and factor
out the closed linear subspace generated by all tensors

ax <8>y -x <8>ay (a eA,x eM,y eN).

We denote the resulting quotient space by M <&A N and the equivalence class of x <8> y by
x ®A y for all x e M and y eN. It causes little effort to verify that M &A N has the
universal property we want it to have: For each continuous ^4-bilinear mapping
W.M x TV—> L, where L is another left Banach A -module, there is a continuous A -linear
mapping <I>: M <&A N-* L such that

W(x,y) = <f>(x®y) (xeM,yeN).

We prove the functional analytic analogue of the second fundamental exact sequence
first. Fix a commutative Banach algebra A, let lc A be a closed modular ideal, and let
JI:A^*A/I denote the canonical epimorphism. Define an A //-linear continuous mapping
T:Q(A)&A(A/I)-+Q(A/I)by

T(x®Aa) = aQ(n)x (x e Q{A),a eA/I).

Since Q(^) is onto by Proposition 3.4 and A/1 is unital, Tis onto. Consider the map

®A\e Q(A) &A (A/I).

It vanishes on T5, and thus induces a continuous homomorphism of A //-modules
S:///3-* Q(A) <8U (AH). Clearly, S(I/T) a ker T. We want to show that S^/l1) is dense
in ker T. To see this, we regard the left Banach ^//-modules

and

N:=(Q(A)&A(A/I))/kerT.

There is a natural epimorphism p:M—>N. We show that p has a left inverse. Define
M by

(aeA).

From the definition of 5, this is a well defined, continuous derivation. Thus, there is a
unique continuous homomorphism hD: Q(A/I)—*M such that D = hD°dA/l. On the other
hand, N and Q(A/I) are topologically isomorphic by a mapping t , which is canonically
induced by T. It is not difficult to see that hD°t~l is a left inverse of p. Putting this all
together, we have:
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THEOREM 4.1. Let A be a commutative Banach algebra, and let IcA be a closed
modular ideal. Then

{All) Z

is a topologically exact sequence of left Banach A/I-modules. Moreover, T is onto.

Before we turn to the first (topologically) exact sequence, we have to prove an
extension of Theorem 2.2.

DEFINITION 4.2. Let A and B be commutative Banach algebras, let <f>:A-+B be a
continuous homomorphism, and let M be a left Banach B-module. By a continuous
A-derivation from B into M we mean a continuous derivation D:B—*M such that
D o 0 = 0.

THEOREM 4.3. Let A and B be commutative Banach algebras, and let <j>: A—* B be a
continuous homomorphism. Then there is a left Banach B-module €lA(B) and a
continuous A-derivation d%:B-*QA(B) with the following universal property.

For each continuous A-derivation D:B^>M into a Banach B-module M, there is a
unique continuous homomorphism hD:QA(B)—>M of B-modules such that D = hD°d^.
QA(B) is unique up to topological isomorphism.

Proof. Take Q(B), and factor out the closed submodule which is generated by
dB((f>(A)). Define QA(B) a s t n e quotient module, and put dj, = JIA°DB, where
JZA:Q(B)—>QA(B) is the canonical epimorphism. It is easy to see that QA(B) and dg
have the desired universal property. •

If A is a commutative Banach algebra, and <j>:C—>A is an arbitrary homomorphism,
then <f>(C) consists of the scalar multiples of the idempotent 0(1). Therefore, continuous
C-derivations are just derivations in the usual sense, and we have QC(A) = Q(A) and
dc

A = dA.
Now, fix two commutative Banach algebras A and B, assume B to have an identity

element 1, and let <p:A—*B be a continuous homomorphism. Let R:£1(B)—*QA(B)
denote the map nA from the proof of Theorem 4.3, and define T: Q(A) &A B -* Q(B) by

(xeQ(A),beB).

Define

M:=Q(B)/T(Q(A)&AB),

and let JT:Q(B)—>M be the canonical epimorphism. Since T(Q(A) &A B) is clearly
contained in the kernel of R, there is a natural epimorphism p:M—*QA(B). Further,
since

T{dAa®A\){dB°4>)a (aeA),

D = n°dB is a continuous ^-derivation from B into M. Hence, there is a unique
continuous homomorphism hD:Q(B)-*M such that D = hD°d%; it is easily seen to be a
left inverse of p.
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THEOREM 4.4. Let A and B be commutative Banach algebras, let B be unital, and let
<f>:A^*Bbea continuous homomorphism. Then

Q(A) <&ABl>Q(B)Z»QA(B)-*0

is a topologically exact sequence of left Banach B-modules. Moreover, R is onto
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