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Abstract

Artificial intelligence (AI) refers to the performance of tasks bymachines ordinarily associatedwith human intelligence.Machine learning (ML) is
a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed.ML builds from
traditional statistical methods and has drawn significant interest in healthcare epidemiology due to its potential for improving disease prediction
and patient care. This review provides an overview ofML in healthcare epidemiology and practical examples ofML tools used to support health-
care decision making at 4 stages of hospital-based care: triage, diagnosis, treatment, and discharge. Examples include model-building efforts to
assist emergency department triage, predicting time before septic shock onset, detecting community-acquired pneumonia, and classifying
COVID-19 disposition risk level. Increasing availability and quality of electronic health record (EHR) data as well as computing power provides
opportunities for ML to increase patient safety, improve the efficiency of clinical management, and reduce healthcare costs.

(Received 10 August 2021; accepted 11 August 2021)

Attempts to harness the power of computing to generate “artificial
intelligence” began with Alan Turing in the 1940s. During and after
WorldWar II, Turing developed theories about what constituted arti-
ficial intelligence (AI) that still resonate today (eg, the Turing test),
and he wrote about how to create computers that “can learn from
experience.”1 At the time, AI remained largely theoretical due to lim-
itations in computing power. Today, AI is widely used to augment
diverse areas of human experience, including internet searches,
robotics, policing, and disease diagnosis and treatment. Although
the definition of AI is broad and has evolved over the years, AI gen-
erally refers to the performance of tasks by machines ordinarily asso-
ciatedwith human intelligence.Machine learning (ML) is a subtype of
AI that refers to the ability of computers to draw conclusions (ie,
learn) from data without being programmed directly.2,12

Machine learning builds from traditional statistical methods
and has drawn significant interest in healthcare epidemiology
due to its potential for improving disease prediction and patient
care. Advantages include its ability to leverage large-scale, highly
dimensional data from electronic health record (EHR) systems,
to conduct variable selection as part of model building, and to iden-
tify interactions in data to subgroup patients with respect to

outcomes.3–8 In this review, we summarize ML in healthcare epi-
demiology and provide practical examples ofML tools used to sup-
port decision making at 4 stages of hospital-based care: triage,
diagnosis, treatment, and discharge. Relevant ML terms are sum-
marized in Table 1.

Types of learning and algorithms

Machine-learning algorithms can identify relationships between
patient attributes and outcomes to construct models that can make
predictions for new and unseen patients and can group patients
based on similar attributes.9 Although there is overlap, the simpli-
fied difference between statistical methods and ML is that statistics
is generally associated with drawing inferences from data, whereas
ML is more concerned with finding generalizable predictive pat-
terns.10 Thus, while statistics uses algorithms to learn about a mod-
el’s attributes from the data assuming the model’s structure, ML
harnesses computing power and uses algorithms to learn about
the model’s structure and attributes directly. Although statistics
and ML are both concerned with how we learn from data, ML
methods focus largely on prediction as opposed to explanation
or causal inference.11

Machine-learning algorithms utilize 3 methods of ‘learning’:
supervised, unsupervised, and semisupervised.12 In supervised
learning, the outcome (ie, the dependent variable or ‘label’) is
known for each patient. Fed structured data for patient attributes
(ie, the independent variables or ‘features’), the algorithm attempts
to find the corresponding model that predicts patient outcomes
with the highest precision, accuracy, or recall. In unsupervised
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learning, the algorithm attempts to establish relationships between
patient features without knowing outcomes to group patients
based on their similarities. In semisupervised learning, the model
is fit to both labeled and unlabeled data; this can be useful for large
data sets for which labeling data is very time consuming.12

Applications of ML in healthcare epidemiology have tended to rely
on supervised learning. The pipeline of ML tool development can
be simplified into 4 steps. (1) Researchers assemble a retrospective
data set of routinely collected EHR data (eg, age, gender, vital signs,
comorbidities, or emergency department (ED) presentation). (2) A
subset of this data is used as input data or training data and fit to 1
or more algorithms, allowing the computer to learn how different
patient features interact to predict each patient’s outcome. (3) The
resulting model is then evaluated on a validation data set, and the
model with the highest accuracy, precision, and recall is selected.
Often the validation data set is created from the subset of cohort
data not used as training data and referred to as out-of-sample
data. (4) After the training process, a test data set is used to com-
pare the predicted outcomes of the selected model to real-world
patient outcomes. If the model performs well, it can be used pro-
spectively in combination with clinician expertise to inform treat-
ment decisions. To assess model performance in the real world, it is
common for models to be run in the background and to record
their predictions without presenting them to providers until results
are accurate and unlikely to adversely impact patients. The use of
ML in healthcare is already common, andML can be utilized across
the continuum of care. Here we present examples of some ways
that ML has been used to improve decision making through the
course of a hospitalization.

Triage: Emergency medicine

The first encounter with the hospital for many patients is the emer-
gency department, where patients are triaged by acuity level to pri-
oritize care for the most severely ill patients. However,
overcrowding is a major problem in emergency medicine.
Demand for care that exceeds supply drives long wait times and
delays that have been strongly associated with worse health out-
comes.14 Most EDs in the United States use the rule-based, 5-stage
Emergency Severity Index (ESI),15 which relies largely on provider
judgment to assign incoming patients to triage acuity levels. ESI
level 1 denotes highest acuity (ie, the patient needs immediate
treatment) whereas level 5 denotes lowest acuity (ie, treatment
needs are nonurgent). Clinicians must rapidly assess patients with
diverse medical conditions using limited information and quickly

Table 1. Relevant Machine Learning Terms

Term Definition

Artificial intelligence
(AI)

A computer’s ability to learn from experience

Machine learning (ML) A type of artificial intelligence in which computers
draw conclusions from data without being directly
programmed

Supervised learning Models in which the outcome is known for each
observation

Unsupervised
learning

Models in which the outcome is not known for each
observation

Semisupervised
learning

Models in which the outcome is known for some
observations but not others

Label The patient outcome (dependent variable)

Feature An attribute/characteristic of the patient (dependent
variable)

Sensitivity Ability of a model to correctly identify true cases

Specificity Ability of a model to directly identify negative cases

Accuracy Measure of correctly labeled data instances over the
total number of instances

Precision Fraction of relevant instances among the retrieved
instances (ie, positive predictive value)

Recall Fraction of relevant instances that were retrieved cor-
rectly (ie, sensitivity)

Training data set Data used to develop a model

Validation data set Data used to test a model’s performance while train-
ing

Test data set Data used to test the accuracy, precision, or recall
against real-world data

Out-of-sample data In a study cohort, the data not used as training data

Bias-variance
tradeoff

In supervised learning, overfitting and underfitting
can result in loss of performance

Bias Difference between the average prediction of a model
and the correct value

Variance Variability of a model prediction for a given data
point

Overfitting When the model follows noise, resulting in low bias
and high variance

Noise Nonpredictive features in the data set

Underfitting When the model fails to capture the underlying pat-
terns in the data, resulting in low variance and high
bias

Decision tree A model that separates data into smaller and smaller
partitions until each observation is classified accord-
ing to the outcome of interest

Stopping criteria Criteria used to stop further partitioning of data in a
decision tree. Can prevent overfitting

Ensemble model An ML technique combining multiple individual mod-
els

Random forest A type of ensemble model that combines decision
trees to produce a probabilistic prediction for the out-
come

Receiver operator
characteristic (ROC)
curve

A way to graph the sensitivity and specificity (or preci-
sion) of a model

Area under the curve
(AUC)

A technique to compare model results (with other
models or other measurement tools) by calculating
the area under an ROC curve

Natural language
processing (NLP)

A type of AI in which the algorithm learns how to
‘understand’ language, including contextual nuances

Box 1: Bias-Variance Tradeoff

Common algorithms used in ML include decision trees, random forest,
naïve Bayes, k-means clustering, and ensemble models (combinations
of individual models). Traditional statistical methods, such as generalized
linear models and Cox proportional hazards, can also be adapted using
ML to make predictions. Each has their advantages and disadvantages,
but all are subjected to the bias-variance tradeoff referring to a model’s
tendency to either overfit or underfit the data and resulting in a loss of
performance.13 Overfitting occurs when the model follows noise (or irrel-
evant features in the data set), resulting in low bias and high variance.
Underfitting occurs when amodel is unable to follow the patterns in the data
set correctly, resulting in high bias and low variance. The goal is to optimize
the model so that both bias and variance are reduced.
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decide whether a patient needs immediate care or can safely wait.3

Using standard tools, such as the ESI, triage acuity designations are
highly variable between providers and not well-correlated with risk
of adverse outcome.16,17 Additionally, more than half of patients in
the United States are assigned to ESI level 3,18,19 a middle-tier risk
designation that is associated with prolonged waiting.

To address these issues, Levin et al3 used ML to develop an ED
triage system (‘e-triage’) to assist clinicians in performing more
accurate and consistent triage and to distribute patients across risk
designations to optimize operations and facilitate rapid care deliv-
ery. The sample included a retrospective cohort of 172,726 adult
visits to an urban and community ED. Researchers generated ran-
dom forest models to predict 3 outcomes in parallel: (1) critical
care (ie, in-hospital mortality or direct admission to the intensive
care unit, ICU), (2) emergency procedure (ie, any surgical pro-
cedure within 12 hours of arrival), and (3) hospitalization (ie,
admission to an inpatient care site or transfer to an external acute
care hospital). Outcome probabilities were thenmapped to 1 of 5 e-
triage acuity levels, similar to ESI. For example, patients with>15%
likelihood of needing critical care or an emergency procedure were
assigned to e-triage level 1. Accuracy of e-triage predictions was
measured using out-of-sample area under the receiver operator
characteristic curve (AUC) and compared to actual patient ESI lev-
els. Measures of difference were reported as ‘equivalent,’ ‘up-triage’
(ie, e-triage predicted a higher risk than ESI), or ‘down-triage’ (ie,
e-triage predicted a lower risk than ESI). Compared to manual tri-
age, those who would have been up-triaged by e-triage were 5 times
more likely to experience the critical care or emergency surgery
outcome and twice as likely to be hospitalized. Those down-triaged
had a lower likelihood of these outcomes. The model was imple-
mented as an aid to decision makers (not as the final arbiter of tri-
age designation), which increased acceptance and resulted in
improved resource allocation and reduction in wait times for
patients.

Diagnosis: Septic shock

Throughout a patient’s stay in the hospital, numerous decisions are
made, and diagnoses may be missed. In particular, septic shock,
which is responsible for 10% of ICU admissions, 20%–30% of hos-
pital deaths, and $15.4 billion in annual healthcare costs,20–23 is of
critical importance. Research shows that early detection and treat-
ment of septic shock reduces morbidity, mortality, and length of
stay.20,23–26 A growing body of research has explored the utility
of ML to predict septic shock based on data from bedside

monitors27,28 and routine measurements for septic shock predic-
tion.29–31 Henry et al20 were the first to use ML and EHR data
to develop a scoring system (ie, ‘TREWscore’) that predicts septic
shock hours before onset.

Using supervised learning, researchers fit a Cox proportional
hazards model32,33 to identify a subset of features most indicative
of septic shock and generated a risk prediction score over time.
Input features (predictors) included physiological markers (eg,
heart rate, respiratory rate, and white blood cell count) as well
as derived measures based on expert opinion (eg, systemic inflam-
matory response syndrome (SIRS) criteria34). Risk scores were
compared to actual patient outcomes and to 2 existing screening
tools: (1) MEWS, a severity score for ICU triage in surgical patients
also used for sepsis screening35 and (2) a routine septic shock
screening protocol that identifies patients with suspicion of infec-
tion and either hypotension or hyperlactatemia.36,37 The predicted
risk score had a higher sensitivity than bothMEWS and the routine
screening tool, and it correctly identified septic patients a median
of 28.2 hours before septic shock onset and 7.43 hours before
sepsis-related organ dysfunction. Implemented throughout the
hospital system, it routinely alerts clinicians to the possibility of
sepsis allowing earlier intervention.

Treatment: Community-acquired pneumonia

Clinicans routinely initiate empirical antibiotic therapy while wait-
ing for laboratory results. This is particularly true for possible
upper respiratory infections, including community-acquired
pneumonia (CAP), which is difficult to diagnose. In the United
States, there are an estimated 4–6 million annual cases of CAP,
and CAP is responsible for 600,000 to 1.1 million hospitalizations
and >$17 billion in health expenditures each year.38–42 CAP is a
major driver of hospital antibiotic use, which contributes to anti-
biotic resistance. CAP can be difficult to identify, and treatment is
often suboptimal due to incorrect choice of therapy, dose, route, or
duration. Patients may also be prescribed treatment when they do
not actually have CAP. Rapid correction of inappropriate therapy
can improve patient outcomes and reduce the risk of antibiotic re-
sistance. To address this problem, Fabre et al43 used ML models to
prospectively identify CAP patients.

Model building used a similar approach to previous examples.
The first step, however, was identifying patients who actually had
CAP and those who did not. Because no discrete mechanism for
identifying CAP patients has been developed, researchersmanually
identified patients through chart review. Initial models utilized
physiological markers (eg, vital signs and laboratory data) in
EHR data captured through routine clinical care. However, predic-
tions were hampered by a lack of highly predictive discrete ele-
ments. To improve model predictions, researchers used another
type of AI called natural language processing (NLP)12,44 to establish
relationships between free-text notes by clinicians and the
outcome.

NLP refers to algorithms capable of ‘understanding’ the con-
tents of a document, including textual nuances, such as negation
statements (eg, the patients does not have pneumonia). This type
of technology underlies common customer service chat bots, spell
check applications, Google translate, and digital assistants. Free-
text indicators in the CAP model included chief complaint of
fever or chills, radiographic report of consolidation, and radio-
graphic report of infiltrate. Inclusion of the NLP-derived variable
‘consolidation’ dramatically improved the model’s ability to pre-
dict CAP patients, exemplifying how the application of ML

BOX 2: Random Forest and Area Under the Receiver Operator Characteristic
Curve

Random forest models combine multiple decision trees. A decision tree is a
ML model, making random forest a type of ensemble model. A decision tree
starts with a question about the independent variables of an observation
then assigns a binary classification based on the answer.12 All observations
move down the branches of the tree until the stopping criteria are reached
and outcomes determined. A random forest model trains a set of decision
trees and aggregates output to produce a probabilistic prediction for each
outcome.3 A receiver operator characteristic (ROC) curve is a commonway to
graph the results of a model or measurement tool. The y-axis most often rep-
resents the true-positive rate (sensitivity). The x-axis usually represents the
false-positive rate (1-specificity) but may also represent precision or the pro-
portion of true cases correctly classified. The curve is created by plotting
points corresponding to all probability thresholds between 0 and 1, and
the model or measurement tool with the largest area under the curve
(AUC) is considered the most effective.
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strategies can address the challenge of syndrome-based antibiotic
stewardship.

Discharge: COVID-19 disposition

Finally, when patients leave the hospital, several decisions need to
be made about care. This has been particularly true during the
COVID-19 pandemic, which has put immense strain on healthcare
systems across the United States. Many hospitals have been over-
run with patients and have been forced to create new patient man-
agement systems to optimize allocation of limited space. Prediction
of clinical trajectory in patients with this novel and sometimes
critical disease is difficult and was a major challenge to disposition
decisionmaking early in the pandemic. Emergency department cli-
nicians have been tasked with determining which patients most
need admission to hospital wards or ICUs, which patients can
be transferred to field hospitals, and which patients can be dis-
charged home. These decisions have often been made very early
in the disease course and with limited information. To address this
challenge, Hinson et al developed a ML algorithm to predict near-
term clinical deterioration in ED patients under investiga-
tion for COVID-19, and paired model-generated outcome
probabilities with EHR-integrated disposition decision support
(unpublished data).

Utilizing real-time EHR data, including ED chief complaint,
active medical problems, vital signs, oxygen support, and labora-
tory results, researchers used a random forest model to generate
probabilistic risk estimates for 2 composite outcomes: (1) cardio-
pulmonary failure within 24 hours and (2) cardiopulmonary dys-
function within 72 hours from discharge. Cardiopulmonary failure
was defined as death, respiratory failure requiring high-volume
oxygen or mechanical support, or cardiovascular failure requiring
vasopressors or admission to the intermediate care unit (IMC) or
ICU. Cardiovascular dysfunction was defined as at least moderate
organ dysfunction that required hospital-based interventions (eg,
oxygen administration, intravenous fluid administration). Risk
threshold determination was used to map outcome probabilities
to 1 of 10 COVID-19 clinical deterioration risk levels, with level
10 being most severe.

This tool was rapidly implemented in the clinical environment
and was used to support care decisions within the Johns Hopkins
Health System during the pandemic. To support decision making
in real time, risk levels were presented in the EHR alongside a con-
tinuum of dispositions to be considered by providers, including
admission to IMC/ICU, admission to a ward, transfer to a field
hospital, or discharge. The tool drove more consistent and reliable
disposition decision making and improved bed allocation across
the health system.

Discussion

As demonstrated in the examples presented, the real-world appli-
cations of ML can optimize patient care throughout several stages
of hospitalization. ML prediction models are not meant to replace
provider judgment, but they can be used as a tool to assist decision
making and to help clinicians identify potential treatment path-
ways. The increasing availability of EHR data and other sources
providesML opportunities to learnmore about disease prevention,
classification, and trajectory and to develop earlier and more tar-
geted interventions.44 Models may not be 100% accurate but when
supplemented with clinical expertise, they can be helpful and can
improve health outcomes.45

Machine learning can also be helpful outside risk prediction, for
example, in designing more efficient clinical trials and generating
testable hypotheses.44 Clinical trials investigating rare diseases may
be underpowered because too small a proportion of the study pop-
ulation has the outcome. ML can be used to identify patients with
the disease and to generate a large enough intervention group for
an adequately powered study with fewer participants.44 MLmodels
are helpful to predict which factors lead to increased risk but do not
explain exactly why or how. Narrowing down predictive factors
can inform hypotheses in investigations of the biological and
behavioral mechanisms behind disease trajectories and
transmission.44

Machine learningmodels work best with large amounts of high-
quality data, and their utility is limited by data inconsistencies,
inaccuracies, and errors.44 Furthermore, a model can only identify
relationships that present in the data.44 Some models, such as deci-
sion trees, may be prone to overfitting; they work well with training
data or at a certain institution but poorly with new data or in a dif-
ferent context (ie, they are not generalizable).

Selection bias due tomissing data or oversampling in healthcare
and public health is a challenge that exacerbates health dispar-
ities.46 Models developed from unrepresentative data will produce
biased predictions. For example, an algorithm designed to visually
recognize skin cancer will worsen racial disparities in dermatology
if it is not tested on data from people of color.47 Additionally, vul-
nerable populations without adequate access to healthcare will be
underrepresented in EHR systems. Some efforts have beenmade to
assess the extent ofmissing clinical data.48ML has also been used to
identify when standard scoring systems accentuate racial dispar-
ities, and models have been designed with the aim of reducing
racial bias in outcome predictions.49

In addition to bias and computational challenges, ML projects
introduce the same challenges of any interdisciplinary research
project aiming to inform practice and policy. Developing a prac-
tical model requires expertise from healthcare epidemiologists, cli-
nicians, computer scientists, and other professionals. Results and
application then need to be communicated to public health offi-
cials, hospital administrators, and researchers. Currently, a stand-
ardized approach to model building in healthcare epidemiology
has not yet been established, which can lead to a lack of transpar-
ency and hamper reproducibility. A lack of transparency is further
compounded with complex ‘black box’ models, in which the rea-
sons behind risk-factor selection are obscured.

Although ML algorithms can be highly predictive, models
contribute little to patient outcomes without adoption by
providers.50–52 Often overlooked in development, implementing
MLmodels as clinical decision support tools often faces significant
challenges due to system factors such as lack of computational
resources or regulatory requirements that limit data sharing.
Another challenge is determining where to present model results
to providers within the care model. For example, a decision sup-
port tool needs to present recommendations at the point of deci-
sion and provide alternatives, not just state that certain choices
may be incorrect. Interface design is also important to consider;
electronic interfaces that are not user friendly or that rely on com-
puter literacy and user skill may illicit resistance from providers.53

Implementation of alerts, such as the sepsis alert described above,
have 2 implementation issues: (1) they need to be specific enough
to avoid alert fatigue and (2) they need to be implemented in a way
that does not disrupt provider work flow.53,54

To date, ML has proven to be a helpful tool in increasing patient
safety, improving the efficiency of clinical management, and
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reducing healthcare costs.53 Successful efforts to implement ML
algorithms, like the ones highlighted in this article, will increase
support for efforts to improve data collection and promote con-
sistency and clarity across EHR systems and user interfaces and
standardization in model building. Such efforts will ultimately
lead to more accurate models, valuable clinical decision support,
and better health outcomes. Continued increases in computing
power and advances in ML will likely lead to improved predic-
tive power and increased efforts to embed algorithms into clini-
cal care. Although ML models can be useful, they need to be
implemented in a manner that can augment clinician decision
making. As with all advances in computation in medicine, we
must proceed with caution and care, including both clinicians
and patients in the process, to ensure that models actually
improve patient outcomes.
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