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Abstract

A finite transverse shock wave propagates through an unbounded medium consist-
ing of two joined incompressible elastic half-spaces of different material properties,
in the direction normal to the plane interface. A semi-inverse method is used to
examine the reflection-transmission of this wave at the interface. It is found that,
depending on the material properties, the reflected wave is either a simple wave or
a shock; the transmitted wave is always a shock.

1. Introduction

Wright in his paper [5] on reflection of oblique finite elastic plane shocks
at a plane boundary presented a semi-inverse method, based on strictly me-
chanical considerations, for finding the reflected waves. In this method, a
reflection pattern is assumed: the reflected waves form a family of plane
simple waves centred at a moving line of contact between the incident shock
and the boundary. In a special case of normal reflection, the reflection pat-
tern admits reflected waves in the form of one-parameter families of plane
wavelets parallel to the boundary, propagating in the normal direction away
from the boundary (cf. [1]).

We shall apply the semi-inverse method to examine the reflection-trans-
mission problem for a plane shock wave propagating in an unbounded medi-
um consisting of two joined elastic half-spaces of different material proper-
ties, in the direction perpendicular to the plane interface between these two

'Institute of Civil Engineering 1-32, Polytechnical University, Lodz, Poland.
2Department of Mathematics, University of Papua New Guinea.
© Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

29

https://doi.org/10.1017/S0334270000006469 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006469


30 S. Kosinski and B. Duszczyk [2]

halves. In such a composite medium, systems of additional waves can be su-
perposed to represent the incident shock in conjunction with reflection and
transmission at the interface separating the two media. The question then
is what combination of additional waves is required to satisfy the condition
that velocity and traction be continuous at the interface. These additional
waves are called reflected and transmitted waves.

If the medium ahead of the propagating shock has a fixed state, then for a
given incident shock, the region immediately behind the shock has a known
fixed state. The problem now is to fit the reflected and transmitted waves so
as to connect the state just fixed with some state at the boundary that is com-
patible with the boundary conditions. The assumption that the reflected and
transmitted waves are simple waves will reduce this problem to determining
the distribution and strength of the wavelets by means of ordinary differen-
tial equations. In some cases it may be necessary to modify the assumed
reflection-transmission pattern, to include shocks as well.

We assume further that the elastic materials that fill the two half-spaces
are of a special kind of idealised incompressible rubber, and that the normal
incident wave is a plane transverse shock. Since in such cases the motion is
restricted to one dimension, there are only two (nontrivial) conditions to be
met at the interface; hence, the assumed reflection-transmission pattern will
include a single reflected wave and a single transmitted wave only.

Section 2 contains a summary of the necessary theory, and derivation of
the propagation condition for simple waves in incompressible elastic materi-
als. Since the reflected and transmitted waves can be simple waves or shocks,
we present in Section 3 differential equations for simple waves and jump con-
ditions for shock waves. The reflection-transmission pattern is considered in
Section 4 and the solution is discussed in Sections 3 and 6.

2. Basic equations

The motion of a continuum is given by Jt, = Xi(Xa,t) where x, and Xa are
the Cartesian coordinates of a material particle in the present configuration B
and the reference configuration BR, respectively. The deformation gradient
Xja, its inverse Xai and the velocity are defined by

_
Xai~

dx' Xi~Ui~dt- {ZA)

It is assumed that the material is homogeneous, elastic and incompressible.
The incompressibility constraint requires that

) = l. (2.2)
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[3] Reflection-transmission in rubber 31

The Piola-Kirchhoff stress tensor for such a material is

^ , (2.3)

where a denotes internal energy per unit mass in BR, pR = p is the density
and p = p{Xa) is an arbitrary scalar function (hydrostatic pressure).

If the stress and velocity fields are differentiable, then the equations ex-
pressing balance of momentum and moment of momentum are

Tia,a
 = pUi, XjaJja = Xjalja. (̂ -4)

If the functions Xj(Xa,t) are continuous everywhere but have discontinu-
ous first derivatives on some propagating surface S(Xa ,t) = 0, (2.4) must be
replaced by jump conditions on this surface:

lUil = -aiV. (2.5)

Such a surface is called a shock wave. The vector N is a unit normal to the
wave, V is the speed of propagation along N and a is the amplitude vector
of the jump. The bold square brackets indicate the jump in the quantity
enclosed across S; thus

H = (•)*-(•)*,

where the letters F and B refer to the limit values taken in the front and rear
sides of S, respectively.

Simple waves [5] are defined to be regions of space-time in which all field
quantities are continuous functions of a single parameter, say, X = y/(Xa,t).
Regions of constant X are propagating surfaces, called wavelets, with unit
normal and normal velocity in BR given by

N°w=wvv uw=-\h- (2-6)
The equation of motion (2.4) and the compatibility condition in the region
of simple waves are

§^*,> ,a = pu'iW, (2.7a)

x'jpW = u'jVj (2.7b)

where the prime indicates differentiation with respect to X. If iff ̂  0, (2.7)
may be written as

{Qu - pU^u) = 0, (2.8a)

Ux'jp + u'jNp = 0 (2.8b)

where
Qtj = ^NaNp (2.9)
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FIGURE 1. Incident shock and assumed reflection-transmission pattern.

is the acoustic tensor. For an incompressible material, substitution of (2.3)
into (2.8), and the identity Xaifi = 0, leads to the equation

(Qij - pU2dij)u'j -p,aXalU(\Vy/\rl = 0,

or, since in the region of simple wave pyO - p'\Vy/\Na, to the equation

(Q,j - pU2Sij)u'j - p'UXaiNa = 0. (2.10)

We denote here

h MM d2<J „ , „
Qij = PaiajfiNar<ip, Ojcjp — Q ^ . (t-i*-)

From the incompressibility condition (2.2) we have

Using this equation, together with (2.8) and the relation (cf. [4])

Um = uNaXai (2.11)

where «, is a unit normal and u the speed of propagation of the wave in B,
the scalar p' can be eliminated to obtain

{Qlj-pU2S,j)u!j = 0. (2.12)

The tensor
Qij = Qu-- Qkjnkni (2.13)

is called the reduced acoustic tensor.
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3. Incident shock

Consider an unbounded medium consisting of two elastic half-spaces of
different material properties, joined rigidly along the plane x2 = 0. Suppose
that a plane transversely polarised shock wave of strength mo propagates
in the half-space x2 > 0 with speed Vo, in the direction perpendicular to the
interface of the two half-spaces (Figure 1). It is convenient to assume that the
amplitude vector ao of the shock is parallel to the x3-axis. Such a wave has
displacement components in the x3-direction only. Thus, this propagating
discontinuity surface belongs to a one-parameter family of parallel planes,
with normals

No = (0,-1,0). (3.1)

It is assumed that both material solids are isotropic and incompressible, and
are characterised by the constitutive equations

W(Ii,I2) = po{h,h) = Ci(/ i-3)+C2(/2-3)+C3(/f-9), x2 > 0, (3.2)
W{h,h) = pa{h,h) = C,(/ I -3)+C2(/2-3)+C3(/7-9), x2 < 0, (3.2)

proposed by Zahorski [7], where I\ — 5,,, I2 = (BuBjj - BjjBjj)/2 are the
invariants of the left Cauchy-Green strain tensor By. The sets of values for
C\,C2, C2, for three kinds of rubber, are given in [8]. The symboPserves here
to label the field quantities and the field equations in the half-space x2 < 0.

Approximation (3.2) of the strain energy function W is valid for rubber-
like materials under moderate strain. Experimental investigations indicate
that the constant C3, important in the following discussion, is positive.

Since the medium in front of the shock is unstrained and at rest, the jump
conditions (2.5b) become now

lu-il = {Ui)B = -m0V0, Pf32]| = (Xn)
B = - m 0 (3.3)

where mo = |ao| is the shock strength. Substituting (3.1) and (3.3) into (2.5a)
we obtain the equation relating the shock speed Vo and the shock strength
W0J [1> 2],

VQ = c2(l + rjmfy/p (3.4)

where

The state behind the propagating shock wave (region 1) is now completely
specified by the shock strength mo. Equations (3.3) determine the deforma-
tion gradient and its inverse

0] fl 0 0"
(3.6)

"1
0
0

0
1
V

0'
0
1

(Xai) =
1
0
0

0
1

-V

0
0
1
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and the particle velocity
u = (0,0,u) (3.7)

in this state. We denote here v = (Xi2)
B, « = ("3)B-

The components of 7/a and the elasticities oi9jp required in this paper are
then evaluated in region 1:

T22 = 2p{al+2a2)+p,

T32 = 2Z(dl+d2)v, r ,2 = 0; (3.8)

03232 = 2(oi+o2) + 4dnv
2 (3.9)

where
da 1 , „ _ _ . , .. da C2

p { C i + 2 C 3 l i ) - a ^ i
02a 2C3 , ,

4. Reflection-transmission pattern

The constraint of incompressibility restricts the propagating waves to trans-
verse waves only. In general, the reflection-transmission problem may have
no solution in terms of simple waves, as there are at most two possible fami-
lies of reflected waves and two families of transmitted waves; this means that
there are four free parameters, with six interfacial continuity conditions for
velocity and traction to be met. However solutions may exist for some types
of incompressible materials, with a particular symmetry and deformation. In
this paper we examine such special cases.

When the incident shock wave strikes the interface x2 — 0, part of it is
reflected and part transmitted across the interface, in the form of reflected
and transmitted waves. We assume that both the reflected and the transmitted
waves are single simple plane waves, travelling in the direction of the x2-
axis, away from the interface (region 2 and 2, Figure 2). The wavelets A =
constant of the reflected wave are parallel planes with normals N = (0,1,0);
the wavelets fi = constant of the transmitted wave are planes with normals
N = (0, - 1 ,0 ) . The reflected wave propagates into the just-fixed state (region
1, Figure 2); the transmitted wave propagates into the "zero" state (region
0).

The problem now is to fit these waves so as to connect the states at the
interface (region 3 and 3) that are compatible with the interfacial conditions,
with the states of region 1 and 6.
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[7] Reflection-transmission in rubber 35

X=O

x2=X2

FIGURE 2. Normal incidence: reflection-transmission pattern.

The deformation gradient and velocity in the regions of the reflected and
transmitted waves are similar to (3.6) and (3.7) in form. Since the com-
ponents «, (and hi) of the normals referred to the present configuration B
remain the same (n, = Nj), the acoustic tensor (2.13) assumes a simpler form:

Qij = Qij = Pdiji fonV2, a'. = 0 (4.1)

which, together with (2.11), (3.2) and (3.9), leads to the propagation condi-
tion (2.12) for simple waves reduced to a single equation

= 0- (4-2)

The characteristic root U = y/onn (see (3.9)) is a real single-valued function
of v, and it represents the speed of a simple wave

(4.3)

(4.4)

the corresponding characteristic vector function u' is given by

u = (0,0, /) (4.4)

where / is an arbitrary function of the wave parameter. Any particular choice
of / affects only the parameterisation of the field quantities.

The differential equation relating the particle velocity and the deformation
gradient in the region of a simple wave is obtained from the compatibility
conditions (2.8b). We have in region 2

Uv' + u' = 0 (4.5)
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and in region 2
Uv' - u' = 0 (4.5)

where U is given by (4.3).
The geometrical significance of the above relations is evident. Differenti-

ating y/{x2, t) = X along the line of constant X we obtain (see (2.6))

dx2/dt = U. (4.6)

The curves given by (4.6) are the characteristics of the differential system
(2.13). The trajectories of the wavelets in the (X2,t) plane are given by the
characteristics of the equation of motion in the region of the simple wave.
The changes of the field quantities in this region are governed by the ordinary
differential equations (4.4) and (4.5).

It is convenient to assume / = -U and f = U. From (4.4), (4.5) and (4.5)
it follows then that in region 2

u' = -U, v'=l, (4.7)

and in region 2
u' = U, v' = 1. (4.7)

The deformation gradient and velocity are assumed to be continuous through-
out regions 1,2,3 and throughout regions 6,2,3 (Figure 2). Thus the initial
values for differential equations that describe region 2 are the constant val-
ues of region 1, and the initial values for these equations in region 2 are the
constant values of region 0.

The deformation gradient and velocity in region 1 are given by (3.3); the
material region 6 is unstrained and at rest. Hence, the initial conditions for
(4.7) and (4.7) are u(0) = -m0V0, v{0) = -m0 and fi(0) - 0, 0(0) = 0,
respectively. The incident shock speed VQ is given by (3.4) and mo is the
incident shock strength. Integrating (4.7) and (4.7) we obtain

fk

u(X) = - U{X)dX-m0VQ, v(X)=X-m0, (4.8)
Jo

u(jt)= F
Jo

v{n) = H (4.8)

Substitution into (4.3) gives the wave speed as a function of the wave param-
eter.

The other field quantity required here, the static pressure p(xa) (see (2.3)),
is given in the region of the simple wave by

p(X) =-4CiV2(X) + po (4.9)
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where po is the pressure in region 0 (cf. [1, 2]). Substitution of (4.9) into
(3.8) shows that the stress component T22 is independent of the deformation
gradient:

T22 = 2(Cl+2C2 + 6C3)+Po. (4.10)

All field quantities in the region of simple waves are constant along the
wavelets A = constant {n = constant). The values on the leading wavelet
X = 0 (n = 0) are the constant values of the region into which the wave
propagates; the values on the trailing wavelets A = X (/x = /i) are the constant
values of the region at the interface x2 = 0. The problem now is to find the
pair (X, /*) of the final values of wave parameters so that the constant states
at the interface are compatible with the continuity requirement for velocity
and traction.

There are three conditions for stresses and one for velocity to consider at
x2 = 0:

Ta = t a , i = l , 2 , 3 , and u = u. (4.11)

Substitution of (3.8) into (4.11) leads to two nontrivial equations involving
X and fit:

M(A) = «(/*), c2{l + tjv2(X)}v(X) = c2{l + f)v2(fl)}v(fi); (4.12)

the third equation T22 = t22 relates the pressures po and po of regions 0 and
6 across the interface (see (4.10)):

p -Po = 2(C, - C,) + 4(C2 - C2) + 12(6, - C3).

Inspection of (4.8), (4.8) and (4.12) indicates that for equations (4.12) to
have a solution {X,n) it is necessary that both v(X) and v(fi) are negative.

Suppose that (A,/2) is a solution of (4.12). The requirement that v(X) is
negative falls into two cases: (a) -mo < v(X) < 0 or (b) v(X) < -mo- The
corresponding inequalities for region 2 are then

-m0 < v(X) < v(X) < 0 forO<A<A <mo, (4.13a)

v(X) < v(X) < -m0 forA0<A<A<0 (4.13b)

where Ao is the root of u(X) = 0, and by (4.8) XQ is negative. The counterparts
of (4.13) for the transmitted wave are

v(fi) < v(fi) < 0 for fi<n<0. (4.l"3)

Substitution of relations (4.8), with conditions (4.13) (or their counterparts),
into (4.3) completes the solution in the assumed form.

Whether (4.3) actually represents a simple wave depends on the speed
distribution across region 2. We recall that each of the forward-propagating
wavelets is identified by a fixed value of the wave parameter A changing from 0
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to its final value A. It follows that a wavelet 'A' precedes the wavelet 'A + dk\
Consequently, if the wave speed U is a decreasing function of A changing
from 0 to A, the wavelet 'A + rfA' propagates at a lower speed than the wavelet
'A' and the reflected wave is a simple wave. If U is increasing with A, the
wavelet lX+dk' travels faster than the wavelet 'A' and in due course a shock is
formed. It may happen that U is not a monotone function of A. If such is the
case, the reflected wave may be formed by a combination of a shock and a
simple wave, and it is the sign of the local value of dU/dk which determines
how this wave is composed.

In (4.13a) the deformation gradient v(X) decreases in absolute value across
region 2, and the wave speed U = cp~xl2{\ + 3t]v2(k)}^2 decreases with A.
Hence region 2 is a simple wave propagating into a deformed material. Since
this wave decreases the existing strain level at the point it has just traversed,
it is of the unloading type. The region of the reflected wave (Figure 3) is
given by cp~ll2{\ + 3//v2(A)}'/2f <x2< cp~xl2{\ + 3 ^ } ' / 2 f .

In (4.13b) the deformation gradient v{k) increases in absolute value across
region 2, and the wave speed increases with A. Hence region 2 does not
represent a simple wave.

We modify the solution pattern assuming now that the reflected wave is a
shock propagating in direction N = (0,1,0). Equations of motion (2.4) are
now replaced by jump conditions (2.5) connecting the corresponding quanti-
ties in region 1 and 3 across the wave. The constant state ahead of the wave
is given by (3.3). We denote the constant values of the region behind the
wave by uB, vB. Thus, the jumps of the deformation gradient and velocity
across the wave are

lvl = vB + m0, [MJ = uB + m0V0; (4.16)

it follows from (4.13b) that [t>]] < 0. Denoting by a = (0,0, a3) the amplitude
vector of the shock, by V its speed and by m = |a| its strength, we obtain
from (2.5b) and (4.16)

vB = -m-mo, uB = -mV - m0VQ. (4.17)

The continuity conditions (4.11) at the interface x2 — 0 retain their (4.12)
form, with the final field values of the simple wave replaced by the constant
values uB and vB of region 3, and m assuming the role of wave parameter;
equations (4.5) are replaced by (4.17).

•Eliminating the velocity jump [[M]] from (2.5) we obtain the equation for
the shock speed: lTn^ = plv^V2, or

v2 = c2p~[{l + t]((vB)2 - vBm0 + ml)} (4.18)

Substitution of vB, calculated from the continuity conditions (4.12), into
(4.18) completes the solution in the assumed form.
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(a)

FIGURE 3. (a) Reflected simple wave and transmitted shock, (b) Reflected and transmitted
shock.

Equation (4.18) represents a weak solution of the reflection problem con-
sidered here. As such, this solution does not possess the uniqueness property
of smooth solutions. According to Lax [3], for (4.18) to represent an admis-
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sible shock it must also satisfy a stability criterion:

UB>V>UF (4.19)

where UB and UF are the characteristic (acoustic) speeds (4.3) in the material
region behind and ahead of the shock, respectively.

The speeds UB and UF can be calculated from (4.3) by substituting for v
the value vB and niQ. Thus

UB = U(vB) = cp~l'2{l + 3ri(vB)2}1'2,

UF = U(m0) = cp~\{\

Also, since vB < -mo and mo > 0, we have 3(vB)2 > (vB)2 - vBmo + ml >
3ml a n d t n e stability criterion (4.19) is satisfied for an arbitrary value of the
incident shock strength mo. The reflected wave is a shock propagating into a
deformed material, increasing the strain level. The region representing this
wave is denned by the equation: xj, — Vt (Figure 3).

An analogous analysis for region 2 shows that the transmitted wave cannot
be a simple wave. The assumption that region 2 is a shock propagating in
direction N = (0 , -1 ,0 ) into region 0 of "zero" state leads to the following
equations

vB = -m, uB = -mV, (4.20)

{l + fj(vB)2} (4.21)

where V is the shock speed and m is the shock strength. Since the character-
istic speed calculated in region 3 and 6 is UB — cp~xl2{\ + 3fj(vB)2}1/2 and
UF = cp~1/2, the stability criterion (4.19) is satisfied. The transmitted wave
is a shock propagating into an unstrained material region, loading the mate-
rial; it is given by the equation: xi = - Vt. (Figure 3).

5. Reflection-transmission solution

The results presented in Section 4 were obtained under the assumption
that (4.12) has a solution. The question to be considered now is whether a
combination of the parameters denning the two materials and the incident
shock is possible for which such a solution exists. A numerical analysis is
conducted for some media composed of different kinds of rubber, [8], (Table
1).
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elastic
{constants

^ ^
(kG/cm

C\
Cl
Ci

c2

1

TABLE 1

material
i

0.64
0.09
0.07

2.3
0.122

II

2.14
0.13
0.04

5.02
0.0318

III

3.52
0.00
0.23

9.8
0.0938

5.1 Reflected and transmitted waves are shocks
Let us consider case (4.13b) when both waves are shocks. In this case we
have for the reflected wave (Figure 3):

uB = lu^-m0VQ = -mV-m0V0, vB = [v j - mQ = -m - m0, (5.1)

and for the transmitted wave

uB = in = -mV, vB = m = -m., (5.1)
Substituting (5.1) and (5.1) into the continuity conditions (4.12) we obtain
two equations for two wave parameters m and m:

mV = mV + moVo, (5.2a)

c2{l + f)m2}m = c2{\ + t}{m + mo)
2}{m + m0). (5.2b)

Equation (5.2b) can be rewritten as

m3 + 3pm - 2q = 0 (5.3)

where p = (3t))-\ q = (c/c)2(3^)-'{l + rj(m + m0)2} (m + m0), and both
coefficients p and q are positive. From the theory of algebraic equations it is
known that in such a case, (5.3) has one only real solution

m = 2(3ri)-1'2 sinh(?>/3) (5.4)

where sinh tp = q/p3^2, and this solution is positive. Substitution of (5.4) into
(5.2a) gives an equation for the reflected shock wave parameter m. Further
numerical calculations show that for each of the following material combi-
nations (Table 1): A = I - II, B = II - III, C = I - III, this equation has a
unique real positive solution m a s a function of mo. The results are displayed
in Figure 4(a).

Since the material region behind the propagating shock wave should re-
main elastic, the discontinuity jumps cannot be arbitrary, and the appropri-
ate estimates for the shock strength should be established. In this paper we
use the estimation: mo < 2.66 (cf. [2]).

Components vB and vB of the deformation gradient in the regions behind
the transmitted and reflected shocks are plotted in Figure 4(a) as functions of
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the incident shock parameter m0, for combinations A,B and C. The graphs
show that the curves vB = vB(mo) ( and vB = vB(mo)) intersect for some
value of wo- Thus, different material combinations are possible for which a
given incident shock may generate transmitted shocks (or reflected shocks)
of the same strength.

5.2 Reflected simple wave and transmitted shock
In (4.3a) the reflected wave is a simple wave. The terminal values of this
wave are (see (4.8)):

rl
u(X) = - U(X)d-m0V0, v(X)=X-nt0 and 0 < X < m0; (5.5)

Jo

the constant values of region 3 behind the transmitted shock wave (Figure
3) are given by (5.1). Substituting (5.1) and (5.5) into (4.12) we obtain two
equations for two parameters m and X:

mV = / U(X)dX + m0V0, (5.6a)
Jo

c2{ 1 + i)m2}m = c2{l + t](X- mo)
2}(mo - X). (5.6b)

Equation (5.6b) is equivalent to (5.2b), with m replaced by -X. Its solution
for m is of the form of (5.4). Equation (5.6a), after integration, can be
written as

^T"1 0 1}
y/ + A-mo\)

+ fjm2} - m0c/>-'/2{l + rjml) = 0, (5.7)

w (

where </>(nt0) = (mo+ 1/3/7)1/2, y/(X,m) = {(X-mo)
2+l/3r})l/2- Substitution

of (5.4) into (5.7) gives an equation for the final value X of the reflected
wave parameter. Numerical calculations show that for each of the following
material combinations: D = II - 1 , E = III - II, F = III - 1 , this equation has
a unique real positive solution X, as a function of THQ.

Components vB and v(X) of the deformation gradient in the regions be-
hind the transmitted shock and reflected simple wave are plotted in Figure
4(b) as functions of mo, for combinations D, E and F. The graphs show that
the curves vB = vB(rrto) (and v = v(X; m0)) intersect for some value of mo.
Thus, different material combinations are possible for which the transmit-
ted (or reflected) waves are characterised by the same parameter, while the
corresponding reflected (or transmitted) waves have different parameters.
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FIGURE 4. Deformation gradient as function of mo, for material combinations:
(a) A = I - il, B = II - III, C = I - HI;

(b) D = II - i, E = III - II, F = III - I; C = C-
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5.3 Transmitted shock only
The shock is completely transmitted if m = 0 (or X = 0) and m ^ 0. Equa-
tions (5.3) are then reduced to the form (see (3.4) and (4.18))

pV = pV0, pmo = pm, (5.8)

and the problem has a solution m = (p/p)mn, provided the incident shock
and the combined materials satisfy the following condition

2 _
in —

p£2 - PC2)
p(p2t)c2 - p2r\c2)

In the numerical examples considered here we assume that p = p. Substi-
tuting (3.5)2 into (5.9) we obtain

ml = (c2 - c2)/(4(C3 - C3)). (5.9a)

Inspection of data in Table 1 indicates that (5.9a) can be satisfied only by the
material combination A = I - II. Further numerical analysis shows however
that the corresponding value of the incident shock strength is mn = 4.74,
well outside of the admissibility interval (0,2.66). We conclude that in the
particular cases (Table 1) considered here, transmission is always associated
with reflection.

5.4 Reflected shock only
The incident shock is completely reflected if m = 0 and m ^ 0 (or X ^ 0).
According to condition (4.13) it must be that m > 0 for the reflected shock,
and X > 0 for the reflected simple wave. It is obvious that neither (5.3) nor
(5.5), now reduced to form (5.10) and (5.11), respectively:

c2{\ + ri(m + mo)
2}(m + mo) = O, mV + moVo = 0; (5.10)

k + m0V0 = 0, (5.11)

can be satisfied for m > 0 and X > 0. We conclude that reflection without
transmission is not possible.

If, however, the half-space xi < 0 is a vacuum, there is, of course, a re-
flected wave only. In this case the interfacial conditions (4.12) are reduced to
a single equation v = 0, with the particle velocity component u constrained
by the compatibility condition only. The case is equivalent to 'free bound-
ary' conditions at xi = 0. The reflection solution (cf. [1]) is a simple wave
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FIGURE 5. Wave speeds in case (a) reflected simple wave and
transmitted shock, (b) reflected and transmitted shock.
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propagating into the just-deformed material region, unloading it to the state
of zero strain.

6. Concluding remarks

Numerical solutions obtained for some combinations of rubber-like mate-
rials (Table 1) and incident shock confirm the conclusion that the transmitted
waves are always shocks, while the reflected waves are either shocks or sim-
ple waves. The type of reflected wave depends on the material properties of
the composite medium, and through which of the two materials the incident
shock propagates. In the combinations A, B and C (Figure 4(a)) the reflected
wave is a shock. In the reversed combinations D,E and F (Figure 4(b)) the
reflected wave is a simple wave.

The continuity condition for velocity at x-i = 0 implies an energy type
relation between the amplitudes and speeds of the incident, transmitted and
reflected waves: fhV = mV + moVo. The numerical results indicate that the
term mV is small in comparison with moVo- This means that the major part
of the incident shock energy is used to form the transmitted shock. The
graphs in Figure 4 also show that m> rriQ when the reflected wave is a shock,
and m < mo when the reflected wave is a simple wave. The strength m of
the reflected shock is comparatively small, and the range of variation of the
reflected simple wave is also small.
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FIGURE 6. Deformation gradient in region of reflected simple wave.

https://doi.org/10.1017/S0334270000006469 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006469


[19] Reflection-transmission in rubber 47

The speeds of the reflected and transmitted waves for all six combinations
are plotted in Figure 5, as functions of the incident shock strength mo. Figure
6 shows the linear variation of the deformation gradient in the region of a
simple wave (see (4.8)), for various values of mo e (0,2.66), as a function
of L The envelopes v(X) for the final values of the wave parameter are also
plotted. In combination D the range of variation of X is decreasing with
parameter mo changing from 1.6 to 2.66.

References

[1] B. Duszczyk, S. Kosinski and Z. Wesolowski, "Normal shock reflection in rubber-like elastic
material", Arc. Mech. 38 (1986) 675-688.

[2] B. Duszczyk, S. Kosinski and Z. Wesolowski, "Reflection of oblique shock waves in in-
compressible elastic solids", J. Aust. Math. Soc. Ser. B 27 (1985) 31-47.

[3] P. Lax, "Hyperbolic systems of conservation laws II", Comm. Pure Appl. Math. 10 (1957)
537-566.

[4] Z. Wesolowski, Dynamic problems in nonlinear elasticity, (PWN Publishers, Warsaw, 1974)
(in Polish).

[5] T. W. Wright, "Reflection of oblique shock waves in elastic solids", Internal J. Solids and
Structures! (1971) 161-187.

[6] T. W. Wright, "Uniqueness of shock reflection patterns in elastic solids", Arch. Rational
Mech. Anal. 42 (197\) 115-127.

[7] S. Zahorski, "A form of elastic potential for rubber-like materals", Arch. Mech. 5 (1959)
613-617.

[8] S. Zahorski, "Experimental investigation of certain mechanical properties of rubber", Eng.
Trans. 10 (1962) 193-207 (in Polish).

https://doi.org/10.1017/S0334270000006469 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006469

