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Abstract

In recent years, there has been an increasing interest in detecting disease-related rare variants
in sequencing studies. Numerous studies have shown that common variants can only explain a
small proportion of the phenotypic variance for complex diseases. More and more evidence
suggests that some of this missing heritability can be explained by rare variants.
Considering the importance of rare variants, researchers have proposed a considerable num-
ber of methods for identifying the rare variants associated with complex diseases. Extensive
research has been carried out on testing the association between rare variants and dichotom-
ous, continuous or ordinal traits. So far, however, there has been little discussion about the
case in which both genotypes and phenotypes are ordinal variables. This paper introduces
a method based on the γ-statistic, called OV-RV, for examining disease-related rare variants
when both genotypes and phenotypes are ordinal. At present, little is known about the asymp-
totic distribution of the γ-statistic when conducting association analyses for rare variants. One
advantage of OV-RV is that it provides a robust estimation of the distribution of the γ-statistic
by employing the permutation approach proposed by Fisher. We also perform extensive simu-
lations to investigate the numerical performance of OV-RV under various model settings. The
simulation results reveal that OV-RV is valid and efficient; namely, it controls the type I error
approximately at the pre-specified significance level and achieves greater power at the same
significance level. We also apply OV-RV for rare variant association studies of diastolic
blood pressure.

1. Introduction

For the past decade, genome-wide association studies (GWAS) have identified thousands of
common variants associated with complex diseases or traits. However, recent evidence suggests
that only a small proportion of the phenotypic variance can be explained by common variants
(Maher, 2008; Manolio et al., 2009; Eichler et al., 2010; Gibson, 2012). Finding the sources of
missing heritability has received considerable critical attention. With the advent of the next-
generation of high-throughput DNA sequencing technology, an increasing number of rare var-
iants have been detected. Recent studies have shown that rare variants have the potential to
explain part of the missing heritability and may play a key role in the development of complex
diseases (Bodmer & Bonilla, 2008; Nelson et al., 2012; Tennessen et al., 2012). Due to the
importance of rare variants in sequencing studies, rare variant association analysis has become
an increasingly important area in GWAS. To date, a large number of statistical approaches have
been proposed for common variant association analysis. However, due to the low mutation rate
of rare variants, traditional methods used to test single common variants usually lead to substan-
tial bias and low power in rare variant association analysis (Li & Leal, 2008). To address the
above issue, a series of burden tests have been put forward for rare variant association analysis
by collapsing a group of rare variants into a specific region. Morgenthaler and Thilly (2007) col-
lapsed the information of the rare variants in a region into a dichotomous variable and provided
an approach, called cohort allelic sum test (CAST), for detecting associated rare variants. Some
other burden tests for rare variant association studies include the combined multivariate and
collapsing method (CMC; Bingshan & Leal, 2008), the sum test (SUM; Pan, 2009) and the
weighted sum test (WSS; Madsen & Browning, 2009), among others.

It should be pointed out that all of these burden tests implicitly assume that the effects of
rare variants on the phenotype are in the same direction and magnitude (after incorporating
known weights), which is obviously unreasonable in GWAS. Recent studies have shown that
ignoring the different directions and magnitudes of rare variant effects may lead to loss of test-
ing efficiency (Wu et al., 2011). Hence, there remains a need for developing an efficient rare
variant association test, especially when the effects of rare variants on the phenotype are in the
different direction and of the same magnitude. In a seminal paper, Wu (2011) proposed a stat-
istical method, termed the ‘sequence kernel association test’ (SKAT), for rare variant
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association studies. They showed that SKAT allows for different
directions and magnitudes of rare variant effects and achieves
greater efficiency compared with burden tests. Some extensions
of SKAT can be found in the literature (SKAT-O, Lee et al.,
2012; HKAT, Lin et al., 2013; W2WK, Broadaway, 2015).

All of the above methods focus on dichotomous or continuous
phenotypes. However, in practice, we usually encounter situations
in which the genotype or the phenotype is ordinal. For example, it
is reasonable to treat the number of risk alleles or the severity of
the disease as an ordinal variable. To date, a handful of methods
have been proposed for the ordinal phenotype. Diao (2010) devel-
oped the variance-components methods for linkage and associ-
ation analysis of ordinal traits in general pedigrees. Zhou (2016)
presented a study that tested the association between rare variants
and multiple traits, including ordinal traits or combinations of
ordinal traits and other traits. Wang (2017) proposed a method
for detecting associations between ordinal traits and rare variants
based on the adaptive combination of p-values. To date, few stud-
ies have investigated the trend correlations between ordinal geno-
types and ordinal phenotypes. In this paper, we put forward a
method based on the γ-statistic, called OV-RV, for detecting
disease-related rare variants when both genotypes and phenotypes
are ordinal. Due to the extremely low mutation rates for rare var-
iants, the asymptotic distribution of the γ-statistic is no longer the
normal distribution derived by Goodman (1963). Instead of
deriving the asymptotic distribution of the γ-statistic for sparse
contingency tables, we employ an empirical null hypothesis by
utilizing the permutation approach proposed by Fisher. We
carry out extensive simulations to compare the numerical per-
formance of OV-RV with several existing approaches in a wide
range of model settings. The simulation results demonstrate that
OV-RV is valid and efficient.

The remainder of this paper is organized as follows: in Section
2, we provide a brief description of the cross-contingency table in
categorical data analysis. Then, we introduce a measure called γ
for detecting the association between two ordinal variables and
show that the asymptotic distribution of the γ-statistic is no longer
applicable in rare variant association studies. To address this issue,
a detailed permutation approach is provided. Extensive simula-
tions and a real data analysis are conducted in Section 3.
Section 4 contains a discussion of our results and some potential
extensions of our approach.

2. Method

Suppose there are n independent subjects in a population-based
study. For each subject i, we let Yi be the phenotype and (Gi1,
…, Gim) be the genotype at the m loci, where Gij is the number
of mutations in variant j for subject i. In general, Gij∈ {0, 1, 2}.
The genetic score of the genotype for subject i is defined as

Gi =
∑m
i=1

wig(Gij),

where wi is a weight and g( · ) is a link function. In practice, the
selection of the weight and the use of the link function can be
of various types as long as they are justified. For example, one
can choose the weight utilized in Madsen and Browning (2009)
to ensure that all variants in a group contribute equally. In this
paper, we choose the weight wi = 1 and the link function
g(Gij) = 1(Gij.0), where 1(.) is an indicator function. At last,
according to the genetic score, the genotype levels are sorted

from small to large. Correspondingly, the phenotypes can be
sorted from small to large in terms of the degree of the disease.
For i = 1, …, n, let i and j be the numbers of different Yi and dif-
ferent Gi, respectively. For ease of notation, denote by Y the
phenotype and denote by G the genotype score at the m loci.
Let 0, 1, …, I− 1 and 0, 1, …, J− 1 be the levels of Y and G,
respectively.

2.1. The cross-contingency table

The cross-contingency table is a tool that can properly display the
joint distribution of categorical variables and has been widely
used in categorical data analysis. In order to express the frame-
work of the γ-statistic explicitly, we first provide a brief descrip-
tion of the cross-contingency table for rare variant association
studies. The cross-contingency table of the genotype level at m
loci by the phenotype level is listed in Table 1, where xij is the
number of subjects that occurs in the cell in row i and column
j. Denote by πij the joint probability of (Y, G) in the cell of row
i and column j and by {πij}I×J the joint distribution of (Y, G).

2.2. The γ-statistic

When both Y and G are ordinal, one would expect to test the
monotone trend association between Y and G, where the mono-
tone trend association refers to Y trending to increase to higher
levels or trending to decrease to lower levels as the level of G
increases. Define that a pair of subjects is concordant if there
exists a subject that ranks higher on G and Y simultaneously.
Similarly, define that a pair of subjects is discordant if there exists
a subject that ranks higher on G but ranks lower on Y. Consider
two independent observations randomly sampled from the joint
distribution {πij}I×J. For this pair of subjects, we can express the
probabilities of concordance and discordance as follows:

Pc = 2
∑
i

∑
j

pij

∑
h.i

∑
k.j

phk

⎛
⎝

⎞
⎠, (1)

and

Pd = 2
∑
i

∑
j

pij

∑
h.i

∑
k,j

phk

⎛
⎝

⎞
⎠. (2)

Then, a natural association measure to describe the monotone
trend association is the difference Πc−Πd.

Assume that a pair is untied on both Y and G; in other words,
the probability of ties Yi = Yj or Gi =Gj is zero. Then, Πc/(Πc +Πd)

Table 1. Cross-contingency table of genotype at the m loci by phenotype.

Genotype level at the m loci

Phenotype level 0 1 … J-1

0 x11 x12 … x1J

1 x21 x22 … x2J

2 x31 x32 … x3J

⋮ ⋮ ⋮ ⋮ ⋮

I− 1 xI1 xI2 … xIJ

2 Lifeng Liu et al.

https://doi.org/10.1017/S0016672319000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672319000120


and Πd/(Πc +Πd) are the probabilities of concordance and dis-
cordance, respectively. Goodman (1954) suggested utilizing the
difference between these probabilities to measure this trend.
Specifically, the measure called γ is defined as

g = Pc −Pd

Pc +Pd
. (3)

Correspondingly, the sample version is

g
^ = C − D

C + D
, (4)

where C = ∑
i

∑
j
xij(

∑
h.i

∑
k.j

xhk) and D = ∑
i

∑
j
xij(

∑
h.i

∑
k,j

xhk) are
the total numbers of concordant pairs and discordant pairs,
respectively.

Note that testing H0: Y and G are independent can be reduced
to testing H0: γ = 0, when both Y and G are ordinal. Goodman
(1963) further derived the asymptotic distribution of the
γ-statistic under the null hypothesis. However, in rare variant
association studies, the asymptotic distribution is no longer
applicable. This is because the low mutation rate of rare variants
results in most of xij being extremely small or even equal to zero,
which in turn leads to bias of the asymptotic distribution.

2.3. The permutation approach

In this section, we provide a detailed permutation approach for
estimating the distribution of the γ-statistic in what follows.

Step 1. For a = 1, …, A, execute the following steps:

(a) Randomly permute the original phenotype (Y1, Y2, …, Yn);

(b) Generate the new cross-contingency table by matching the
permuted phenotype (g̃a1, g̃

a
2, ..., g̃

a
n) and the genotype (G1, G2,

…, Gn);

(c) Calculate the γ-statistic g̃a based on the new cross-contingency
table.

Step 2. Estimate the distribution of the γ-statistic under the null
hypothesis:

F(g̃ ≤ t) = 1
A

∑A
a=1

1(g̃a≤t),

where 1(.) is an indicator function.

3. Simulation studies

In this section, we explore the numerical performance of our
method (OV-RV) and five existing methods, including CAST
(Morgenthaler & Thilly, 2007), SUM (Pan, 2009), WSS
(Madsen & Browning, 2009), SKAT (Wu et al., 2011) and
SKAT-O (Lee et al., 2012). It is necessary to note that SKAT
and SKAT-O cannot be directly used for the situation with
ordinal traits. To test the associations when both the trait and

the genotype are ordinal variables, one potential adjustment is
to dichotomize the ordinal phenotype variables (still named
SKAT and SKAT-O) and the alternative is to treat the ordered
variables as continuous variables (named SKAT-C and
SKAT-O-C). We compare these testing methods in terms of
two aspects. First, we determine whether these methods can con-
trol the type I error at the prespecified α level. Without loss of
generality, the prespecified α levels are set to be 0·05 and 0·01
in the simulations. Second, we compare the power of these meth-
ods at the same significance level. According to the scheme for
generating simulated data, the simulations are divided into two
cases, including a designed parameter-based simulation and a
real genotype-based simulation. The simulation results are
based on 1000 replications.

3.1. Simulation I

In this simulation, we set the sample size n = 500 and consider a
region of loci that consists of m rare variants. Without loss of gen-
erality, m is set to be 20 and 40, respectively. We first generate
ordinal genotype variables and then use continuous intermediate
variables to generate ordinal phenotype variables.

For each locus j, let pj be the minor allele frequencies (MAFs)
of the corresponding rare variants. Within each region, we ran-
domly sampled pj from the uniform distribution U(0.001, 0.01).
Under the assumptions of the Hardy–Weinberg equilibrium
law, the probabilities that the genotype score Gij has a value of
0, 1 and 2 are (1− pj)

2, 2pj(1− pj) and p2j , respectively.
According to the number of mutant loci in each subject, the gen-
etic scores Gi, i = 1, …, n are classified into j ordinal categories,
where J − 1 = max

i

∑m
j=1

1(Gij.0).

To focus on the main points, we select 12 and 18 rare variants
from the region of 20 and 40 rare variants as disease-causal var-
iants, respectively. The intermediate variables Ti, i = 1, …, n are

Table 2. Estimated type I errors of the eight methods in Simulation I.

n = 500 Test 20 rare variants 40 rare variants

α = 0.01 OV-RV 0.007 0.008

SKAT-O-C 0.011 0.005

SKAT-O 0.011 0.007

SKAT-C 0.009 0.007

SKAT 0.009 0.009

CAST 0.007 0.007

SUM 0.006 0.011

WSS 0.009 0.007

α = 0.05 OV-RV 0.049 0.049

SKAT-O-C 0.042 0.046

SKAT-O 0.038 0.049

SKAT-C 0.040 0.036

SKAT 0.043 0.049

CAST 0.035 0.051

SUM 0.037 0.047

WSS 0.033 0.056
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generated by the following linear model:

Ti = Gib+ 1i, i = 1, ..., n,

where εi, i = 1,…, n are independent and 1i � N(0, 1), and β = d ·
(1,1,0,1,1,0,1,0,0,1,1,0,0,1,1,0,1,1,0,1)T if m = 20 and β = d · (1,0,1,1,
0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,0,1,0)T if
m = 40. In the following simulation, the values of d are set to be
0, 0·2, 0·4, 0·6 and 0·8, respectively. It is clear that Ti and Gi are
independent when d = 0. Hence, examining the control of type I
errors yielded by these testing methods is under the model setting
d = 0. We use the 20%, 30% and 40% sample percentiles to
discretize Ti, i = 1, …, n and generate ordinal phenotype variables

Yi, which take values of 0, 1, 2 and 3. The simulation results are
exhibited in Tables 2 and 3.

Table 2 presents the empirical sizes of the eight methods at dif-
ferent prespecified significance levels. From the upper part of
Table 2, we can observe that all eight methods can control type I
errors at the nominal level of approximately 0·01, except for the
case in which the empirical type I error of SKAT-O-C is
relatively conservative when m = 40 and α = 0.01. From the lower
part of Table 2, similar results are obtained when α = 0.05.
Although the empirical type I error of WSS is relatively large
when m = 40 and α = 0.05, it is still acceptable. These simulation
results confirm the validity of the eight methods in Simulation I.

Table 3 displays the power of the eight methods at different
prespecified significance levels and different parameter settings.

Table 3. Estimated power results of the eight methods based on the generated genotypes.

α level Number of rare variants Test d = 0.8 d = 0.6 d = 0.4 d = 0.2

α = 0.01 20 (12 causal) OV-RV 0.761 0.504 0.221 0.070

SKAT-O-C 0.672 0.400 0.123 0.026

SKAT-O 0.276 0.151 0.054 0.006

SKAT-C 0.201 0.058 0.013 0.003

SKAT 0.012 0.006 0.001 0.001

CAST 0.392 0.252 0.100 0.023

SUM 0.403 0.251 0.096 0.023

WSS 0.306 0.191 0.079 0.015

40 (18 causal) OV-RV 0.788 0.559 0.269 0.067

SKAT-O-C 0.756 0.475 0.179 0.032

SKAT-O 0.331 0.199 0.072 0.016

SKAT-C 0.229 0.077 0.022 0.005

SKAT 0.010 0.009 0.004 0.005

CAST 0.388 0.241 0.105 0.031

SUM 0.434 0.276 0.123 0.028

WSS 0.357 0.215 0.095 0.022

α = 0.05 20 (12 causal) OV-RV 0.914 0.723 0.447 0.160

SKAT-O-C 0.875 0.665 0.337 0.115

SKAT-O 0.564 0.393 0.186 0.071

SKAT-C 0.518 0.268 0.099 0.039

SKAT 0.063 0.039 0.024 0.019

CAST 0.634 0.459 0.231 0.105

SUM 0.684 0.498 0.259 0.125

WSS 0.627 0.460 0.241 0.108

40 (18 causal) OV-RV 0.930 0.776 0.474 0.177

SKAT-O-C 0.920 0.730 0.416 0.126

SKAT-O 0.617 0.423 0.238 0.088

SKAT-C 0.549 0.276 0.084 0.040

SKAT 0.074 0.040 0.029 0.028

CAST 0.625 0.444 0.267 0.100

SUM 0.710 0.548 0.326 0.127

WSS 0.644 0.484 0.281 0.112
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From Table 3, we can see that the power yielded by the eight
methods is decreasing when d varies from 0·8 to 0·2. Note that
the larger the value of d, the stronger the trend association
between the ordinal phenotype variable and the ordinal genotype
variable. It is easy to interpret the aforementioned simulation
results. We can also observe that the power of OV-RV uniformly
dominates the other competing methods. This indicates that our
OV-RV is more efficient, especially when both the phenotype
and the genotype are ordinal.

3.2. Simulation II

In this section, we perform simulations to evaluate the numerical
performance of OV-RV and its competing methods on more real-
istic simulated data. In order to simulate data with realistic linkage
disequilibrium patterns, we choose the real genotypes of 697
unrelated subjects from Genetic Analysis Workshop 17
(GAW17, http://www.1000genomes.org). Specifically, we select
two genes, TG and COL6A3, as candidate genes. The TG gene
contains 146 single-nucleotide polymorphisms (SNPs), among
which 113 out of these 146 SNPs are rare (MAF <1%), whereas
the COL6A3 gene consists of 187 SNPs, and 143 out of these
187 SNPs are rare. The means of action of these genes have
been revealed in several studies (Baker et al., 2005; Maierhaba
et al., 2008). For example, Maierhaba (2008) pointed out that
the TG gene encodes thyroglobulin and may lead to hypothyroid-
ism and autoimmune disorders.

Likewise, for each of these two genes, we randomly selected 20
and 40 rare variants to form a region of loci, respectively. Assume
that the effects of rare variants on the phenotype are in the same
direction. The rest of the method for generating the ordinal
phenotype values is the same as in Simulation I, and we omit
the details. The detailed simulation results of the empirical sizes
are listed in Tables 4 and 5. To further illustrate the superiority
of OV-RV in detecting trend associations, we conduct simulations

to compare the power of these methods and list the results in
Tables 6 and 7.

Table 4 displays the empirical type I errors of the eight meth-
ods for the TG gene. The upper part of Table 4 presents the results
with the significance level α = 0.01, whereas the lower part of
Table 4 lists the results with α = 0.05. From Table 4, it is apparent
that OV-RV controls the empirical type I errors properly at the
different significance levels. We can also see that SKAT is always
conservative for the TG gene. This phenomenon may be largely
due to the improper dichotomization for SKAT. Table 5 presents
the empirical type I errors of the eight methods for the COL6A3
gene. It can be observed that the simulation results are almost
wholly consistent with those in Table 4. Although the empirical
type I error yielded by OV-RV is a little aggressive when α =
0.01 and m = 20, it is still acceptable. Overall, these results further
indicate that the distribution of the γ-statistic under the null
hypothesis can be properly estimated by exploiting the permuta-
tion method appropriately.

Tables 6 and 7 exhibit the simulation results of the power com-
parisons of the six methods for the TG gene and the COL6A3
gene in Simulation II, respectively. Due to the extremely low
power of SKAT and SKAT-C, we do not list their simulation
results in these tables. It is clear that OV-RV shows a significant
improvement in power compared with the other five methods at
all model settings. By employing the γ-statistic, OV-RV can
achieve greater efficiency for detecting the trend associations.
Similarly, we can also conclude that the power of these methods
is increasing in the parameter d. We can also determine that the
power when m = 40 is uniformly larger than the corresponding
power when m = 20. Under the assumption that the effects of
rare variants on the phenotype are in the same direction, a larger
number of causal rare variants implies a stronger trend association
with the same value of d. Hence, it is easy to interpret the results.

We carry out additional simulation studies for OV-RV in test-
ing the effects with different directions. The detailed simulation
results are displayed in Additional File 1. When a small

Table 4. Estimated type I errors of the TG gene of the eight methods.

n = 697 Test 20 rare variants 40 rare variants

α = 0.01 OV-RV 0.012 0.010

SKAT-O-C 0.008 0.007

SKAT-O 0.009 0.007

SKAT-C 0.006 0.011

SKAT 0.006 0.007

CAST 0.010 0.005

SUM 0.013 0.008

WSS 0.012 0.008

α = 0.05 OV-RV 0.048 0.054

SKAT-O-C 0.037 0.056

SKAT-O 0.041 0.051

SKAT-C 0.038 0.050

SKAT 0.038 0.041

CAST 0.045 0.050

SUM 0.053 0.057

WSS 0.050 0.054

Table 5. Estimated type I errors of the COL6A3 gene of the eight methods.

n = 697 Test 20 rare variants 40 rare variants

α = 0.01 OV-RV 0.012 0.011

SKAT-O-C 0.011 0.010

SKAT-O 0.007 0.015

SKAT-C 0.012 0.008

SKAT 0.012 0.012

CAST 0.011 0.006

SUM 0.013 0.016

WSS 0.011 0.011

α = 0.05 OV-RV 0.050 0.051

SKAT-O-C 0.043 0.049

SKAT-O 0.053 0.044

SKAT-C 0.044 0.051

SKAT 0.052 0.047

CAST 0.037 0.028

SUM 0.049 0.038

WSS 0.053 0.044
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proportion of effect directions are different, the simulation results
are almost wholly consistent with those in the previous simula-
tions. However, the power of OV-RV decreases as the proportion
of effects in different directions increases. This indicates that
OV-RV is conservative when a large proportion of effects are of
different directions. A more powerful selection of the genetic
score may shed light on how to extend OV-RV to these situations,
and we plan to pursue this approach in our further research.

4. Application to the detection of disease-related genes

In this section, we further apply OV-RV for the detection of
disease-related genes on a real dataset called Genetic Analysis
Workshop 19 (GAW19). The GAW19 dataset contains whole
genome and exome sequences for odd chromosomes, gene
expression measures, systolic blood pressure and diastolic blood
pressure (DBP), as well as related covariates in 20 large families
and 1943 unrelated individuals. Here, we focus on the 1943 unre-
lated individuals provided by GAW19 and consider the DBP
phenotype. A series of procedures for data pre-processing are per-
formed before carrying out association studies. We eliminate indi-
viduals who have missing phenotypes, and a total of 1851
individuals are left for analysis. In addition, we complete the miss-
ing genotype by a random sample based on the MAF.

DBP is measured in millimetres of mercury (mmHg) when the
heart is at rest between beats. It has been reported that genes EBF1

and NPR3 on chromosome 5, as well as gene TMEM133 on
chromosome 11, are associated with DBP (Sun et al., 2016). We
apply our proposed OV-RV to test associations between these
genes and DBP. From the hg19 reference (see https://www.cog-
genomics.org/static/bin/plink/glist-hg19), we can obtain the
gene starts and gene ends of these three genes. For each gene, gen-
otypes are generated by selecting rare variant loci with MAF <5%.
The significance level is set to be 0·05. The phenotypes are divided
into four levels in terms of DBP. To be specific, phenotypes with
DBP <60, 60⩽DBP <80, 80⩽DBP <90 and DBP⩾ 90 corres-
pond to levels 0, 1, 2 and 3, respectively. Due to the poor perform-
ance of the CAST, SUM and WSS methods in simulations, we
only compare the performance of the remaining five methods.
Detailed results are shown in Table 8. It is clear that the p-values
yielded by OV-RV are uniformly smaller than those of the com-
peting methods. We can also see that OV-RV identifies all three
DBP-related genes, whereas the other competing methods identify
at most one related gene. This indicates that OV-RV is more
efficient at detecting disease-related genes.

5. Discussion

In this paper, we propose a novel method, called OV-RV, for the
detection of the trend associations between ordinal genotypes and
ordinal phenotypes. The γ-statistic has been successfully applied

Table 6. Estimated power results of the TG gene of the six methods.

α level Number of rare variants Test d = 0.8 d = 0.6 d = 0.4 d = 0.2

α = 0.01 20 (12 causal) OV-RV 0.859 0.590 0.266 0.044

SKAT-O-C 0.687 0.400 0.125 0.016

SKAT-O 0.208 0.108 0.029 0.003

CAST 0.554 0.340 0.135 0.025

SUM 0.335 0.176 0.057 0.006

WSS 0.340 0.175 0.063 0.003

40 (18 causal) OV-RV 0.933 0.742 0.345 0.096

SKAT-O-C 0.878 0.577 0.215 0.040

SKAT-O 0.405 0.230 0.068 0.019

CAST 0.605 0.368 0.144 0.047

SUM 0.653 0.406 0.171 0.048

WSS 0.480 0.279 0.110 0.041

α = 0.05 20 (12 causal) OV-RV 0.962 0.808 0.498 0.148

SKAT-O-C 0.903 0.677 0.336 0.083

SKAT-O 0.545 0.333 0.139 0.038

CAST 0.780 0.512 0.250 0.078

SUM 0.700 0.489 0.223 0.065

WSS 0.719 0.505 0.246 0.080

40 (18 causal) OV-RV 0.984 0.888 0.596 0.213

SKAT-O-C 0.971 0.835 0.486 0.156

SKAT-O 0.767 0.522 0.264 0.090

CAST 0.832 0.622 0.340 0.125

SUM 0.852 0.650 0.348 0.127

WSS 0.811 0.617 0.338 0.125
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to the field of searching for the trend associations. However, the
asymptotic distribution of the γ-statistic derived by Goodman
(1963) is no longer valid for rare variant associations. Instead of
using the asymptotic distribution directly in rare variant associa-
tions, we utilize the permutation method to estimate the distribu-
tion of the γ-statistic under the null hypothesis. Both the designed
parameter-based simulation and the real genotype-based simula-
tion illustrate that OV-RV is valid and more efficient compared
with its competitors. A real data analysis on the GAW19 dataset
shows that OV-RV achieves greater efficiency and can detect
more disease-related genes.

Our OV-RV can also be extended in several ways. First, it has
been shown that different diseases or traits usually share similar
genetic mechanisms. Conducting an integrative association

analysis of several traits can significantly improve testing effi-
ciency. Hence, it is desirable to develop a method for testing asso-
ciations between ordinal genotypes and multiple ordinal
phenotypes. Second, as illustrated in simulations, the power of
OV-RV decreases as the proportion of effects in different direc-
tions increases. This means that OV-RV is conservative when a
large proportion of effects are of different directions. It would
be of interest to obtain a more powerful genetic score for extend-
ing OV-RV to these situations. Third, the permutation method
brings large computation costs when there is a large number of
rare variants. Recently, algebraic statistics has been successfully
applied in testing independence from the sparse contingency
table. It may give rise to a novel method for testing trend associa-
tions from the sparse contingency table.

Table 7. Estimated power results of the COL6A3 gene of the six methods.

α level Number of rare variants Test d = 0.8 d = 0.6 d = 0.4 d = 0.2

α = 0.01 20 (12 causal) OV-RV 0.805 0.543 0.235 0.044

SKAT-O-C 0.644 0.352 0.108 0.014

SKAT-O 0.177 0.093 0.028 0.008

CAST 0.429 0.270 0.107 0.035

SUM 0.425 0.263 0.099 0.033

WSS 0.249 0.135 0.053 0.015

40 (18 causal) OV-RV 0.906 0.670 0.320 0.061

SKAT-O-C 0.819 0.519 0.180 0.024

SKAT-O 0.320 0.155 0.048 0.009

CAST 0.577 0.316 0.151 0.040

SUM 0.515 0.273 0.117 0.025

WSS 0.380 0.192 0.074 0.023

α = 0.05 20 (12 causal) OV-RV 0.944 0.770 0.445 0.165

SKAT-O-C 0.893 0.669 0.329 0.105

SKAT-O 0.525 0.348 0.186 0.066

CAST 0.627 0.419 0.220 0.083

SUM 0.625 0.403 0.209 0.070

WSS 0.628 0.426 0.229 0.087

40 (18 causal) OV-RV 0.976 0.862 0.578 0.176

SKAT-O-C 0.954 0.807 0.459 0.112

SKAT-O 0.670 0.425 0.199 0.060

CAST 0.715 0.488 0.245 0.070

SUM 0.780 0.575 0.302 0.092

WSS 0.736 0.533 0.296 0.103

Table 8. The Genetic Analysis Workshop 19 (GAW19) data shown as a list of genes associated with diastolic blood pressure.

Chromosome Gene

Method

OV-RV SKAT-O-C SKAT-O SKAT-C SKAT

5 EBF1 0.003 0.069 0.289 0.088 0.558

5 NPR3 0.037 0.214 0.266 0.340 0.160

11 TMEM133 0.044 0.048 0.401 0.048 0.359
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